15
Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host protein. In the last decade of flavodoxin research, the following has been revealed: o the folding pathway o the structure and stability of the apoprotein, o the mechanism of FMN recognition, o the interactions that stabilize the functional complex and tailor the redox Predicting the flavodoxin secondary and tertairy structure

Predicting the flavodoxin secondary and tertairy structure

  • Upload
    weylin

  • View
    32

  • Download
    0

Embed Size (px)

DESCRIPTION

Predicting the flavodoxin secondary and tertairy structure. Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions - PowerPoint PPT Presentation

Citation preview

Page 1: Predicting the flavodoxin secondary and tertairy structure

• Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions

• The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host protein.

• In the last decade of flavodoxin research, the following has been revealed:o the folding pathwayo the structure and stability of the apoprotein, o the mechanism of FMN recognition, o the interactions that stabilize the functional complex and

tailor the redox potentialso many details of the binding and electron transfer to partner

proteins

Predicting the flavodoxin secondary and tertairy structure

Page 2: Predicting the flavodoxin secondary and tertairy structure

• The next decade should witness an even deeper understanding of the flavodoxin molecule and a greater comprehension of its many physiological roles.

• The fact that flavodoxin is essential for the survival of some human pathogens could make it a drug target on its own.

Predicting the flavodoxin secondary and tertairy structure

Page 3: Predicting the flavodoxin secondary and tertairy structure

Predicting the flavodoxin secondary and tertairy structure

• Predict using a multiple alignment of 13 flavodoxin sequences• Redox protein • Involved in photosynthesis and other crucial processes

• The 14th sequence on the bottom of the alignment is a VERY distantly related protein cheY• Chemotaxis protein• For example, it interacts with proteins at the base of the

flagellar apparatus of E. coli and promotes clockwise flagellar rotation

Page 4: Predicting the flavodoxin secondary and tertairy structure

Flavodoxin-cheY multiple sequence alignment:

