11
iMedPub Journals ht tp://www.imedpub.com 2015 Vol. 1 No. 1:6 1 © Copyright iMedPub | This article is available in: http://nanotechnology.imedpub.com/archive.php Research Article Nano Research & Applications ISSN 2471-9838 Salwa AM Abdel-Hameed 1 , Ibrahim Hamed M 2 , Barbara J Muller-Borer 3 and Nehal A Erfan 2 1 Glass Research Department, Naonal Research Centre,33El Bohouthst.(former El Tahrirst.)-Dokki-Giza- P.O.12622 , Egypt 2 Chemical engineering department, faculty of engineering, Minia university, Minia, Egypt 3 Department of Engineering, East Carolina University, Greenville, NC, USA Corresponding author: Nehal A Erfan [email protected] Chemical engineering department, faculty of engineering, Minia university, Minia, Egypt. Tel: +1-252-412-1154 Citation: Abdel-Hameed SAM, Hamed IM, Muller-BorerBJ, et al. Preparaon and Characterizaon of Magnec Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015, 1:1. Introducon The properes of nanomaterials are not well understood although they have been in use for centuries. Early Chinese dynasty porcelain glazes were the earliest applicaon [1]. During the Renaissance period, arsts in Umbria, Italy ulized nanomaterials in art fabricaon [2]. Several decades ago, serious research on nanotechnology began [1]. Since then, significant improvements have been made on process development of nanomaterials with controlled structure and properes [1]. Recently, one-dimensional (1D) and quasi-one-dimensional (Q 1D) materials with magnec phases have aracted great aenon due to their potenals as building blocks for future electromagnec devices [3,4]. The need for waste recycling is important as sciensts connue to seek ways to reduce the environmental impact of industrial wastes. Industrial waste has been a major source of air, water and industrial polluon resulng from solid waste disposal. This consequently has a negave impact on the environment with increased associated costs. Owing to the growing amount of solid wastes produced by industrial firms, increased environmental regulaons and the need for polluon abatement, there is increased interest in using recycling as a means of diverng solid wastes to useful products as glass-ceramics. The following are examples for producing glass ceramics from solid wastes. Blast-furnace slag was the first silicate waste to be Preparaon and Characterizaon of Magnec Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes Abstract Rolling Mill Scales (RSW) were used as raw materials for preparaon of hard and soſt magnec glass ceramics which have a wide range of applicaons. In steel processing up to 5% of steel is lost with scales during the hot rolling operaon where Iron oxides form~ 69-72% of the milling scales weight. In addion to the iron content, mill scales are contaminated with remains of lubricants, oils and grease from the equipment associated with rolling operaons. The oil content typically ranges from 0.1 and 2% -but can reach up to 20%-beside ~10% water. The goal of this project was to evaluate magnec properes of soſt and hard magnec glass ceramics synthesized from RSW. To synthesize soſt magnec glass ceramics (SMGC) and hard magnec glass ceramics (HMGC), 65 wt% and 37 wt% respecvely of RSW were used. Quenching-melng technique was ulized. Differenal thermal analysis (DTA) showed one broad exothermic peak at 906ºC and at 731ºC for SMGC and HMGC respecvely. For SMGC, the major detectable peaks belong to Zn- ferrite(ZnFe 2 O 4 ) and Hemate(Fe 2 O 3 ) as shown by X-ray diffracon (XRD) analysis. Alternavely, Ba-hexaferrite (BaFe 12 O 19 ) and Hemate are the detected phases in HMGC samples. Aſter heat treatment, crystallizaon of ~131-166 and 24-34 nm magnec parcles were detected for SMGC and HMGC via transmission electron microscopy (TEM). An increase in saturaon magnezaon from 18 emu/g for RSW to 66.5 emu/g for heat treated SMGC and 19 emu/g for HMGC was measured with a Vibrang Scanning Magnetometer (VSM). The results confirm that we were able to recycle rolling mill scales into hard and soſt magnec glass ceramics with magnec phase content reaches 92.4 wt%. Keywords: Rolling mill scales; Glass-ceramics; Nanoparcles; Ferrimagnesm; Zn- ferrite and Ba-hexaferrite Received: September 02, 2015; Accepted: October 27, 2015; Published: November 05, 2015

Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

iMedPub Journalshttp://www.imedpub.com

2015Vol. 1 No. 1:6

1© Copyright iMedPub | This article is available in: http://nanotechnology.imedpub.com/archive.php

Research Article

Nano Research & ApplicationsISSN 2471-9838

Salwa AM Abdel-Hameed1, Ibrahim Hamed M2,Barbara J Muller-Borer3 andNehal A Erfan2

1 GlassResearchDepartment,NationalResearchCentre,33ElBohouthst.(formerElTahrirst.)-Dokki-Giza-P.O.12622,Egypt

2 Chemicalengineeringdepartment,facultyofengineering,Miniauniversity,Minia,Egypt

3 DepartmentofEngineering,EastCarolinaUniversity,Greenville,NC,USA

Corresponding author: NehalAErfan

[email protected]

Chemicalengineeringdepartment,facultyofengineering,Miniauniversity,Minia,Egypt.

Tel: +1-252-412-1154

Citation: Abdel-HameedSAM,HamedIM,Muller-BorerBJ,etal.PreparationandCharacterizationofMagneticGlassCeramicsDerivedfromIronOxidesBearingRollingMillScalesWastes.NanoResAppl.2015,1:1.

IntroductionThepropertiesofnanomaterialsarenotwellunderstoodalthoughthey have been in use for centuries. Early Chinese dynastyporcelain glazes were the earliest application [1]. During theRenaissanceperiod,artistsinUmbria,Italyutilizednanomaterialsin art fabrication [2]. Several decades ago, serious researchonnanotechnologybegan[1].Sincethen,significantimprovementshavebeenmadeonprocessdevelopmentofnanomaterialswithcontrolledstructureandproperties[1].Recently,one-dimensional(1D)andquasi-one-dimensional(Q1D)materialswithmagneticphaseshaveattractedgreatattentionduetotheirpotentialsasbuildingblocksforfutureelectromagneticdevices[3,4].

