Prediction of DLC friction lifetime based on a local Archard factor density approach

Embed Size (px)

Citation preview

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    1/17

    Prediction of DLC friction lifetime

    based on a local Archard factor

    density approach 

    F. ALKELAE , S. FOUVRY

    International Conference on Metallurgical Coatings and Thin Films

     April 29  – May 3, 2013San Diego, CA, USA

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    2/17

    SUMMARY

    Experimental device

    Material used

    Experiments performed

    Expertises performed

      Friction analysis

      Wear analysis

    Endurance analysis based on Archard local energy density

    2

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    3/17

    Q*,δ*

    δ0≈δg

    Experimental layout

    Experimental device schema Fretting loop

    3

     P is kept constant

    Q and  are recorded

     

    => Plotting Q = f() : fretting loop

    Materials data.  Composition (Wt %)  Young Modulus

    (GPa) 

    52100 Chromium steel  97% Fe,1.45% Cr, 0.98% C,

    0.35% Mn 

    210 

    DCY (DLC)  81.35% C, 16.92% W, 1.73%

    Cr  

    364 

    Materials Data.

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    4/17

    Two families:

    -Hydrogen free

    -Hydrogen content

    DLC’s 

    DLC categories

    Conditions Valeurs

    P (N) 5

    δg (µm) 50

    pmax (Mpa) 430

    F (Hz) 25

    T ( C) 20

    RH (%) 29

    52100 steel ball

    DLC coating

    52100 steel substrate

    Configuration adopted

    Experimental conditions

    Work  conditions and material used

    4

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    5/17

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

       F  r   i  c   t   i  o  n  c  o  e   f   f   i  c   i  e  n   t  µ

    Fretting cycles Nc

    12

    3 4

    5

    52100/52100

    DLC/52100

    Friction criterion (µth=0.3)

    (I) (II) (III)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.E+00 2.E+06 4.E+06 6.E+06 8.E+06

       F  r   i  c   t   i  o  n  c  o  e   f   f   i  c   i  e  n   t  µ

    Fretting cycles Nc

    12

    3 4

    5

    52100/52100

    DLC/52100

    Friction criterion (µth=0.3)

    (I)

    (II) (III)

    Friction analysis

    Linear representation of the

    friction coefficient evolution

    Logarithmic representation of the

    friction coefficient evolution

    5

     Abrupt decrease on the friction coefficient after sequence 2.

     continuous increase on the friction coefficient after sequence 2 until stabilizing at almost the

    52100/52100 friction coefficient.

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    6/17

    1 2 3 4

    5

    Plane DLC fretting scars

    Ball 52100 fretting scars

    0.5mm

    0.5mm

    Wear analysis

    Interrupted tests optical observations of the plane (above) and the ball

    (bellow)

    6

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    7/17

    500µm

    -2µm

    3D profiles

    2D axial profiles

    Surface

    Coating thickness

    3D profiles

    1

    2 3 4 5

    Wear analysis

    3D associated to 2D profiles of different interrupted tests

    7

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    8/17

    1

    2

    3

    4

    5

    SEM C W Cr Fe O Si

    Wear analysis

    SEM and EDX mapping of the plane fretting scar at different damage

    sequences.

    8

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    9/17

    (b)(a)

    0  400  800  1200  1600 

    (a) Central zone

    (b) DLC-ref

    (a)

    (b) ramanshift

    (cm-1)

    plane fretting scar analysis

    (1)

    0  400  800  1200  1600 

    (a) Central zone

    (b) DLC-ref

    (a)

    (b)

    (cm-1

    )

    (2)

    (a) (b)(3)

    0  400  800  1200  1600 

    (b) Debris (grey)

    DLC-REFFeCr 2O4-ref.

