26
Preparation and Reactivity of 4,4’-diaminostilbene-2,2’disulphonate Natalie C. Rader, Heather A. Nees, Paul S. Szalay*, Matthias Zeller, Allen D. Hunter Paul Szalay Assistant Professor, Department of Chemistry Muskingum College 163 Stormont St. New Concord, OH 43762 [email protected] phone: (740) 826-8231 fax: (740) 826-8229

Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

  • Upload
    others

  • View
    30

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Preparation and Reactivity of 4,4’-diaminostilbene-2,2’disulphonate Natalie C. Rader, Heather A. Nees, Paul S. Szalay*, Matthias Zeller, Allen D. Hunter Paul Szalay

Assistant Professor, Department of Chemistry

Muskingum College

163 Stormont St.

New Concord, OH 43762

[email protected]

phone: (740) 826-8231

fax: (740) 826-8229

Page 2: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Preparation and Reactivity of 4,4’-diaminostilbene-2,2’disulphonate Natalie C. Rader, Heather A. Nees, Paul S. Szalay*, Matthias Zeller, Allen D. Hunter

The preparation of 4,4’-diaminostilbene-2,2’disulphonate and its reactivity with copper(II) are described.

Page 3: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Preparation and Reactivity of 4,4’–diaminostilbene-2,2’disulphonate Natalie C. Rader1, Heather A. Nees1, Paul S. Szalay1*, Matthias Zeller2, Allen D. Hunter2

1) Department of Chemistry, Muskingum College, 163 Stormont Street, New Concord, OH 43762 2) Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555 Abstract The precursor compound 4,4’–diaminostilbene-2,2’disulphonic acid DAS-(SO3H)2 was

successfully deprotonated through reactions with (n-Bu4N)(OH) and NaOH to produce the

corresponding salts sodium 4,4’–diaminostilbene-2,2’disulphonate Na2(DAS-(SO3)2) (1) and

tetrabutylammonium 4,4’–diaminostilbene-2,2’disulphonate (n-Bu4N)2(DAS-(SO3)2) (2). The

structure of (n-Bu4N)2(DAS-(SO3)2) (2) was confirmed through the use of single crystal X-ray

diffraction. Compound (2) crystallizes in the monoclinic space group P21/n with the lattice

parameters of a = 10.0645(6), b = 14.2573(9), c = 17.6053(11), and β = 94.3160(10). The

reaction of Cu+2(aq) with (n-Bu4N)2(DAS-(SO3)2) resulted in the crystallization of the molecular

organocopper cluster, [CuDAS-(SO3)2]2•3H2O (3), that resembles a molecular parrallelogram as

revealed by single crystal X-ray diffraction. Compound (3) crystallizes in the monoclinic space

group P21/n with the lattice parameters of a = 8.8647(6), b = 10.5247(7), c = 21.2265(14), and β

= 93.1730(10). Within the structure of (3) each [DAS-(SO3)2]2- ligand is shown to bind two

copper atoms through interactions with three of the five available metal binding sites.

Keywords: X-ray Crystallography, Copper Complexes, N-ligands, O-ligands

Introduction

An especially active research area in recent years has involved the preparation of both

molecular and solid state metal-organic hybrid compounds through the metal ion directed

Page 4: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

assembly of organic molecular building blocks. In the molecular regime, it has long been

customary to carry out the synthesis of molecules with predetermined structures that would lead

to specific desired properties. For example, in metal coordination chemistry organometallic

complexes are routinely designed to exhibit well-defined catalytic activity. In the solid state

regime, this rational synthetic control over the structure and properties of a novel extended

system has rarely been possible. This limitation is largely due to the fact that molecules can

generally be manipulated one step at a time whereas solids are often assembled in a single step.

Distinct molecular entities have increasingly been employed as building blocks in the solution

assembly of new molecular clusters and solid state materials. This approach is better enabling

researchers to exploit the relationship between the structure of a compound and its properties.

Some promising results that are beginning to demonstrate the potential of this field have

recently been reported. Robust three dimensional porous lattices that maintain structural

integrity with the loss of solvent and/or guest molecules have been prepared.1 Polar molecular

building blocks have been used to prepare materials that display non-linear optical properties.2

The incorporation of mixed valent metal ions in structures has resulted in magnetic properties

when used with highly conjugated organic molecules.3 Porphyrins and metallocrown based

solids have the potential to perform chiral separations.4 Covalent aryloxide frameworks with

metal centers such as Ti(IV) have been assembled for their potential as heterogeneous catalysts.5

These are just some representative examples of the possibilities of this emerging field.

The aim of this research has been to explore the preparation, characterization, and transition

metal coordination chemistry and properties of the novel ligand [DAS-(SO3)2]2-. This ligand

offers four neutral and two anionic donor sites as well as a rigid, fully conjugated organic

backbone. The potential for forming molecular clusters as well as metal-organic framework type

compounds exists for this organic building block. Herein the details of the preparation and

characterization of two salts of [DAS-(SO3)2]2- are described as well as its reactivity with Cu(II),

the first published example of a coordination compound of [DAS-(SO3)2]2-. This compound with

copper provides information to more accurately predict how the multiple possible binding modes

of [DAS-(SO3)2]2- will be utilized by metal ions and consequently what geometries might be

expected to result.

Page 5: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Experimental

Materials and physical methods

The starting material DAS-(SO3)2 was purchased from Lancaster Synthesis. The compound

(n-Bu4N)(OH) was purchased from Alrdich as a 40% solution in water. Both reagents were used

as received without further purification. The solvents acetonitrile and methanol were dried over

anhydrous CaSO4 and distilled prior to use. The diethyl ether was dried over 4 Å sieves and

distilled prior to use. The copper(II) nitrate hydrate was purchased from Aldrich and used as

received.

Infrared spectra were recorded between 4000-450 cm-1 on a Perkin Elmer 1600 Series FTIR

Spectrometer using KBr salt plates. 1H and 13C NMR spectra were recorded on an EFT-60 NMR

Spectrometer from Anasazi Instruments, Inc.