Theneedforwasterecyclingisimportantasscientistscontinueto seekways to reduce theenvironmental impact of industrialwastes. Industrialwaste has been amajor sourceof air,waterandindustrialpollutionresultingfromsolidwastedisposal.Thisconsequently has a negative impact on the environment withincreasedassociatedcosts.Owingtothegrowingamountofsolidwastes produced by industrial firms, increased environmentalregulations and the need for pollution abatement, there isincreasedinterestinusingrecyclingasameansofdivertingsolidwastestousefulproductsasglass-ceramics.

The following are examples for producing glass ceramics fromsolidwastes.Blast-furnaceslagwasthefirstsilicatewastetobe

Preparation and Characterization of Magnetic Glass Ceramics

Derived from Iron Oxides Bearing Rolling Mill Scales Wastes

AbstractRollingMillScales(RSW)wereusedasrawmaterialsforpreparationofhardandsoftmagnetic glass ceramicswhich have awide range of applications. In steel processingup to5%ofsteel is lostwithscalesduring thehot rollingoperationwhereIronoxidesform~69-72%ofthemillingscalesweight.Inadditiontotheironcontent,millscalesarecontaminatedwithremainsoflubricants,oilsandgreasefromtheequipmentassociatedwithrollingoperations.Theoilcontenttypicallyrangesfrom0.1and2%-butcanreachupto20%-beside~10%water.ThegoalofthisprojectwastoevaluatemagneticpropertiesofsoftandhardmagneticglassceramicssynthesizedfromRSW. Tosynthesizesoftmagneticglassceramics(SMGC)andhardmagneticglass ceramics (HMGC),65wt%and37wt%respectivelyofRSWwereused.Quenching-meltingtechniquewasutilized.Differentialthermalanalysis(DTA)showedonebroadexothermicpeakat906ºCandat731ºCforSMGCand HMGC respectively. For SMGC, the major detectable peaks belong to Zn-ferrite(ZnFe2O4)andHematite(Fe2O3)asshownbyX-raydiffraction(XRD)analysis.Alternatively,Ba-hexaferrite(BaFe12O19)andHematitearethedetectedphasesinHMGCsamples.Afterheattreatment,crystallizationof~131-166and24-34nmmagneticparticlesweredetectedforSMGCandHMGCviatransmissionelectronmicroscopy (TEM). An increase in saturationmagnetization from 18 emu/g forRSWto66.5emu/gforheattreatedSMGCand19emu/gforHMGCwasmeasuredwithaVibratingScanningMagnetometer(VSM).Theresultsconfirmthatwewereabletorecyclerollingmillscalesintohardandsoftmagneticglassceramicswithmagneticphasecontentreaches92.4wt%.Keywords:Rollingmillscales;Glass-ceramics;Nanoparticles;Ferrimagnetism;Zn-ferriteandBa-hexaferrite

Received: September02,2015; Accepted: October27,2015; Published: November05,2015

Page 2: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

2 This article is available in: http://nanotechnology.imedpub.com/archive.php

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

investigatedasasourcematerialforglassceramics.Theseslagsconsist of CaO, SiO2 and MgO as the main constituents, withminorconstituentssuchasMnO,Fe2O3andS.ThefirstattempttocommercializeaglassceramicfromslagwasbytheBritishIronandSteelResearchAssociationinthelate1960’s[5].Fabricationof glass-ceramics using slag-type wastes from non-ferrousmetalproductionhasbeenreported,these includecopperslag[6,7]andphosphorusslag[8].Upto40wt%ofcopperslagwasincorporated into a base glass composition to produce tilesvia thepowder sinteringmethod [6].Mixturesof coal ashandwaste glass have been used in early technological approachesto fabricate glass ceramics and glass matrix composites usingpowdertechnologyandsintering[9-11].Chenget al. conductedsingle-step heat treatment of glasses obtained from vitrifiedincineratorflyash [12]andofamixtureofelectricarc furnace(EAF)dustandflyash[13].

MPelinoetal.[14]andMorsietal. [15] preparedglassspecimensbymeltingmixturesofmagnesite, feldspar,quartz sand,kaolinand cement dust with dust content in the range 25–37 wt%.Gorokhovskyetal.[16]produceddiopside-basedglassceramicsbasedonacombinationofawiderangeofwastes(quartz-feldsparwaste,limestonedust,phosphorusslurry,metallurgicalslag)andselected commercially available chemicals, such as Cr2O3, as a nucleatingagent.Yunetal.[17] preparedglass-ceramicsfromamixtureoffluorescentglassandwasteshellinaweightratioof4:1.Diazetal.[18]recentlyreportedthatitispossibletoproducecordierite glass-ceramics from inorganic wastes of anodizingplants. Reusing jarosite and goethite from hydrometallurgicalprocesses toobtainglassandglass-ceramicmaterialshasbeenreportedinseveralpapers[19-25].

Toourknowledge,productionofmagneticglassceramics fromrollingmillscaleshasnotbeenpreviouslyreported.

Rollingmill scales are solid by-products from the steelmakingindustry that contain metallic iron and three types of ironoxides: Wustite, Hematite and magnetite. Rolling mill scalesalso contain traces of non-ferrousmetals, alkaline compoundsand oils from the rolling process [26]. Mill scales are formedon theouter surfaces of plates, sheets or other configurationsproducedby rolling red-hot ironor steel billets in rollingmills.Mill scaleswithbluishblackcolorarecomposedof ironoxidesmostlyferric(Figure 1).Inthewholeworld,13.5milliontonsofmillscalesaregeneratedannually[27].Dependingontheprocessandthenatureoftheproduct,theweightofmillscalecanvarybetween20and50kg/tofthehotrolledproduct.Theaveragespecificproductionofthisby-productistypically35-40kg/t[28].Approximately90%ofmill scales isdirectly recycledwithin thesteelmakingindustryandsmallamountsareusedforferroalloys,in cement plants and in the petrochemicals industry [29-32]. Volodymeret.al.[26] utilizedtherollingmillscalesintheironoresinteringprocessastheywereabletoimprovethecombustionofthescale’soilatthesinteringprocessbypreparationofamixturewithpeat.By theirmethod theconsumptionof theoiledscalewas increased from zero to 12.8 kg. A studywasmade byMIMartinet.al. [28]of thereductionofmill scale tosponge ironusingcokeatdifferenttemperatures.N.M.Gaballahet.al.,[33] preparedtwomodelsfortheproductionofironfromrollingmillscaleswastes via hydrogen reduction at varying temperatures.