    (a) Central zone (bright)

    (a)

    (b)

    (cm-1)

    (4)

    0  400  800  1200  1600 

    Fe2O3+Fe3O4-ref

    (a) Central zone

    (a)

    raman

    shift

    (cm-1)

    ball fretting scar analysis

    0  400  800  1200  1600 

    (a) Central zone (black area)

    DLC-ref

    Cr 8O21(mixture of

    CrO2 & Cr 2O3)

    (b) External zone

    (bright area)

    Fe2O3+Fe3O4-ref

    (a)

    (b)

    DLC-ref

    (a)

    (b)

    (cm-1)

    (a) Debris area(red) (b) Central zone

    Fe2O3+Fe3O4-ref

    (cm-1)0  400  800  1200  1600 

    0 400 800 1200 1600400 (cm-1)

    (a) Central zone (bright)

    FeCr 2O4-ref.

    DLC-REF

    (b) Black corona

    CrC

    (cm-1)0  400  800  1200  1600 

    DLC-ref

    (b) Central zone

    (bright area)(a) Central zone

    (red area)

    CrC

    Fe2O3+Fe3O4-ref

    CrC

    CrC

    Wear analysis

    Raman analysis of plane and sphere fretting scar at different stages of the fretting wear

    damage9

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    10/17

    31

    µ = 0.4, Ra = 0.95µm _ 

    µ = 0.2, Ra = 1.63µm _ 

    Wear analysis

    Roughness and friction coefficient comparison between sequence 1 and 3.

    10

    Remarkable friction coefficient of a smooth surface ( = 0.95µm) comparatively to a rough

    surface ( = 1.63µm) =>

    The polishing process is not the predominant parameter of the friction coefficient decrease from

    sequence 1 to sequence 3 but rather the nature of the transfer layers.

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    11/17

    Coating

    failureFriction faillure

    µth = 0.3

    (period I) (period II) (period III)

    Nc1 Number of cycles

       F  r   i  c   t   i  o  n  c  o  e   f   f   i  c   i  e  n   t  µ

    Nc2

    Prediction of the interface endurance

    Schematization of the friction interface evolution considering the coeting failure

    (Nc1) and the friction failure (Nc2)

    11

     Nc1: the sharp decrease from the 0.4 friction plateau to the 0.2 friction plateau.

      Nc2: the friction faillure which is defined by a friction value µ ≥ µ_th =0.3. 

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    12/17

    y = -3E-05x + 169.25R² = 0.9517

    0

    20

    40

    60

    80

    100

    120

    0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06

       S   l   i   d   i  n  g  a  m  p   l   i   t  u   d  e        δ      g    (

       ±  µ  m   )

    Friction endurance Nc2

    y = -6E-05x + 701.6

    R² = 0.815

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1 000

    0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06

       L  o  a   d   i  n  g  p  r  e  s  s  u  r  e  p  m  a  x

       (   M   P  a   )

     Friction endurance Nc2

    Prediction of the interface endurance

    Evolution of the friction endurance Nc2 as a

    function of the sliding amplitude(P = 5N).

    Evolution of the friction endurance Nc2 as

    a function of the contact pressure( =±50µm).

    12

    The friction endurance seems to decrease while increasing the loading

     pressure and the sliding amplitude.

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    13/17

    Prediction of the interface endurance

    Pressure field illustration

    Determination of the dissipated

    local energy

    13

    The local dissipated energy analysis is conducted assuming Hertzian pressure field distribution.