X-Ray Crystallography

Diffraction data of both compounds have been collected with a 'Bruker AXS SMART

APEX CCD' diffractometer at 100 K using monochromatographed Mo Kα radiation with omega

scan technique. The unit cell was determined using SAINT+ and the structure was solved by

direct methods and refined by full matrix least squares against F2 with all reflections using the

SHELXTL programs. 6 Refinement of an extinction coefficient was found to be insignificant.

All non hydrogen atoms were refined anisotropically. All hydrogen atoms in the structure of (2)

with the exception of those on C(13), C(14), C(33), and C(34) were located from the electron

difference map and refined isotropically. The carbon atoms C(13), C(14), C(33), and C(34),

which are located on the tetrabutylammonium cation are disordered over two positions. The

hydrogens on those carbons have been added in calculated positions and refined isotropically.

All hydrogen atoms in the structure of (3) were located from the electron difference map and

refined isotropically. Crystal data and experimental details are listed in Table 1.

Page 6: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Syntheses

The compound Na2(DAS-(SO3)2) (1) was prepared in the following manner. Solid DAS-

(SO3H)2 (210.0 mg, 0.57 mmol) was suspended in 5.00 mL of acetonitrile with stirring.

Addition of 5.00 mL of 0.5 M NaOH resulted in a clear yellow solution. The solution was

filtered through Celite. Subsequent concentration and cooling of the solution to -5 °C resulted in

the precipitation of yellow solid that was recovered by filtration and washed with diethyl ether (2

x 5.00 mL). The solid was then dried in vacuo and stored in a dessicator. Yield 0.195g (83%).

IR (cm-1): 3335.79, 3202.95, 2922.50, 2723.24, 1631.33, 1601.84, 1458.06, 1376.95, 1299.53,

1262.67, 1185.25, 1082.02, 1023.04, 949.30, 820.27. 13C NMR (D2O) δ(ppm): 113.623,

118.452, 124.616, 125.093, 127.807, 140.609, 145.697.

The compound (n-Bu4N)2(DAS-(SO3)2) (2) was prepared as follows. Solid DAS-(SO3H)2

(200.2 mg, 0.54 mmol ) was suspended in 20 mL of acetonitrile with stirring. To this suspension

was added 2 mL of the (n-Bu4N)(OH), 40% solution in water, resulting in an orange solution.

This solution was then dried with anhydrous CaSO4 and filtered through Celite. The resulting

solution was concentrated to approximately 5 mL at which time 20 mL of diethyl ether was

added to precipitate an orange microcrystalline product. The solid was collected by filtration,

washed with additional diethyl ether (3 x 5.00 mL), dried in vacuo, and stored in a dessicator.

Slow evaporation of the acetonitrile/water reaction solution in air produced large orange crystals

that were analyzed by single crystal X-ray diffraction. Yield 0.237g (72%). IR (cm-1): 3313.65,

3202.95, 1631.33, 1605.52, 1461.75, 1376.95, 1306.91, 1188.94, 1070.96, 1015.66, 975.11,

882.94, 831.33. 13C NMR (DMSO-d6) δ(ppm): 13.041, 19.067, 23.054, 57.748, 114.216,

118.785, 124.023, 125.132, 128.145, 142.906, 145.869.

The compound [Cu(DAS(SO3)2)]2•3H2O (3) was prepared using a thin tube slow diffusion

reaction. Solid DAS-(SO3H)2 (19.2 mg, 0.052 mmol ) was dissolved in a mixture of 1.5 mL

methanol with 0.22mL of 0.5 M NaOH. This solution was added carefully to a thin glass tube, 4

mm ID, containing 2.00 mL of aqueous 0.05 M Cu(NO3)2. The tube was allowed to stand for

fours days during which time yellow crystals appeared. These crystals were harvested and

analyzed by single crystal X-ray diffraction. Yield 0.015g (33.5%).

Page 7: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Results and Discussion

The organic molecule DAS-(SO3H)2 has a couple of structural features that are desirable as a

precursor in reactions with metal ions to prepare metal/organic hybrid compounds. The

molecule possesses divergent diamino metal binding sites and a rigid fully conjugated organic

backbone, which has been shown to be important in the preparation of materials with cooperative

magnetic properties. To produce related products with greater nucleophilicity and solubility than

DAS-(SO3H)2 for use in reactions with metal ions attempts were made to deprotonate the

sulphonic acid groups with NaOH and (n-Bu4N)(OH) to form the corresponding dianionic

disulphonate salts. The effect of deprotonation on the solubility of the resulting products was

instantly visible. The DAS-(SO3H)2 moiety is only very slightly soluble in water, yet as expected

when NaOH is added the corresponding disodium salt, compound (1), becomes readily soluble.

Compound (1) also demonstrates good solubility in methanol and moderate solubility in

acetonitrile. Reaction of (n-Bu4N)(OH) with DAS-(SO3H)2 produces (n-Bu4N)2(DAS-(SO3)2)

(2) which displays good solubility in acetonitrile and methanol as well as fair solubility in

tetrahydofuran and water. The additional advantage imparted by deprotonation in both of theses

reactions is the production of a dianionic species that is more nucleophilic than the neutral acid

form and has two additional donor sites, the sulphonate groups, for reactions with metal ions.

The deprotonation reaction of DAS-(SO3)2 with (n-Bu4N)(OH) was followed both

spectroscopically and through the use of single crystal X-ray diffraction. Slow evaporation in air

of an acetonitrile/water solution produced large orange crystals, some as long as 1.5 cm along the

longest direction, of (n-Bu4N)2(DAS-(SO3)2) (2). A suitable crystal was identified and the

structure of the compound determined. A thermal ellipsoid plot of the anion in compound (2),

which crystallizes in the monoclinic space group P2(1)/n, is presented in Figure 1. X-ray

diffraction analysis yielded the expected structure. The core of the compound, the diamino

groups and the stillbene moiety, were unchanged in the reaction. The deprotonation of the

sulphonate groups was confirmed by the presence of two (n-Bu4N)+ counterions in the structure,

only one of which is crystallographically unique. Selected bond lengths (Å) and bond angles (°)

for the structure of (2) are presented in Table 3. Attempts to crystallize Na2(DAS-(SO3)2) (1) by

various methods have led only to the formation of microcrystalline products that proved

unsuitable for analysis by single crystal X-ray diffraction.