Reintroducing the rolling mill scales into an industrial processthroughwellplannedprogramswillreducetheirenvironmentalimpactandwillimprovecostsavings.

Glass-ceramicsaredefinedascompositematerials thatcontainat least one crystalline phase dispersed in an amorphousglassymatrix. The chemical compositionof theglassprecursorinfluencesthephysicalandchemicalpropertiesofthecomposite.Therefore, the investigation of new composite glass materialswithcontrolledparticlessizedistributionandaspectratiohasanimpact on industry. Preparation of magnetite-containing glassceramics has been reported by several groups [34-36] whereferromagneticbioglass-ceramicscontaining45wt%ofmagnetitewereprepared[37]andabout60wt%werereportedbyothers[38,39]. Traditional compactmagneticmaterials are commonlyprepared by sintering of ferrite powders [40,41] with a meanparticlesizeofabout1µmat1200-1250°C.Duringsinteringthemagnetic crystals grow so that multi-domain behavior occurswhichlowersthecoercivityofthematerial[42].

Spinelandhexa-ferritesarealargeimportantclassofmaterialswiththegeneralformulaM-Fe2O4forspinelferritesandM-Fe12O9forhexa-ferrites,whereMisadivalentcation.Hexa-ferriteshaveahexagonalcrystalstructurewherethemagneticpropertiesofthespinel ferrites originatemainly from themagnetic interactionsbetweencationswithmagneticmoments,whicharesituatedintetrahedralandoctahedralsites[43-45].Thepreparedmaterialshavewidespreadapplicationsinmaterialscience[40,46-51]andbiotechnology[38,39,52].

Inthisstudy,glasstechniqueswereusedtoprepareacompactbody inwhichmagneticparticleswerewelldispersedandkeptinsingledomainbehavior.Wepreparedcompactglassceramicsthat contain single domain particles (<100 nm) separated bya nonmagnetic matrix which lowers the sinter temperature,prevents theparticles fromgrowing tobe inmulti-domainandresulted in low magnetic interaction. The main objective ofthis research was to evaluate RSW from various metallurgical

Figure 1 PhotographofRollingmill scales. (Composedof69-72%ironoxides,20%oiland10%water).

Page 3: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

3© Under License of Creative Commons Attribution 3.0 License

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

industries and to prepare soft and hard nanomagnetic glass-ceramics.

Thesenanomagneticglass-ceramicshavepotential applicationsin health care such as cell separation, magnetic resonanceimaging contrast agents [53], drug delivery, tissue engineeringandhyperthermiatreatmentofcancer.Inaddition,theyhaveawiderangeofapplications in informationstoragesystems [54],ferrofluidtechnology[55,56],magnetocaloricrefrigeration,gas-sensorsandcatalysis[57].

Experimental MethodsPreparation of the glassX-Ray Fluorescence (XRF) analysis was used to determine thecomposition of the RSW samples as illustrated inTable 1. Thesamples were preparedwith two compositions: one based oncrystallizationofZnFe2O4asasoftmagnetandtheotherbasedonBaFe12O19asahardmagnet.Thecompositionsofthepreparedsamples are reported inTable 2. RS and RH are soft and hardmagneticreferencesamplespreparedfrompurechemicalssuchasZnCO3, Na2CO3,NH4H2PO4,TiO2,BaCO3,H3BO3andSiO2.SMGCrefers to softmagnetic glass ceramics that contain about 65%ofRSWwhileHMGCreferstohardmagneticglassceramicsthatcontain~37%ofRSW. Small amountsof ZnOas ZnCO3, Na2O asNa2CO3,P2O5asNH4H2PO4,TiO2,BaOasBaCO3andB2O3asH3BO3 were added to complete the design of the desired phases.Aspreviously described (Salwa A. M. Abdel-Hameed et al. 2014)the samples were prepared by melting the required amountsofreagentgradechemicalswithcompositionshowninTable 2.Sampleswerepreparedinplatinumcruciblesat1500ºCforsoftferritesamplesand1200ºCforhardferrites,andheatedfor2hinelectricallyheated furnacewithoccasional swirlingevery30min toensurehomogenization. Themeltswerepouredontoastainless steelplate in1-2mmthickstripsbyapplyinganothercoldsteelroller.

Characterization

Todetermine the temperaturesof theglass transition (Tg) andcrystallization(Tc)oftheglasssamplesdifferentialthermalanalysis(DTA;SDTQ600)underinertgaswithaheatingrateof10oC/minwasused.Aluminawasusedastheinertreferencematerial.Theresultsobtainedservedasaguidefordeterminingtherequiredheat-treatmenttemperaturesneededtoinducecrystallizationinthesamples.To investigatetheeffectofheattreatmentonthephasetransformationandsampleproperties,sampleswereheattreatedat900oCfor2h.SamplesbeforeandafterheattreatmentwereevaluatedusingpowderX-raydiffractionusingaNi-filledCu-Kαtargettoidentifytheircontentandtheprecipitatedcrystallinephases. X-raydiffraction (XRD)wasperformedusingBrukerD8Advanced instrument (Germany D8 ADVANCE Cu target 1.54A, 40 KV, 40mA). The reference data for the interpretationofthe XRD patterns was obtained from ASTM X-ray diffractioncard files. Samples were crushed and sonically suspended inethanol.A fewdropsof thesuspendedsolutionwasplacedonanamorphouscarbonfilmheldbyacoppermicrogridmesh. The microstructureandcrystallitesizewascharacterizedusingaTEM2010 transmission electron microscope. Chemical compositionofthecrystalsintheglassceramicswereanalyzedbyEDXusingOxford instrument INCAX-sight on a Joel TXA-840A electronprobemicro analyzer. Themagneticpropertieswere evaluatedwithavibratingsamplemagnetometer(VSM,9600-1LDJ,USA)inamaximumappliedfieldof20KOe.Saturationmagnetization(Ms), remanance magnetization (Mr) and coercivity (Hc) weredeterminedfromthehysteresisloops.

Results and DiscussionsDifferential thermal analysisThe DTA scan provides a rapid method to investigate thecrystallization nature, the effect of heat and the temperaturerangeofcrystallizationandtheproperheat-treatmentschedule.Thelimitsofcrystallizationhowever,areabout±30°CoftheDTAcrystallization peaks; as with powdered glass samples, surfacenucleation and devitrification tend to obscure the internalstructuralchangesoftheglass[58].