     The maximum Archard work density dissipated is situated at the center of the sphere/plane

    interface (x = y = 0) following the Hertzian hypothesis

     

     

    Illustration of the

    Hertzian approach

    methodology

    1

    23

    4 Methodology ofcomputing the

    simplified approach

     g  pW S      max4~

    e Arceea pW   H  H    sin12~  2

    max 

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    14/17

    0.0E+00

    2.0E+04

    4.0E+04

    6.0E+04

    8.0E+04

    1.0E+05

    1.2E+05

    1.4E+05

    1.6E+05

    1.8E+05

    2.0E+05

    0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06

       L  o  c  a

       l   A  r  c   h  a  r   d  w  o  r   k   d  e  n  s   i   t  y

       W   S   (   N .  m   /  m   2   )

    Friction endurance Nc2

    Nc2-dg=50µm / pmax var 

    Nc2-pmax-430MPa / dg var 

     Nc2  –  δg =±50µm / pmax var

     Nc2  –  pmax = 430MPa/ δg  var  

    y = -3E-09x2 + 0.003x + 11700R² = 1

    0.0E+00

    2.0E+04

    4.0E+04

    6.0E+04

    8.0E+04

    1.0E+05

    1.2E+05

    1.4E+05

    0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06 7.0E+06

       L  o  c

      a   l   A  r  c   h  a  r   d  w  o  r   k   d  e  n  s   i   t  y

       W   H   (   N .  m   /  m   2   )

    Friction endurance Nc2 

    DCY : dg=50µm / pmax var 

    DCY : pmax=430 MPa / dg var 

     Nc2  –  δg =±50µm / pmax var

     Nc2  –  pmax = 430MPa/ δg  var

    Evolution of the simplified Archard work

    approximation

     as a function of thefriction endurance Nc2

    Prediction of the interface endurance

    Evolution of the exact hertzian Archard

    work approximation

     as a function ofthe friction endurance Nc2

    14

     Large dispersion while using the simplified formulation especially for low endurance domain.

    A good correlation obtained using the exact formulation which consider an elliptical distribution

    of the contact pressure.

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    15/17

    0.0E+00

    2.0E+04

    4.0E+04

    6.0E+04

    8.0E+04

    1.0E+05

    1.2E+05

    1.4E+05

    0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06

       L  o  c  a   l   A  r  c   h  a  r   d  w  o  r   k   d  e  n  s   i   t  y

       W   H   (   N .  m   /  m   2   )

     

    endurance Nc

    Nc2-dg=50µm / pmax var 

    Nc2-pmax-430MPa / dg var 

    Nc1-dg=50µm / pmax var 

    Nc1-pmax-430MPa / dg var 

     Nc2  –  δg =±50µm / pmax var

     Nc2  –  pmax = 430MPa/ δg  var

     Nc1  –  δg =±50µm / pmax var

     Nc1  –  pmax = 430MPa/ δg  var  

    Friction endurance

    Coating endurance

    Prediction of the interface endurance

    Evolution of the applied Archard work density  as a function of the coating

    (Nc1) and the friction (Nc2) endurances 

    15

     The coating endurance does not seem to be a function of the local Archard work density.

    A good correlation between the friction endurance values represented as a function of the

    local Archard parameter.

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    16/17

    Conclusion

    DLC coatings are very interesting palliatives for fretting wear applications thanks to their very low riction

    coefficient and wear rate

    Since the evolution of the friction coefficient is devided into three phases, Raman spectroscopy, SEM and

    EDX have shown that the transition from the first plateau of µ = 0.4 to the second of µ = 0.2 is monitored

     by the formation of lubricious layers of DLC and chromium carbide, right after a little stabilization at this

    second plateau, a continuous increase of the friction coefficient take place until almost reaching the

    friction value of 52100/52100 contact.

    A local Archard work density parameter was used to quantify the durability of the coating, two

    endurances were taking into account, Nc1 : the coating faillure and Nc2 : the the friction faillure.

     Nc2 > Nc1

     Exact formulation  and simplified formulation  were plotted versus the friction endurance. A

    remarkable dispersion was observed using  , whereas a single master curve was obtained modeling

    thus the wear evolution with the exact formulation.

     For the coating endurance a vertical curve was obtained which means that it is not a function of the local

    Archard work.

  • 8/18/2019 Prediction of DLC friction lifetime based on a local Archard factor density approach

    17/17

    [email protected]

    Thank you for your

    kind attention