Page 8: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Despite the inability to obtain X-ray quality single crystals of Na2(DAS-(SO3)2) (1) the

progress of the reaction of DAS-(SO3H)2 with NaOH to produce (1), as well as the analogous

reaction with (n-Bu4N)(OH) to produce (2), can be conveniently followed by infrared

spectroscopic analysis. The IR spectrum of the starting material DAS-(SO3H)2 exhibits νS-O

modes at 1608 and 1536 cm-1. The energy of these modes shifts on conversion of the sulphonic

acid groups to sulphonate anions. The IR spectrum of a crystalline sample of (2) demonstrated

νS-O modes at 1631 and 1605 cm-1. A virtually identical shift in energy for those modes was

observed in the IR spectrum of (1) which showed stretches at 1631 and 1601 cm-1. Comparison

of the modes in the νN-H stretching region of the spectra of (1) and (2) shows distinct similarities

between the two with features at 3335 and 3202 cm-1 and 3313 and 3202 cm-1 being exhibited by

(1) and (2) respectively.

The 13C NMR spectra showed only the expected peaks for (1) and (2). The spectrum of (2)

showed peaks at 13.041, 19.067, 23.054, and 57.748 ppm for the four carbons of the (n-Bu4N)+

counterions. The 13C NMR of both (1) and (2) exhibited similar spectral pattern with resonances

at 113.623, 118.452, 124.616, 125.093, 127.807, 140.609, and 145.697 ppm for (1) versus

114.216, 118.785, 124.023, 125.132, 128.145, 142.906, and 145.869 ppm (2). These are

consistent with the seven inequivalent carbons expected for the anions in (1) and (2).

The dianion [DAS-(SO3)2]2- exhibits several possible donor sites for reactions with metal ions

which include the two diamine groups, the two sulphonate groups, and the carbon carbon double

bond of the stillbene moiety. Reactions of the two salts of [DAS-(SO3)2]2- with various transition

metal ions have been explored. The reaction of Na2(DAS-(SO3)2) (1) with Cu(NO3)2 has proven

the most interesting thus far and will be described herein. The thin tube slow diffusion reaction

of a methanol/water mixture of (1) with an aqueous solution of Cu(NO3)2 produced, over the

course of several days, a yellow crystalline product. The crystals proved suitable for single

crystal X-ray diffraction and the structure of the product was determined using that method. This

analysis revealed the compound to be an organocopper cluster consisting of two Cu ions and two

[DAS-(SO3)2]2- units with the formula [Cu(DAS(SO3)2)]2•3H2O (3). Thermal ellipsoid plots of

the structure of this compound, which crystallizes in the monoclinic space group P2(1)/n, are

presented in Figures 2 and 3. Selected bond lengths (Å) and bond angles (°) for the structure of

(3) are presented in Table 7.

Page 9: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

When viewed down the c axis the structure of the cluster resembles a molecular

parallelogram. This is not the most accurate description of the three dimensional shape of the

cluster because views along the a or b axes reveal that the structure is not planar, but rather has

one Cu ion above and one below the plane that bisects the section of the two [DAS-(SO3)2]2-

units bridging the two Cu ions. Each [DAS-(SO3)2]2- ligand is acting as a tridentate donor to

each Cu ion. The coordination environment of the Cu ions is identical due to the presence of a

center of symmetry in the molecule. Both Cu ions have highly distorted tetrahedral geometries.

Two of the coordination sites are occupied by a side-on binding interaction of the carbon-carbon

double bond, C(13) and C(14), of the stillbene moiety. The third site is occupied by an oxygen,

O(5) from one of the sulphonate groups and the forth by a nitrogen atom, N(2), from one of the

amine groups. As mentioned previously, the geometry about Cu is a highly distorted

tetrahedron. For example, the C(13)-Cu(1)-C(14) bond angles is only 39.5(3)° while the N(2)-

Cu(1)-O(5) bond angle is 103.6(3)°. For a list of selected bond distances (Å) and angles (°) for

(3) refer to Table 2.

A comparison of the structures of (2) and (3) verify that the expected electronic changes in

the bonds involving the atoms of [DAS-(SO3)2]2- that bind to the Cu(II) ions are observed. The

increase in the length of the carbon carbon double bond that results from the π backbonding

interaction that results from alkene coordination to a metal is observed. The carbon carbon

double bond increases from a length of 1.321(3) Å in (2) to 1.387(3) Å in (3). The length of the

S-O bonds in (2) averages 1.44 Å (1.4396(13), 1.4410(13), and 1.4396(13) Å). In compound (3),

when O(5) binds to Cu(1) an increase in the corresponding S-O bond to 1.4733(13) is observed.

Coordination of an amine group to Cu in (3) increases the length of the corresponding carbon

nitrogen bond, C(3)-N(1) in (2) versus C(8)-N(2) in (3), from 1.387(2) Å to 1.435(2) Å.