DTAofRS,SMGC,RHandHMGCsamplesbeforeheattreatmentare shown in Figure 2. The materials resemble a crystallinestate.When the amorphous state decreases, the endothermicand exothermic intensities decrease. In general, DTA resultsshow lower intensity thermal effects due to the high degreeof crystallization during cooling from melting temperature toroom temperature. DTA results show an endothermic effectresemblinganamorphousphaseat657ºCforRS,642ºCforSMGCsample,551ºCforRHandabout516ºCforHMGCsample.Thisendothermicreactionisbelievedtobecausedbyanincreaseinheatcapacityduetotransformationofglassfromarigidtoplasticstructureandtheaccompaniedrearrangingofdifferentatomsasaprecrystallizationstep[59]. Theendothermictemperaturesarelower in thebatchcompositionscontainingRSWthan thoseofpurechemicalsduetotherefluxeffectofdifferentoxidespresentinRSWwhichlowerthesamplesviscosityandTgasshowninTable 2.Thesharpendothermiceffectat90oCinSMGCwasattributedtowaterevaporationwhilethebroadexothermicpeakat906ºCisanindicationforcrystallizationofbothhematiteandZn-ferrite

Main Constituents (wt,%)SiO2 1.33TiO2 0.03Al2O3 0.45Fe2O3

tot. 95.56MgO 0.15MnO 0.82CaO 1.22Na2O 0.11K2O 0.05P2O5 0.06

Cl 0.048CuO 0.034NiO 0.012

Cr2O3 0.049V2O5 0.038ZnO 0.049

Table 1 Quantitative analysis(XRF) of rolling mill scales waste rawmaterial(RSW).

Page 4: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

4© Under License of Creative Commons Attribution 3.0 License

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

Figure 2 DTAofRS,SMGC,RHandHMGCsamples (Illustratingendothermicandexothermicpeakswhichareevidenceofcrystallizationprocess).

Page 5: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

5 This article is available in: http://nanotechnology.imedpub.com/archive.php

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

asconfirmedbyX-raylater.TheabsenceofexothermiceffectinRSsampleindicatesahighdegreeofcrystallizationduringcoolingfrommeltingtemperaturetoroomtemperature.

Alternatively,asingleexothermappearedat731oCfortheHMGCsample and two exothermic peaks at 611oC and 737oC in RHsamplecorrespondingtoBa-hexaferritecrystallization.Theshapeand intensity of the exothermic peak are a good indicator forthecrystallizationprocess;thesharperandstrongerexothermicpeakreflectslargerandquickercrystallization,conversely,iftheexothermic peak is broad, the crystallization is slow and small [60].The DTA results were used to determine heat treatmentschedulewhichwasappliedtosamplesat900oCfor2htostudyitseffectonthecrystallizationprocess.

X-ray diffraction analysisFigure 3depictsthecorrelationbetweentheXRDresultsofRSW,RsandSMGCbeforeandafterheattreatment,WhileFigure 4 depictsthecorrelationbetweenRSW,RHandHMGCbeforeandafterheattreatment.

ThemajordetectablepeakscanbeindexedtoZn-ferrite(ZnFe2O4)and Ba-hexaferrite (BaFe12O19) for SMGC and HMGC samplesrespectively.Thesedesignedcompositionsucceededinreachingthetargetedphases.SeveralfactorscontributetothebroadeningofpeaksinX-raydiffraction[60,61].Forexample,factorsrelatedtotheresolutionandtheincidentX-raywavelengthoftheXRD,aswellasthesamplecrystallitesizeandnon-uniformmicrostrain,can cause a line broadening. In the case of an instrumentalbroadening, the line width will vary smoothly with 2θ or dspacing.Ontheotherhand,thelinebroadeningoriginatingfromthesamplecharacteristicswillhaveadifferentrelationship. Using Scherrer'sequation[62,63]forcrystallitesizeandtheBragg'slawfordiffraction [64], crystallite sizeandmicrostrain componentsareestimated:

• TheSchererequationis:K =

cos λ

τβ θ

where:

• is themean size of the ordered (crystalline) domains,whichmaybesmallerorequaltothegrainsize;

• K is a dimensionless shape factor,with a value close tounity.Theshape factorhasa typical valueofabout0.9,butvarieswiththeactualshapeofthecrystallite;

λistheX-raywavelength;

βisthelinebroadeningathalfthemaximumintensity(FWHM),after subtracting the instrumental line broadening, in radians.ThisquantityisalsosometimesdenotedasΔ(2θ);

θistheBraggangle.

• Bragg'slawis: 2 sin d n=θ λwhere

• nisapositiveinteger

λisthewavelengthofincidentwave

disthespacing

Figure 3aillustratesthedifferencebetweenRSWandSMGCbeforeandafterheattreatment.TheRSWsamplesincludeHematiteandMagnetitephaseswithtraceWuestitephasewhichdisappearedcompletely in SMGC. Furthermore, applying heat treatment at900°Cfor2haffectedthecrystallizationofZn-ferriteasauniquephase.Comparingthemainpeaksinthethreepatternswenoticethat heat treatment has a greater effect on crystallization andamountofZn-ferritecrystallized.TheXRDspectrarepresentthecrystallizationofZn-ferriteasasinglephaseinRSsample(Figure 3b ),withlesscrystallizationrelativetoSMGCsample.TheamountofZn-ferritedecreasedintheRSsampleafterheattreatmentat900oCfor2hduetotheseparationofSiO2phase.ComparingthecompositionsofRSandSMGC, it’sevident that thereareextraoxidespresentinSMGCsampleduetoRSWcompositionaslistedin Table 2.TheseoxidesfacilitatethecrystallizationofZn-ferrite

Chemical Composition wt%

Sample IDRS SMGC RH HMGC

Fe2O3 70.5 68.38 43.17 40.21SiO2 - 0.952 4.64 4.713TiO2 2.21 2.168 - 0.0126ZnO 23.96 23.14 -Al2O3 - 0.322 - 0.1863MgO - 0.107 - 0.0631CaO - 0.873 - 0.51Na2O 2.21 2.23 - 0.463K2O - 0.036 - 0.21P2O5 1.1 1.12 - 0.025CuO - 0.024 - 0.0143Cr2O3 - 0.035 - 0.02MnO - 0.587 - 0.345B2O5 - - 10.76 14.632BaO - - 41.43 38.59Ni2O - 0.00859 - 0.00505V2O5 - 0.027 - -

Table 2Chemicalcompositioninwt%ofpreparedmagneticglassceramics.