1fx1 -PKALIVYGSTTGNT-EYTAETIARQLANAG-YEVDSRDAASVEAGGLFEGFDLVLLGCSTWGDDSI------ELQDDFIPLF-DSLEETGAQGRKVACF

FLAV_DESDE MSKVLIVFGSSTGNT-ESIaQKLEELIAAGG-HEVTLLNAADASAENLADGYDAVLFgCSAWGMEDL------EMQDDFLSLF-EEFNRFGLAGRKVAAf

FLAV_DESVH MPKALIVYGSTTGNT-EYTaETIARELADAG-YEVDSRDAASVEAGGLFEGFDLVLLgCSTWGDDSI------ELQDDFIPLF-DSLEETGAQGRKVACf

FLAV_DESSA MSKSLIVYGSTTGNT-ETAaEYVAEAFENKE-IDVELKNVTDVSVADLGNGYDIVLFgCSTWGEEEI------ELQDDFIPLY-DSLENADLKGKKVSVf

FLAV_DESGI MPKALIVYGSTTGNT-EGVaEAIAKTLNSEG-METTVVNVADVTAPGLAEGYDVVLLgCSTWGDDEI------ELQEDFVPLY-EDLDRAGLKDKKVGVf

2fcr --KIGIFFSTSTGNT-TEVADFIGKTLGA---KADAPIDVDDVTDPQALKDYDLLFLGAPTWNTG----ADTERSGTSWDEFLYDKLPEVDMKDLPVAIF

FLAV_AZOVI -AKIGLFFGSNTGKT-RKVaKSIKKRFDDET-MSDA-LNVNRVS-AEDFAQYQFLILgTPTLGEGELPGLSSDCENESWEEFL-PKIEGLDFSGKTVALf

FLAV_ENTAG MATIGIFFGSDTGQT-RKVaKLIHQKLDG---IADAPLDVRRAT-REQFLSYPVLLLgTPTLGDGELPGVEAGSQYDSWQEFT-NTLSEADLTGKTVALf

FLAV_ANASP SKKIGLFYGTQTGKT-ESVaEIIRDEFGN---DVVTLHDVSQAE-VTDLNDYQYLIIgCPTWNIGEL--------QSDWEGLY-SELDDVDFNGKLVAYf

FLAV_ECOLI -AITGIFFGSDTGNT-ENIaKMIQKQLGK---DVADVHDIAKSS-KEDLEAYDILLLgIPTWYYGE--------AQCDWDDFF-PTLEEIDFNGKLVALf

4fxn -MK--IVYWSGTGNT-EKMAELIAKGIIESG-KDVNTINVSDVNIDELL-NEDILILGCSAMGDEVL-------EESEFEPFI-EEIS-TKISGKKVALF

FLAV_MEGEL MVE--IVYWSGTGNT-EAMaNEIEAAVKAAG-ADVESVRFEDTNVDDVA-SKDVILLgCPAMGSEEL-------EDSVVEPFF-TDLA-PKLKGKKVGLf

FLAV_CLOAB -MKISILYSSKTGKT-ERVaKLIEEGVKRSGNIEVKTMNLDAVD-KKFLQESEGIIFgTPTYYAN---------ISWEMKKWI-DESSEFNLEGKLGAAf

3chy ADKELKFLVVDDFSTMRRIVRNLLKELGFN--NVEEAEDGVDALNKLQAGGYGFVI---SDWNMPNM----------DGLELL-KTIRADGAMSALPVLM

T1fx1 GCGDS-SY-EYFCGA-VDAIEEKLKNLGAEIVQD---------------------GLRIDGD--PRAARDDIVGWAHDVRGAI--------

FLAV_DESDE ASGDQ-EY-EHFCGA-VPAIEERAKELgATIIAE---------------------GLKMEGD--ASNDPEAVASfAEDVLKQL--------

FLAV_DESVH GCGDS-SY-EYFCGA-VDAIEEKLKNLgAEIVQD---------------------GLRIDGD--PRAARDDIVGwAHDVRGAI--------

FLAV_DESSA GCGDS-DY-TYFCGA-VDAIEEKLEKMgAVVIGD---------------------SLKIDGD--PE--RDEIVSwGSGIADKI--------

FLAV_DESGI GCGDS-SY-TYFCGA-VDVIEKKAEELgATLVAS---------------------SLKIDGE--PD--SAEVLDwAREVLARV--------

2fcr GLGDAEGYPDNFCDA-IEEIHDCFAKQGAKPVGFSNPDDYDYEESKS-VRDGKFLGLPLDMVNDQIPMEKRVAGWVEAVVSETGV------

FLAV_AZOVI GLGDQVGYPENYLDA-LGELYSFFKDRgAKIVGSWSTDGYEFESSEA-VVDGKFVGLALDLDNQSGKTDERVAAwLAQIAPEFGLS--L--

FLAV_ENTAG GLGDQLNYSKNFVSA-MRILYDLVIARgACVVGNWPREGYKFSFSAALLENNEFVGLPLDQENQYDLTEERIDSwLEKLKPAV-L------

FLAV_ANASP GTGDQIGYADNFQDA-IGILEEKISQRgGKTVGYWSTDGYDFNDSKA-LRNGKFVGLALDEDNQSDLTDDRIKSwVAQLKSEFGL------

FLAV_ECOLI GCGDQEDYAEYFCDA-LGTIRDIIEPRgATIVGHWPTAGYHFEASKGLADDDHFVGLAIDEDRQPELTAERVEKwVKQISEELHLDEILNA

4fxn G-----SY-GWGDGKWMRDFEERMNGYGCVVVET---------------------PLIVQNE--PDEAEQDCIEFGKKIANI---------

FLAV_MEGEL G-----SY-GWGSGEWMDAWKQRTEDTgATVIGT----------------------AIVNEM--PDNA-PECKElGEAAAKA---------

FLAV_CLOAB STANSIAGGSDIA---LLTILNHLMVKgMLVYSG----GVAFGKPKTHLGYVHINEIQENEDENARIfGERiANkVKQIF-----------

3chy VTAEAKK--ENIIAA---------AQAGAS-------------------------GYVV-----KPFTAATLEEKLNKIFEKLGM------

GIteration 0 SP= 136944.00 AvSP= 10.675 SId= 4009 AvSId= 0.313

Page 5: Predicting the flavodoxin secondary and tertairy structure

Rules of thumb when looking at a multiple alignment (MA)

• Hydrophobic residues are internal

• Gly (Thr, Ser) in loops

• MA: hydrophobic block -> internal -strand

• MA: alternating (1-1) hydrophobic/hydrophilic => edge -strand

• MA: alternating 2-2 (or 3-1) periodicity => -helix

• MA: gaps in loops

• MA: Conserved column => functional? => active site

Page 6: Predicting the flavodoxin secondary and tertairy structure

Rules of thumb when looking at a multiple alignment (MA) … cont.

• Active site residues are together in 3D structure

• Helices often cover up core of strands

• Helices less extended than strands => more residues to cross protein

-- motif is right-handed in >95% of cases (with parallel strands)

• MA: ‘inconsistent’ alignment columns and match errors!

• Secondary structures have local anomalies, e.g. -bulges

Page 7: Predicting the flavodoxin secondary and tertairy structure

Amino acid properties

Page 8: Predicting the flavodoxin secondary and tertairy structure

Amino acid hydrophobicity scale

hydrophobic

hydrophilic

Page 9: Predicting the flavodoxin secondary and tertairy structure
Page 10: Predicting the flavodoxin secondary and tertairy structure
Page 11: Predicting the flavodoxin secondary and tertairy structure

Burried and Edge strands

Parallel -sheet

Anti-parallel -sheet

Page 12: Predicting the flavodoxin secondary and tertairy structure

Periodicity patterns within secondary structures

Burried -strand

Edge -strand

-helix

= hydrophilic = hydrophobic

Page 13: Predicting the flavodoxin secondary and tertairy structure

TOPS diagrams

Circle = helix

Triangle = strand

Page 14: Predicting the flavodoxin secondary and tertairy structure

-- motif is right-handed in >95% of cases

RH LH

Page 15: Predicting the flavodoxin secondary and tertairy structure

Building flavodoxin

RH