As expected, significant hydrogen bonding interactions are observed between the [DAS-

(SO3)2]2- ligand and the interstitial water molecules of [Cu(DAS(SO3)2)]2•3H2O (3). The four

sites within the ligand with the capability of forming hydrogen bonds, the two amino groups and

the two sulphonate groups, are all involved in hydrogen bond formation. The diamino moieties

of N(1) and N(1A) interact with the oxygen of an adjacent water molecule at a distance of

1.979(2) Å. No interactions between the hydrogens of any water molecules and the nitrogen

lone pairs of the amino groups are observed nor are any hydrogen bonding interactions of the

amine groups of N(2) or N(2A) exhibited by the structure. The two sulphonate groups within

Page 10: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

each ligand demonstrate hydrogen bonding interactions of different lengths. The sulphonate

group which coordinates to the Cu atom exhibits a 1.979(3) Å bond to the hydrogen atom of an

adjacent water molecule. The sulphonate group that is uncoordinated to a metal exhibits a

shorter hydrogen bond of 1.858(3) Å. This difference is obviously due the loss of electron

density that results when the sulphonate group coordinates to the Cu atom. The uncoordinated

sulphonate group does not lose any electron density enabling a tighter hydrogen bonding

interaction.

Acknowledgements

MZ was supported by NSF grant 0111511, CLP by ACS PRF grant 37228-B3, JCW by ACS

PRF grant 37228-B3-SRF, and the diffractometer was funded by NSF grant 0087210, by Ohio

Board of Regents grant CAP-491, and by YSU.

Supplementary Material

CCDC-xxxxxx contains the supplementary crystallographic data for this paper. These data can

be obtained free of charge at www.ccdc.cam.uk/conts/retrieving.html [or from the Cambridge

Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax:

+44(0)1223-336033; email: [email protected]]

References

1. (a) G. B. Gardner, D. Venkataraman, J. S. Moore, and S. Lee Nature. 374,1995, 792. (b) D.

Venkataraman, S. Lee, J. S. Moore, P. Zheng, K. A. Hirsch, G. B. Gardner, A. C. Covey, and C.

L. Prentice Chem Mater. 1996, 8, 2030. (c) D. Venkataraman, G. B. Gardner, S. Lee, and J. S.

Page 11: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Moore J. Am. Chem. Soc. 1995, 117, 11600. O. M. Yaghi, G. Li, and H. Li Nature, 1995, 378,

703. (d) M. D. Ward Nature, 1995, 374, 764. (e) Eddaoudi, M., Li, H., Yaghi, O. M. J. Am.

Chem. Soc. 2000, 122(7), 1391-1397. (f) Kim, J.; Chen, B.; Reineke, T. M.; Li, H.; Eddaoudi,

M.; Moler, D. B.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 123(34), 8239-8247. (f)

Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31(8), 474-

484. (g) Eddaoudi, M., Moler, D., Li, H., Chen, B., Reineke,T., O’Keffe, M. and Yahghi, O.M.

Acc. Chem. Res. 2001, 34, 319-330.

2. (a) W. Lin, O. R. Evans, R.-G. Xiong, and Z. Wang J. Am. Chem. Soc. 1998, 120, 13272. (b)

O. R. Evans, R.-G. Xiong, Z. Wang, G. K. Wong, and W. Lin Angew, Chem. Int. Ed. Engl.1999,

38, 536.

3. (a) H. Tamaki, Z. J. Zhuang, N. Matsumoto, S. Kida, M. Koikawa, N. Achiwa, Y.

Hashimoton and H. Okawa J. Am. Chem. Soc. 1992, 114, 6974. (b) K. Inoue and H. H., Iwamura

J. Am. Chem. Soc. 1994, 116, 3173. (c) W. Lin, O. R. Evans, and G. T. Yee J. Solid St. Chem.

2000, 152, 152. (d) S. A. O’Kane, R. Clerac, H. Zhao, X. Ouyang, J. R. Galan-Mascaros, R.

Heintz, and K. R. Dunbar J. Solid St. Chem. 2000, 152, 159. (e) K. S. Min and M. P. Suh J.

Solid St. Chem. 2000, 152, 183.

4. (a) B. F. Abrahams, S.R. Batten, H. Hamit, B. F. Hoskins, and R. Robson Chem Commun.

1996, 1313. (b) L. Carlucci, G. Ciani, D. M. Proserpio, and A. Sironi Chem Commun. 1996,

1393. (c) V. L. Pecoraro, J. J. Bodwin, A. D. Cutland J. Solid St. Chem. 2000, 152, 68.

5. J. M. Tanski, E. B. Lobkovsky, and P. Wolszanski J. Solid St. Chem. 2000 ,152, 130.

6) Bruker (1997). SAINT (Version 6.02), SMART for WNT/2000 (Version 5.625) and

SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Page 12: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 1. X-ray crystal data and details of data collections and structure refinements. Complex (2) (3) Formula C46H84N4O6S2 C28H40O20S4Cu2 Formula Weight 853.29 1007.96 Crystal System monoclinic monoclinic a (Å) 10.0645(6) 8.8647(6) b (Å) 14.2573(9) 10.5247(7) c (Å) 17.6053(11) 21.2265(14) B (°) 94.3160(10) 93.1730(10) V (Å3) 2519.1(3) 1977.4 Space group P21/n P21/n Z 2 2 Dcalc (Mg m-3) 1.125 1.693 F(000) 936 1036 Temperature (K) 298(2) 298(2) Crystal Form needle plate Crystal Size (mm) 0.49 x 0.25 x 0.20 0.30 x 0.35 x 0.17 µ (mm-1) 0.152 1.372 2θmax (°) 56 56 Reflections collected 20766 16303 Unique reflections 5784 4539 Parameters 453 356 Goodness-of-fit 1.025 1.068 Ra [I > 2σ(I )] 0.0511 0.0333 wRb (all data) 0.1388 0.0890 ___________________________________________________________________________________

a R = Σ( ‌‌‌‌‌‌‌|‌Fo ‌| – |Fc|)/Σ|Fo| b wR = (Σ[w( ‌‌‌‌‌‌F ‌o2 – Fc

2)2] /Σ[w(Fo2)2])1/2

Page 13: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 2. Atomic coordinates [× 104] and equivalent isotropic displacement parameters