Page 6: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

6© Under License of Creative Commons Attribution 3.0 License

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

bydecreasingtheviscosityofthesampleandincreasingmobilityofionstocrystallizeinthequenchedsample.

Alternatively,Figure 4bshowstheXRDspectraofHMGCbeforeand after heat treatment. Hematite, Wuestite and Zn-ferritephasespresentintheRSWsampledisappearandabroadhumpcharacterizing the amorphous glassy state appears in HMGCsamplebeforeheattreatment.Ba-hexaferritecrystallizesasthesoleformedmagneticphaseinanonmagneticmatrixwhenthesample is exposed to heat treatment at 900oC for 2 h. A cleareffectoftheheattreatmentontheRHsampleisshowninFigure 4a, with the transformation from an amorphous to crystallinestate as represented by crystallization of pure Ba-hexaferrite.MoreBa-hexaferritecrystallizedinHMGCthanintheRHwhichisreflectedbyhigherXRDpeakintensities.

Transmission electron microscopeTo investigate the possibility of micro twinning and thehomogeneity of the materials TEM was performed. Particlesizewasmeasured fromTEM images.Figure 5 shows theTEMmicrostructures inhighmagnificationforSMGC,RS,HMGCandRHsamplesbeforeandafterheattreatment.Figure 5a,5b showthe precipitation of nanosized cubic crystals of Zn-ferrite andHematite phases in the SMGC sample before heat treatmentwithcrystallinesizerangefrom131-166nm.AllHematitecrystalstransformed to Zn-ferrite after heat treatment with crystallinesize range from23-33 nm, this confirmed the results obtainedfromXRDcalculationsshowninFigure 3.TEMforRSsamplesareshown in Figure 5c, 5d which illustrates the transformation ofZn-ferrites toSiO2phasewith crystalline sizeofabout223nmafterheattreatment.Incontrast,Ba-hexaferritewithhexagonalcrystalsisformedasauniquephasewithcrystallinesizerangingfrom24-34nminHMGCsamplesafterheattreatmentasshownin Figure 4.Inaddition,TEMforRHrepresentedinFigure 5g, 5h showthecrystallizationofBa-hexaferriteasasinglephasewithcrystallinesizerangingfrom2-12nmafterheattreatment.

Magnetic propertiesFigures 6 and 7 illustrate the room temperature magnetichysteresis(M-H)loopsofSMGC,RS,HMGCandRHsamplesbeforeandafterheattreatmentunderamagneticfieldstrengthof±20KOe.Table 3 lists therelevantmagneticparameters;saturationmagnetization (Ms), coercivity (Hc), remanence (Mr) obtainedfromM-H loops. Themagnetic field necessary to saturate thesamplesincreasedwiththeincreaseinthecrystallizationofZn-ferriteinsoftsamplesandBa-hexaferriteinhardmagnets.Figure 6 illustrates thatMs increased from 18.393 emu/g for RSW, to45.175 emu/g for SMGC samples before heat treatment andcontinued increasing to 66.463emu/g afterheat treatment. Incontrast,themagnetizationofRSsamplesdeclinedfrom38.678emu/gto24.293emu/gafterbeingexposedtoheattreatmentat900°Cfor2h.Figure 7 showsthatMs increasedfrom18.393emu/g for RSW sample to 19.06 emu/g forHMGC sample andincreasedto24.19emu/gafterheattreatment.ThesametrendisshownforRHsampleswhereMsincreasedfrom8.0774emu/gto16.665emu/gafterheattreatmentfor900°C/2hrs.Asexpected,saturationmagnetizationinthesamplesisshowntobedirectlyproportionaltothedegreeandamountofcrystallizationofZn-ferriteandBa-hexaferrite.ItshouldbenotedthatZn-ferritesandBa-hexaferrite are ferromagnetic materials, whereas hematiteis an antiferromagnetic. The results show that hematite andamorphousphaseshaveaverylowsaturationmagnetization.Asaconsequence,thevariationofthesaturationmagnetizationcanbeattributedtothemodificationofthequantityofZn-ferriteandBa-hexaferritecrystals[65]presentintheglass-ceramicsamples.Therefore,themaximummagnetizationvaluesof66.463emu/gforSMGCafterheattreatmentand24.19emu/gforHMGCafterheattreatmentrefertotheheaviestandmostintenseZn-ferriteandBa-hexaferritecrystallizationofallthesoftandhardmagnetsamplesrespectively.Thequantityofthemagneticphasepresentintheglassceramicsampleswasdeterminedfromthesaturationmagnetization ratio between the sample and pure magnetite(Ms=72emu/g)[66].92emu/gisthesaturationmagnetizationof

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

RS 9000C/2hrs

RS

Zn-ferriteSiO2

inte

nsity

(a.u

.)

inte

nsity

(a.u

.)

10 20 30 40 50 60 70 80

RSW

SMGC 9000C/2hrs

SMGC

Zn-ferrite

Hematite

Wuestite

(a)

(b)

Figure 3 XRD spectra of glass-ceramics before and after heattreatment,a)RSsamplesbeforeandafterheattreatmentandb)SMGCbeforeandafterheattreatment.

Page 7: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

7 This article is available in: http://nanotechnology.imedpub.com/archive.php

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

bulkmagnetiteasreportedfromtheliterature[67],O.Bretcanuet.el. Measured the magnetite saturation magnetization as 72emu/g and they referred this decrease to the powder formofthemeasuredsamples.Surfaceeffectscanmodifythesaturationmagnetization of a magnetic material, usually lowering themagnetization.Themaximummagneticphasesaccumulation is92.4wt%forheattreatedSMGCwhichisabigincreasethanwhatpreviouslyreportedbyotherworkers[37-39].

Thecoercivityofsoftferrimagneticglassceramicsvariedbetween106.25OefortheRSWsampleand32.775OeforSMGCbeforeheat treatment with a small increase to 32.966 Oe after heattreatment.InHMGCsamplesheattreatmenthadalargereffectoncoercivitywhichincreasedfrom106.25GforRSWsampleto128.77GforthemeltedHMGCsamplesbeforeheattreatment

and increasedto425.32Gafterheat treatment.Similarly,heattreatment had a noticeable effect on the reference samplescoericivitieswith an increase from 16.756G to 193.44G afterheattreatmentofRSandincreasedfrom160.39Gto1001.5Gfor RH after heat treatment. The coericivity of a ferrimagneticmaterial is the intensityof the appliedmagneticfield requiredto reduce themagnetization of thatmaterial to zero after themagnetization of the sample has been driven to saturation.Coericivitymeasurestheresistanceofaferromagneticmaterialtobecomedemagnetized.Thewiderangeofcoericivityprovides forawiderangeofapplications.Materialswithhighcoericivity,whicharecalledhardferromagneticmaterials,areusedtomakepermanent magnets. Permenant magnets are used in electricmotors,magneticrecordingmedia(e.g.,harddrives,floppydisks,or magnetic tapes) and magnetic separation. While materialswith lowcoericivitywhichare said tobe softmagnetsmaybeusedinmicrowavedevices,magneticshielding,transformers,orrecordingheads.The retentivity is found todetect theamountofmagneticmaterialswhichcanbemagnetized[68,69],evenintheabsenceofexternalmagneticfield. Incomparisonbetweensoftandhardferrites,Table 3showsthattheretentivityofmostofthehardmagnetsislargerthanthatofthesoftmagnetsandis related to the area of the hysteresis loops. The area of thehysteresis loops of the hard ferrites is larger than the areas inthe case of soft ferrites. The area under the hysteresis loop isproportional to the energy loss and hence the heat generatedbyasampleunderanalternatingfieldandhardferritessamplesarecapableofgeneratingmoreheat.The largevariation intheareaundertheloopsforhardandsoftferritessamplesprovidesacontrolledheatgenerationbyappropriatechoiceofsample.

Conclusions• Two different ferrimagnetic glass ceramics with

compositionsbasedoncrystallizationofZn-ferriteassoftmagnetandBa-hexaferriteashardmagnetwereprepared.

• The influence of the chemical composition, the amountof Zn-ferrite and Ba-hexaferrite crystallization and themicrostructure of ferromagnetic glass ceramics onmagneticpropertiesofglassceramicswereinvestigated.

• TheHeattreatmentscheduleof900oCfor2henhancedthecrystallizationofZn-ferrite insoftglassceramicsandBa-hexaferriteinhardmagneticglassceramics.

• Nanomagnetichexaferritewasobtainedintherange24-34nm.

• From the magnetic measurements, we conclude thatheattreatedSMGChadthehighestmagnetizationof66.5emu/gandhas92.4wt%ofmagneticphases.

AcknowledgmentThisworkwassupportedfinanciallybytheScienceandTechnologyDevelopmentFund(STDF),Egypt,Grantno.1044.

(a)

inte

nsity

(a.u

.)in

tens

ity (a

.u.)

(b)

Figure 4 XRD spectra of glass-ceramics before and after heattreatment,a)RHsamplesbeforeandafterheattreatmentandb)HMGCbeforeandafterheattreatment.

Page 8: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

8© Under License of Creative Commons Attribution 3.0 License

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

(b)

(a)

(c)

(d)

(g) (h)

(e) (f)

Figure 5 TEMimagesofsamplesbeforeandafterheattreatment. a) quenchedSMGC,b)heat treatedSMGC, c) quenchedRS,d)heat treatedRS, e) quenchedHMGC, f) heat treatedHMGC, g)quenchedRHandh)heattreatedRHsamples.

Page 9: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

9 This article is available in: http://nanotechnology.imedpub.com/archive.php

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

-80

-60

-40

-20

0

20

40

60

80

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

Mom

entu

m/M

ass

(em

u/g

)

Field (G)

SMGC

SMGC 9000C/2hrs

RSW x

-50

-40

-30

-20

-10

0

10

20

30

40

50

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

Mom

ent (

emu/

g)

Field (G)

RS 9000C/2hrs

RS

Figure 6 MagnetizationcurvesofRSW,SMGCandRSsamplesbeforeandafterheattreatment.

-30

-20

-10

0

10

20

30

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

Mom

ent/

Mas

s (e

mu/

g)

Field (G)

HMGC 9000C/2hrs HMGC

RSW x

-20

-15

-10

-5

0

5

10

15

20

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

Mom

ent/

mas

s ( e

mu/

g)

Field (G)

RH

RH 9000C/2hrs

Figure 7 Magnetization curves for RSW, HMGC and RH samplesbeforeandafterheattreatment.

Sample ID Magnetization (emu/g) Coercivity(G) Retentivity(emu/g)RSW 18.393 106.25 1.6785RS 38.678 16.756 0.73946

SMGC 45.175 32.775 1.4215RS9000C/2hrs 24.293 193.44 3.7014

SMGC9000C/2hrs 66.463 32.966 2.3594RH 8.0774 160.39 0.92542

HMGC 19.06 128.77 0.95886RH9000C/2hrs 16.665 1001.5 5.0392

HMGC9000C/2hrs 24.19 425.32 3.1612

Table 3 MagneticpropertiesofRSW,RS,RH,SMGCandHMGCglassceramicsbeforeandafterheattreatment.

Page 10: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

10© Under License of Creative Commons Attribution 3.0 License

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

References1 Ramaseshan R, Sundarrajan S, Jose R (2007) Nanostructured

ceramicsbyelectrospinning.Journalofappliedphysics102:111101.

2 Padeletti G, Fermo P (2003) Italian Renaissance and Hispano-Moresque lustre-decoratedmajolicas: imitation cases of Hispano-Moresquestyle incentral Italy.AppliedphysicsA:materialscienceprocess77:125-133.

3 SeshadriR(2005)Zincoxide-baseddilutedmagneticsemiconductors.CurrentOpinioninSolidStateandMaterialscience9:1-7.

4 Yang JH, Zhao LY, Zhang YJ,Wang YX, Liu HL (2008) ParamagneticbehaviorofZn1−xMnxOatroomtemperature.CrystResTechnol43:999-1003

5 DaviesMW,KerrisonB,GrossWE,RobsonWJ,WichellDF(1970)JIronSteelInstitute208-348.

6 MarghussianVK,MaghsoodipoorA (1999)FabricationofunglazedfloortilescontainingIraniancopperslags.CeramicsInternational25:617-622.