[Å2 × 103] for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

________________________________________________________________ x y z U(eq) ________________________________________________________________ S(1) 4657(1) 4044(1) 1997(1) 49(1) N(1) 1696(2) 6921(2) 2317(1) 73(1) N(2) 7587(2) 7030(1) 1619(1) 69(1) O(1) 4222(1) 3283(1) 1501(1) 71(1) O(2) 6068(1) 4218(1) 2000(1) 76(1) O(3) 4205(1) 3940(1) 2752(1) 70(1) C(1) 3870(1) 5081(1) 1605(1) 40(1) C(2) 3133(2) 5604(1) 2089(1) 49(1) C(3) 2476(1) 6423(1) 1840(1) 52(1) C(4) 2571(2) 6694(1) 1094(1) 53(1) C(5) 3323(2) 6182(1) 613(1) 47(1) C(6) 4007(1) 5365(1) 850(1) 40(1) C(7) 4813(1) 4848(1) 330(1) 43(1) C(11) 8085(2) 7004(2) 2451(1) 72(1) C(12) 7359(4) 6340(3) 2948(2) 112(1) C(21) 8493(2) 7697(2) 1231(1) 73(1) C(22) 8132(3) 7872(2) 396(2) 94(1) C(23) 9136(5) 8516(3) 62(2) 128(1) C(24) 8755(7) 8762(5) -775(3) 169(2) C(31) 6149(2) 7384(2) 1532(2) 95(1) C(32) 5933(3) 8362(3) 1830(4) 136(2) C(41) 7622(2) 6058(2) 1269(2) 77(1) C(42) 8980(3) 5591(2) 1305(2) 85(1) C(43) 8883(3) 4627(2) 971(2) 98(1) C(44) 10195(5) 4135(3) 989(3) 131(1) C(13A) 7764(18) 6657(16) 3752(9) 247(12) C(14A) 8130(20) 6068(16) 4075(15) 690(50) C(13B) 7965(18) 6303(10) 3768(5) 109(5) C(14B) 7840(30) 6990(10) 4157(7) 195(10) C(33A) 4519(7) 8729(7) 1867(6) 124(3) C(34A) 4059(12) 9009(8) 1110(7) 179(5) C(33B) 4633(14) 8656(9) 1440(10) 142(6) C(34B) 4250(9) 9593(6) 1603(7) 125(4) ________________________________________________________________

Page 14: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 3. Selected bond lengths [Å] and angles [deg] for 2. ________________________________________________________________ S(1)-O(1) 1.4396(13) S(1)-O(2) 1.4410(13) S(1)-O(3) 1.4444(13) S(1)-C(1) 1.7909(14) C(1)-C(2) 1.3879(19) C(2)-C(3) 1.397(2) C(3)-C(4) 1.380(2) C(3)-N(1) 1.387(2) C(4)-H(4A) 0.95(2) C(5)-C(4) 1.385(2) C(6)-C(5) 1.4008(19) C(6)-C(1) 1.4059(18) C(6)-C(7) 1.4671(18) C(7)-C(7)#1 1.321(3) C(11)-C(12) 1.513(4) C(12)-C(13A) 1.513(18) C(12)-C(13B) 1.525(12) N(2)-C(11) 1.512(3) N(2)-C(21) 1.516(2) N(2)-C(41) 1.517(3) N(2)-C(31) 1.529(3) C(21)-C(22) 1.508(3) C(22)-C(23) 1.516(5) C(23)-C(24) 1.536(6) C(31)-C(32) 1.511(5) C(32)-C(33B) 1.491(11) C(32)-C(33A) 1.522(8) C(41)-C(42) 1.517(4) C(42)-C(43) 1.496(3) C(43)-C(44) 1.494(5) C(13A)-C(14A) 1.064(19) C(13B)-C(14B) 1.207(17) C(33A)-C(34A) 1.434(12) C(33B)-C(34B) 1.426(12) O(1)-S(1)-O(2) 112.73(9) O(1)-S(1)-O(3) 112.25(8) O(2)-S(1)-O(3) 113.16(9) O(1)-S(1)-C(1) 106.42(7) O(2)-S(1)-C(1) 105.44(6) O(3)-S(1)-C(1) 106.12(7) C(2)-C(1)-C(6) 121.36(13) C(2)-C(1)-S(1) 116.64(11) C(6)-C(1)-S(1) 121.99(10)

Page 15: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

C(1)-C(2)-C(3) 121.25(14) C(4)-C(3)-C(2) 117.91(13) C(4)-C(3)-N(1) 121.09(17) N(1)-C(3)-C(2) 120.91(17) C(3)-C(4)-C(5) 120.92(14) C(4)-C(5)-C(6) 122.41(14) C(5)-C(6)-C(1) 116.11(12) C(5)-C(6)-C(7) 120.95(12) C(1)-C(6)-C(7) 122.94(12) C(7)#1-C(7)-C(6) 126.29(17) N(2)-C(11)-C(12) 115.8(2) C(11)-C(12)-C(13A) 104.3(7) C(11)-C(12)-C(13B) 113.2(7) C(22)-C(21)-N(2) 115.78(18) C(21)-C(22)-C(23) 111.1(2) C(22)-C(23)-C(24) 112.6(4) C(32)-C(31)-N(2) 115.5(2) C(33B)-C(32)-C(31) 104.1(5) C(33B)-C(32)-C(33A) 29.8(7) C(31)-C(32)-C(33A) 119.4(5) C(42)-C(41)-N(2) 115.58(16) C(43)-C(42)-C(41) 110.8(2) C(44)-C(43)-C(42) 113.0(3) H(1B)-N(1)-H(1C) 118(3) C(11)-N(2)-C(21) 106.59(14) C(11)-N(2)-C(41) 110.79(17) C(21)-N(2)-C(41) 110.86(17) C(11)-N(2)-C(31) 110.33(19) C(21)-N(2)-C(31) 110.13(18) C(41)-N(2)-C(31) 108.16(16) C(13A)-C(12)-C(13B) 20.6(11) C(14A)-C(13A)-C(12) 109(3) C(14B)-C(13B)-C(12) 117.3(12) C(34A)-C(33A)-C(32) 107.1(9) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

Page 16: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 4. Anisotropic displacement parameters [Å2 × 103] for 2. The anisotropic displacement

factor exponent takes the form: -2 π2 [(h a*)2 U11 + ... + 2 h k a* b* U12]

_______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ S(1) 52(1) 42(1) 56(1) 12(1) 15(1) 2(1) C(6) 40(1) 37(1) 44(1) -4(1) 5(1) -1(1) O(3) 87(1) 68(1) 58(1) 17(1) 18(1) 9(1) C(1) 39(1) 37(1) 46(1) -1(1) 7(1) -1(1) C(7) 47(1) 37(1) 45(1) -1(1) 7(1) 4(1) C(2) 49(1) 54(1) 46(1) -7(1) 11(1) 2(1) C(5) 50(1) 45(1) 47(1) 0(1) 2(1) 5(1) O(2) 51(1) 63(1) 114(1) 33(1) 11(1) 9(1) O(1) 104(1) 40(1) 72(1) 4(1) 20(1) -3(1) N(2) 58(1) 65(1) 82(1) -5(1) -8(1) -20(1) C(3) 43(1) 53(1) 60(1) -17(1) 8(1) 4(1) N(1) 69(1) 73(1) 79(1) -22(1) 17(1) 20(1) C(4) 49(1) 43(1) 65(1) -5(1) 1(1) 11(1) C(41) 75(1) 69(1) 85(1) -10(1) -7(1) -28(1) C(21) 69(1) 65(1) 83(1) 4(1) -8(1) -19(1) C(11) 68(1) 72(1) 75(1) -7(1) 3(1) -13(1) C(42) 90(2) 76(1) 89(2) -22(1) 0(1) -15(1) C(31) 60(1) 92(2) 130(2) 2(2) -15(1) -20(1) C(22) 99(2) 99(2) 83(2) 8(1) -11(1) -8(2) C(43) 112(2) 81(2) 106(2) -26(1) 30(2) -30(2) C(44) 142(3) 101(2) 157(4) -42(2) 62(3) -12(2) C(23) 154(3) 129(3) 99(2) 35(2) 2(2) -21(2) C(32) 80(2) 100(2) 226(6) -20(3) -8(3) 4(2) C(24) 195(5) 188(5) 125(3) 75(3) 20(3) 23(4) C(12) 120(3) 120(3) 99(2) 10(2) 28(2) -24(2) C(13A) 177(11) 390(30) 171(13) 166(16) -28(9) -82(14) C(14A) 1370(140) 400(40) 240(20) -40(20) -240(40) 420(60) C(13B) 162(11) 116(8) 50(5) 36(5) 28(5) 25(7) C(14B) 390(30) 132(10) 58(6) 6(6) 16(9) -113(13) C(33A) 75(3) 119(6) 175(9) -25(6) -6(4) -8(3) C(34A) 146(9) 115(8) 269(14) 25(9) -33(8) 0(6) C(33B) 149(10) 96(7) 171(14) -18(8) -59(10) 37(6) C(34B) 96(5) 98(6) 182(10) -31(6) 17(5) 18(5) _______________________________________________________________________

Page 17: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 5. Hydrogen coordinates (× 104) and isotropic displacement parameters (Å2 × 103) for 2. ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(2A) 3061(16) 5407(12) 2607(10) 55(4) H(5A) 3340(17) 6400(12) 87(10) 62(5) H(1B) 1550(20) 7496(19) 2163(13) 87(7) H(1C) 1900(30) 6830(20) 2797(18) 117(10) H(4A) 2154(18) 7258(14) 907(10) 62(5) H(41A) 7250(30) 6161(19) 738(17) 103(8) H(41B) 6980(20) 5751(17) 1527(13) 84(7) H(21A) 8480(20) 8295(17) 1561(12) 86(6) H(21B) 9380(20) 7424(14) 1309(11) 74(6) H(11A) 8058(19) 7634(15) 2613(11) 68(5) H(11B) 8950(20) 6804(14) 2455(11) 68(5) H(42A) 9550(30) 5990(20) 1017(19) 139(12) H(42B) 9160(30) 5510(20) 1820(20) 147(13) H(31A) 5880(30) 7342(18) 987(16) 101(8) H(31B) 5690(20) 6912(17) 1719(12) 82(6) H(22A) 8020(30) 7310(20) 99(15) 104(8) H(22B) 7290(30) 8156(19) 334(15) 107(9) H(43A) 8470(30) 4740(20) 467(18) 129(11) H(43B) 8340(30) 4330(20) 1280(18) 120(10) H(44A) 10040(40) 3560(30) 780(30) 180(16) H(44B) 10750(50) 4010(30) 1570(30) 200(20) H(44C) 11020(50) 4470(30) 750(20) 192(16) H(23A) 10150(50) 8320(30) 160(30) 196(18) H(23B) 9300(30) 9110(30) 350(20) 137(13) H(32A) 6040(40) 8270(30) 2300(20) 150(20) H(32B) 6510(50) 8880(30) 1640(30) 178(16) H(24A) 8470(110) 8250(80) -1190(60) 410(60) H(24B) 9390(50) 9230(30) -950(30) 188(18) H(24C) 7730(60) 8990(30) -760(30) 200(20) H(12A) 6510(30) 6540(20) 2931(15) 103(10) H(12B) 7570(40) 5630(30) 2760(30) 193(18) H(13A) 8450 7134 3747 900(400) H(13B) 7002 6924 3981 330(90) H(14A) 7465 5859 4400 23(5) H(14B) 8922 6243 4380 700(200) H(14C) 8334 5570 3735 1600(900) H(13A) 7572 5775 4017 290(120) H(13B) 8909 6174 3756 54(15) H(14D) 8489 7452 4039 120(30) H(14E) 7974 6821 4685 120(20)