7 Omar AA, L-GamalMAE, KotbW,MahmoudMM (2000) The Useof Copper Slags for Making Glass-Ceramics. Glass Science andTechnologySuppl73:51-58.

8 MuratM,MartelS,BousterC(1990)optimizationofdevitrificationprocessinginthefieldofglassceramicsexampleofthedevitrificationofphosphorousslag.CeramicsInternational16:171-175.

9 BoccacciniAR,BuckerM,BossertM(1996)Glassandglass-ceramicsfrom coal fly-ash andwaste glass. Tile and Brick International 12:515-518

10 BoccacciniAR,BuckerM,BossertJ,MarszalekK(1997)Glassmatrixcomposites from coal flyash andwaste glass.WasteManagement17:39-45.

11 Boccaccini AR, Janczak J, Kern H Ondracek G (1993) in Proc. 4th.InternationalSymposiumontheReclamation,TreatmentandUtilizationofCoalMiningWastes,Vol.II.editedbyK.M.Skarzynska,719

12 ChengTW,ChenYS(2003)OnformationofCaO–Al2O3–SiO2glass–ceramicsbyvitrificationofincineratorflyash.Chemosphere51:817-824.

13 ChengTW(2003)CombinedglassificationofEAFdustandincineratorflyash.Chemosphere50:47-51.

14 Pelino M, Karamanov A, Pisciella P, Crisucci S, Zonetti D (2002)Vitrification of electric arc furnace dusts.WasteManagement 22:945-949.

15 MorsiMM,KhaterGA,RangeKJ(2001)Glassceramicsinthesystemdiopside–anorthite–orthoclase prepared by using some industrialwastematerials.GlassTechnology42:160-164.

16 Gorokhovsky, Escalante-Garcia JI, Gorokhovsky V, MescheryakovD (2002) InorganicWastes in theManufactureofGlassandGlass-Ceramics:Quartz-FeldsparWasteofOreRefining,MetallurgicalSlag,Limestone Dust, and Phosphorus Slurry. Journal of the AmericanCeramicSociety85:285-287.

17 Yun YH, Yoon CH, OH JS, Kim SB, Kang BA, et al. (2002) Wastefluorescent glass and shell derived glass-ceramics. Journal ofMaterialsScience37:3211-3215

18 DiazB,SalgadoS,JordanR,CruzE,ZayasME(2003)Glass-CeramicsMade from Anodizing Plant Industrial Waste. American CeramicSocietyBulletin9601-9604.

19 PelinoM,CantaliniC,RinconJMA(1997)Preparationandpropertiesofglass-ceramicmaterialsobtainedbyrecyclinggoethiteindustrialwaste.JournalofMaterialsScience32:4655-4660.

20 RomeoM, Rincon JMA (1999) Surface and Bulk Crystallization ofGlass-Ceramic in the Na2O-CaO-ZnO-PbO-Fe2O3-Al2O3-SiO2 SystemDerived from aGoethiteWaste. Journal of the American CeramicSociety82:1313-1317.

21 Marabini AM, Plescia P, Maccari D, Burragato F, Pelino M (1998)New materials from industrial and mining wastes: glass-ceramicsand glass- and rock-wool fiber. International Journal of MineralProcessing53:121-134.

22 RomeoM,Rincon JMA (1998)Effectof IronOxideContenton theCrystallization of a Diopside Glass-Ceramic Glaze. Journal of theEuropeanCeramicSociety22:883-890.

23 KaramanovA,TaglieriG,PelinoM(1999) Iron-RichSinteredGlass-CeramicsfromIndustrialWastes.JAmCeramSoc82:3012-3016.

24 PelinoM (2000) Recycling of zinc-hydrometallurgywastes in glassandglassceramicmaterials.WasteManagement20:561-568.

25 Pisciella P, Crisucci S, Karamanov A, Pelino M (2001) Chemicaldurability of glasses obtained by vitrification of industrial wastesWasteManagement21:1-9.

26 Volodymyr IShatokha,OlegOGogenko,StanislavMKripak (2011)Utilisingoftheoiledrollingmillsscaleinironoresinteringprocess.ResourcesConservationandrecycling55:435-440.

27 ChoS,LeeJ(2008)MetalRecoveryFromStainlessSteelMillScalebyMicrowaveHeating.MetalsandMaterialsInternational14:193-196

28 MartínMI,LópezJ,JoseMTorralba(2012)productionofspongeironpowderbyreductionofrollingmillscale.ironmaking&steelmaking39:155-162.

29 Cho Young-Ki (1991) Making method for ferrite used mill/scales,PatentKR9103783.

30 OsingD(1996)Reuseofmetallurgicalfines,PatentWO96/31630.

31 Fleischander A, Pesl J, Gerbert W (1999) Aspect of recycling ofsteelworksby-productsthroughtheBOF.SEAISIQuarterly28:51-60.

32 PoulalionA(2001)Processofrecyclingmillscaleofalloyedsteelinanelectricfurnaceintoaferro-siliconproduct,PatentEP1122319.

33 GaballahNM,ZikryAF,KhalifaMG,FaragAB,El-HussinyNA(2013)JournalofInorganicNon-MetallicMaterials3:23-28

34 EbisawaY,MiyajiF,KokuboT,OhuraK,NakamuraT(1997)Surfacereactionofbioactiveandferrimagneticglass–ceramicsinthesystemFeO–Fe2O3–CaO–SiO2.JCeramSocJpn105:947-951.

35 O'HoroM,SteinitzR(1968)Characterizationofdevitrificationofaniron-containing glass by electrical andmagnetic properties.MaterResBull3:117-125.

36 Auric P, Dang NV, Bandyopadhyay AK, Zarzycki J (1982)Superparamagnetismand ferrimagnetismof the small particles ofmagnetiteinasilicatematrix.JNon-crystSolids50:97-106.

37 BretcanuO,SprianoS,VerneE,CoissonM,TibertoP,etal. (2005)The influence of crystallized Fe3O4 on the magnetic properties ofcoprecipitation-derivedferromagneticglass–ceramics.ActaBiomater1:421-429.

38 Abdel-HameedSAM,HessienMM,AzoozMA(2009)Preparationandcharacterizationofsomeferromagneticglass-ceramicscontainshighquantityofmagnetite.CeramInt35:1539-1544.

Page 11: Preparation and Characterization of Magnetic Glass ... · Characterization of Magnetic Glass Ceramics Derived from Iron Oxides Bearing Rolling Mill Scales Wastes. Nano Res Appl. 2015,

11 This article is available in: http://nanotechnology.imedpub.com/archive.php

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:6

Nano Research & ApplicationsISSN 2471-9838

39 Abdel-Hameed SAM, Abeer M ElKady (2012) Effect of differentadditions on the crystallization behavior and magnetic propertiesofmagneticglass-ceramicinthesystemFe2O3-ZnO-CaO-SiO2.JAdvMater3:167-175.

40 ShirkBT,BuessemWR(1970)Magneticpropertiesofbariumferriteformedbycrystallizationofaglass.JAmCeramSoc53:192-196.

41 Gornert P, Sinn E, SchuppelW, Pfeiffer H, RoslerM, et al. (1990)StructuralandmagneticpropertiesofBaFe12-2xCoxTixO19powderspreparedby theglass crystallizationmethod. IEEETransMagn26:12-14.

42 CetasTC,GrossEJ,ContractorY(1998)Aferritecore/metallicsheaththermoseedforinterstitialthermaltherapies.IEEETransBiomedEng45:68-77.

43 EvansBJ,HafnerSS,WeberHP(1971)ElectricfieldgradientsatFeinZnFe2O4andCdFe2O4.JChemPhys55:5282.

44 Att-AllahSS,FayekMK(2000)EffectofCusubstitutiononconductivityofNi–Alferrite.JPhysChemSolids61:1529-1534

45 MahmoudMH, Hamdeh HH, Ho JC, O'SheaMJ,Walker JC (2000)Mössbauerstudiesofmanganeseferritefineparticlesprocessedbyball-milling.JMagnMagnMater220:139-146.

46 Muller R, Ulbrich C, SchuppelW, Steinmetz H, Steinbeib E (1999)Preparation and properties of barium-ferrite-containing glassceramics.JEurCeramSoc19:1547-1550.

47 Lee CK, Speyer RF (1994) Glass formation and crystallization ofbariumferriteintheNa2O–BaO–Fe2O3–SiO2system.JMaterSci29:1348-1351.

48 Sohn SB, Choi SY, Shim IB (2002) PreparationofBa–ferrite containingglass–ceramicsinBaO–Fe2O3–SiO2.JMagnMagnMater293:533-536.

49 Rezlescu L, Rezlescu E, Popa PD, Rezlescu N (1999) Fine bariumhexaferritepowderpreparedbythecrystallizationofglass.JMagnMagnMater193:288-290

50 GornertP,SinnE,RoslerM(1991)Crystallinematerials:Growthandcharacterization58:129-148.

51 Abdel-HameedSAM,MarzoukMA,Abdel-GhanyAE(2011)Magneticproperties of nanoparticles glass-ceramic rich with copper ions. JNon-crystsolids357:3888-3896

52 SafarikovaM,SafarikI(2000)Theapplicationofmagnetictechniquesinbiosciences.MagnElectrSep10:223-252.

53 BabesL,DenizotB,TanguyG,JeuneJJL,JalletP(1999)SynthesisofironoxidenanoparticlesusedasMRIcontrastagents:aparametricstudy.JColloidInterfaceSci212:474-482.

54 SunSH,MurrayCB,WellerD,FolksL,MoserA(2000)Monodisperse

FePtnanoparticlesandferromagneticFePtnanocrystalsuperlattices.Nature287:1989-1992.

55 El-Shennawi AWA, Morsy AM, Serry MA (1990) Investigation oflithium magnesium-aluminosilicate solid solutions crystallized insomecordierite-zirconceramicscontaininglithium.JofMatSci25:1429-1434.

56 Socoliuc V, BicaD, Vekas L (2003) Estimation ofmagnetic particleclusteringinmagneticfluidsfromstaticmagnetizationexperiments.J.ColloidInterfaceSci264:141-147

57 LuAH,SchmidtW,MatoussevitchN,BönnemannH,SpliethoffB,etal.(2004)Nanoengineeringofamagneticallyseparablehydrogenationcatalyst.AngewChemIntEd43:4303-4306.

58 Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magneticnanofluidsusedinhyperthermiaapplications.J.MagnMagnMater324:903-915.

59 El-Shennawi AWA, Moris MM, Khater GA, Abdel-Hameed SAM(1998) Thermodynamic investigation of crystallization behavior ofpyroxenicbasalt-basedglasses.JThermAnal51:553-560.

60 Klug HP, Alexander LE (1974) X-Ray Diffraction procedures forpolycrystallineandamorphousmaterials.WileyNewYork.

61 Hammond C (1997) The Basic of crystallography and diffraction.Oxforduniversitypress,NewYork.

62 ScherrerP,GöttingerNachrichtenGesell.(1918)2:98.

63 Patterson A (1939) The Scherrer Formula for X-Ray Particle SizeDetermination.PhysRev56:978–982.

64 MyersHP(2002)IntroductorySolidStatePhysics.Taylor&Francis.

65 RoyMK,HaldarB,VermaHC(2006)Characteristic lengthscalesofnanosizezincferrite.Nanotechnology17:232.

66 BretcanuO,VerneE,CoissonM,TibertoP,AlliaP(2006)Temperatureeffect on the magnetic properties of the coprecipitation derivedferromagneticglass-ceramics. JournalofMagnetismandMagneticMaterials300:412-417.

67 Cullity RD (1972) Introduction of magnetic materials.Addison-Wesley.

68 Abdel-HameedSAM,RawhiaLE(2012)EffectofLa2O3,CoO,Cr2O3andMoO3 nucleating agents on crystallization behavior and magneticpropertiesofferromagneticglass-ceramicinthesystemFe2O3.CaO.ZnO.SiO2.JMaterResBull47:1233-1238.

69 Abdel-Hameed SAM, Ibrahim M Hamed, Nehal A. Erfan (2014)Utilizationofironoxidebearingpelletswasteforpreparinghardandsoftferromagneticglassceramics.Journalofadvancedceramics3:259-268