Page 18: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

H(14F) 6962 7243 4056 2000(2000) H(7) 5124(19) 4269(15) 470(11) 67(5) H(33A) 3948 8242 2048 98(14) H(33B) 4511 9259 2212 160(30) H(34A) 3913 8463 796 210(40) H(34B) 4716 9402 902 120(20) H(34C) 3239 9351 1126 200(40) H(33C) 4685 8593 894 160(50) H(33D) 3945 8232 1589 330(110) H(34D) 4973 10012 1521 170(40) H(34E) 4035 9635 2124 260(70) H(34F) 3485 9765 1273 210(60) ________________________________________________________________

Page 19: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 6. Atomic coordinates [× 104] and equivalent isotropic displacement parameters [Å2 × 103] for 3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

________________________________________________________________ x y z U(eq) ________________________________________________________________ Cu(1) 2912(1) 886(1) 1222(1) 31(1) S(1) -2859(1) -2076(1) 987(1) 30(1) S(2) 2352(1) 2113(1) 2467(1) 29(1) N(2) 2801(2) -962(2) 984(1) 29(1) O(5) 2250(2) 909(1) 2113(1) 35(1) C(12) -1199(2) -1806(2) 567(1) 25(1) N(1) -1664(2) 5678(2) 2276(1) 36(1) O(3) -3933(2) -1098(1) 766(1) 37(1) O(6) 3881(2) 2598(2) 2535(1) 40(1) O(2) -2407(2) -1945(2) 1652(1) 45(1) C(9) 1435(2) -1332(2) -34(1) 29(1) C(13) 2783(2) 2775(2) 1050(1) 29(1) O(4) 1615(2) 1994(1) 3058(1) 40(1) O(1) -3373(2) -3346(2) 823(1) 45(1) C(11) -1240(2) -1870(2) -95(1) 26(1) C(3) -332(2) 5095(2) 1331(1) 38(1) C(6) 1287(2) 3248(2) 2006(1) 28(1) C(5) 1565(2) 3442(2) 1370(1) 28(1) C(10) 112(2) -1617(2) -383(1) 29(1) C(2) -570(2) 4890(2) 1958(1) 31(1) C(8) 1448(2) -1297(2) 619(1) 26(1) C(7) 125(2) -1530(2) 920(1) 27(1) C(4) 725(2) 4370(2) 1040(1) 36(1) C(1) 205(2) 3958(2) 2302(1) 31(1) C(14) 2657(2) 2147(2) 475(1) 29(1) O(7) 5660(2) 983(2) 1467(1) 50(1) O(10) -4598(2) 4766(2) 2023(1) 54(1) O(9) 6589(4) 3245(3) 998(3) 92(2) O(8) -6297(8) -4084(6) 294(5) 174(4) ________________________________________________________________

Page 20: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 7. Selected bond lengths [Å] and angles [deg] for 3. ________________________________________________________________ Cu(1)-N(2) 2.0106(16) Cu(1)-O(5) 2.0111(14) Cu(1)-C(13) 2.0237(19) Cu(1)-C(14) 2.0695(19) S(1)-O(1) 1.4487(17) S(1)-O(2) 1.4521(15) S(1)-O(3) 1.4626(14) S(1)-C(12) 1.7855(17) S(2)-O(6) 1.4480(15) S(2)-O(4) 1.4518(15) S(2)-O(5) 1.4735(13) S(2)-C(6) 1.7815(18) N(1)-C(2) 1.469(2) N(1)-H(1A) 0.83(3) N(1)-H(1B) 0.78(3) N(2)-C(8) 1.435(2) N(2)-H(2A) 0.82(3) N(2)-H(2B) 0.82(3) C(2)-C(1) 1.382(3) C(3)-C(2) 1.377(3) C(3)-C(4) 1.380(3) C(5)-C(4) 1.393(3) C(6)-C(1) 1.392(3) C(6)-C(5) 1.401(3) C(8)-C(7) 1.388(2) C(9)-C(10) 1.384(2) C(9)-C(8) 1.386(2) C(11)-C(10) 1.401(2) C(12)-C(7) 1.388(2) C(12)-C(11) 1.404(2) C(13)-C(14) 1.386(3) C(13)-C(5) 1.484(3) N(2)-Cu(1)-O(5) 103.60(6) N(2)-Cu(1)-C(13) 154.61(7) O(5)-Cu(1)-C(13) 98.14(6) N(2)-Cu(1)-C(14) 115.20(7) O(5)-Cu(1)-C(14) 133.41(6) C(13)-Cu(1)-C(14) 39.57(7) C(8)-N(2)-Cu(1) 113.69(11) S(2)-O(5)-Cu(1) 118.49(8) O(1)-S(1)-O(2) 112.80(10) O(1)-S(1)-O(3) 112.42(9) O(2)-S(1)-O(3) 112.66(9)

Page 21: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

O(1)-S(1)-C(12) 106.49(9) O(2)-S(1)-C(12) 106.26(8) O(3)-S(1)-C(12) 105.53(8) O(6)-S(2)-O(4) 114.08(9) O(6)-S(2)-O(5) 112.62(9) O(4)-S(2)-O(5) 110.44(9) O(6)-S(2)-C(6) 106.41(9) O(4)-S(2)-C(6) 106.35(9) O(5)-S(2)-C(6) 106.35(8) C(2)-C(1)-C(6) 118.53(18) C(3)-C(2)-C(1) 121.57(18) C(3)-C(2)-N(1) 119.75(18) C(1)-C(2)-N(1) 118.68(18) C(2)-C(3)-C(4) 119.31(18) C(3)-C(4)-C(5) 121.36(19) C(4)-C(5)-C(6) 117.95(17) C(4)-C(5)-C(13) 118.95(17) C(6)-C(5)-C(13) 122.93(16) C(1)-C(6)-C(5) 121.23(16) C(1)-C(6)-S(2) 118.03(14) C(5)-C(6)-S(2) 120.71(14) C(12)-C(7)-C(8) 119.91(16) C(9)-C(8)-C(7) 119.69(16) C(9)-C(8)-N(2) 120.36(16) C(7)-C(8)-N(2) 119.88(16) C(10)-C(9)-C(8) 120.03(16) C(9)-C(10)-C(11) 121.84(16) C(10)-C(11)-C(12) 116.84(16) C(7)-C(12)-C(11) 121.68(15) C(7)-C(12)-S(1) 117.29(13) C(11)-C(12)-S(1) 121.03(13) C(14)-C(13)-Cu(1) 72.00(11) C(5)-C(13)-Cu(1) 114.69(13) C(14)-C(13)-C(5) 127.13(16) C(13)-C(14)-Cu(1) 68.43(11) _____________________________________________________________________________ Symmetry transformations used to generate equivalent atoms: -x,-y,-z

Page 22: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 8. Anisotropic displacement parameters [Å2 × 103] for 3. The anisotropic displacement

factor exponent takes the form: -2 π2 [(h a*)2 U11 + ... + 2 h k a* b* U12]

_______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________

Cu(1) 32(1) 34(1) 27(1) -5(1) -5(1) 4(1) S(1) 24(1) 38(1) 29(1) 5(1) 6(1) 5(1) S(2) 32(1) 30(1) 24(1) 0(1) -3(1) 4(1) N(2) 23(1) 35(1) 28(1) -1(1) -3(1) 3(1) O(5) 46(1) 29(1) 30(1) -2(1) 1(1) 4(1) C(12) 22(1) 28(1) 24(1) 2(1) 3(1) 3(1) N(1) 32(1) 36(1) 41(1) -1(1) 1(1) 8(1) O(3) 28(1) 45(1) 39(1) 1(1) 4(1) 12(1) O(6) 34(1) 45(1) 40(1) 3(1) -10(1) 1(1) O(2) 38(1) 69(1) 27(1) 9(1) 8(1) 7(1) C(9) 24(1) 35(1) 28(1) -1(1) 4(1) 0(1) C(13) 24(1) 34(1) 29(1) 0(1) -3(1) -1(1) O(4) 51(1) 41(1) 27(1) 1(1) 4(1) 7(1) O(1) 37(1) 39(1) 62(1) 8(1) 10(1) -3(1) C(11) 23(1) 29(1) 25(1) 0(1) 0(1) 2(1) C(3) 40(1) 36(1) 37(1) 3(1) -4(1) 9(1) C(6) 27(1) 28(1) 28(1) -2(1) -5(1) 2(1) C(5) 27(1) 28(1) 29(1) -3(1) -3(1) 0(1) C(10) 29(1) 38(1) 20(1) -2(1) 2(1) -1(1) C(2) 26(1) 30(1) 36(1) -5(1) -1(1) 2(1) C(8) 23(1) 26(1) 27(1) -2(1) -2(1) 2(1) C(7) 28(1) 33(1) 20(1) 1(1) 0(1) 4(1) C(4) 41(1) 38(1) 29(1) 4(1) -1(1) 7(1) C(1) 31(1) 32(1) 29(1) -3(1) 0(1) 1(1) C(14) 23(1) 37(1) 27(1) -1(1) 0(1) 1(1) O(7) 50(1) 54(1) 44(1) -8(1) 0(1) 11(1) O(10) 43(1) 48(1) 72(1) 3(1) 11(1) 1(1) O(9) 72(2) 69(2) 139(4) -32(2) 38(2) -18(1) O(8) 120(4) 123(6) 277(10) 47(5) -23(5) 10(4) _______________________________________________________________________

Page 23: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Table 9. Hydrogen coordinates (× 104) and isotropic displacement parameters (Å2 × 103) for 3. ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(1) -10(30) 3820(20) 2718(11) 30(5) H(1A) -2530(40) 5370(30) 2262(13) 57(12) H(1B) -1740(30) 6360(30) 2131(12) 37(11) H(2A) 2870(30) -1380(30) 1312(13) 33(8) H(2B) 3570(30) -1100(30) 801(13) 38(8) H(3) -860(30) 5730(30) 1091(14) 50(7) H(4) 910(30) 4560(20) 611(12) 34(6) H(7) 140(30) -1490(20) 1351(12) 36(6) H(7A) 5960(40) 360(40) 1253(16) 65(9) H(7B) 6150(40) 1600(40) 1380(16) 64(11) H(8A) -6060(30) -3420(30) 146(13) 24(6) H(8B) -6370(30) -3740(30) 449(12) 0(5) H(9) 2330(30) -1120(20) -247(12) 40(6) H(9A) 6690(60) 3520(50) 730(20) 70(20) H(9B) 6290(50) 3790(50) 1250(20) 82(13) H(10) 150(30) -1550(20) -813(11) 32(5) H(10A) -5150(50) 5440(40) 1989(18) 79(11) H(10B) -4830(50) 4320(40) 2210(20) 70(16) H(13) 3680(30) 2990(20) 1183(12) 40(6) H(14) 3560(20) 2056(19) 253(10) 23(5) ________________________________________________________________

Page 24: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Figure 1. A thermal ellipsoid plot of the structure of the anion in (n-Bu4N)2(DAS-(SO3)2) (2). Atoms are shown at the 50% probability level.

Page 25: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

(a)

(b) Figure 2. Thermal ellipsoid plots of the structure of [CuDAS-(SO3)2]2•3H2O (3) as viewed (a) along the a axis and (b) along the c axis. Solvent molecules and hydrogen atoms other than the amine hydrogens were omitted for the sake of clarity. Atoms are shown at the 50% probability level.

Page 26: Preparation and Reactivity of 4,4’-diaminostilbene-2,2 ...people.ysu.edu/.../94.JCC.Szalay.CuStilbene.Draft.pdf · The precursor compound 4,4’–diaminostilbene-2,2’disulphonic

Figure 3. A packing diagram of the extended structure of [CuDAS-(SO3)2]2•3H2O (3) as viewed down the c axis. Hydrogen atoms and solvent molecules were omitted for the sake of clarity. Atoms are shown at the 50% probability level.