32
“Estero Morales, Maipo River Basin, Región Metropolitana, Chile.” 07 / 06 / 2016 YOHANN VIDELA GIERNG CRHM Cold Regions Hydrological Model

Presentación de PowerPoint - ccrnetwork.ca fileMotivation • River runoff in the catchments feeded by snow/ice melting processes in Central Andes of Chile (30º - 35ºS) is the main

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

“Estero Morales, Maipo River Basin, Región Metropolitana, Chile.”

07 / 06 / 2016YOHANN VIDELA GIERNG

CRHMCold Regions Hydrological Model

Motivation

• River runoff in the catchments feeded by snow/ice melting processes inCentral Andes of Chile (30º - 35ºS) is the main source of fresh water toaround 10 M of people for agriculture and mining activities.

• Recent studies have reported a severe precipitation reduction and asignificant increase of temperature in high elevations of Andes (DGF 2015).

• Furthermore, the region has been affected by the most severe and extendeddrought interval - “mega-drought (2010 – 2014 year)”.

• In this context, evaluation of monthly and seasonal trends of river dischargesis important to improve water management

- 93 km from Santiago- Area 37.7 km^2- Average height 2930 masl- Dominated by the mountainclimate.

Study area

Study area

San francisco Glacier

1.7 Km^2

Based on the distribution of meteorological stations in thestudy area, is applied themethodology

Statistical downscaling of ERA-I Precipitation in Complex Terrainusing LASSO Algorithm Gao, Schulz, and Bernhardt (2014) http://www.hindawi.com/journals/amete/2014/472741/

Downscale (ppt and temp.)

Down-scale (ppt)

0.25º x 0.25º

Statistical Downscaling of ERA-Interim Forecast Precipitation Data in Complex Terrain usingLASSO Algorithm Gao, Schulz, and Bernhardt2014

0.125º x 0.125º

0.0625º x 0.0625º

Morales Basin

ERA-I

First downscale

Second downscale

Down-scale “LASSO” (ppt)

Meteorological characterization (temp)

http://www.hydrol-earth-syst-sci.net/16/4661/2012/hess-16-4661-2012.pdfL. Gao, M. Bernhardt, and K. Schulz 2012

Fixed monthly lapse rates for diferent altitudes

2000 masl

3000 masl

4000 masl

Meteorological characterization (temp)

2200 masl

3500 masl

3500 masl

2200 masl

http://www.hydrol-earth-syst-sci.net/16/4661/2012/hess-16-4661-2012.pdf L. Gao, M. Bernhardt, and K. Schulz 2012Fixed monthly lapse rates for diferent altitudes

𝜟𝜟20º

𝜟𝜟8º

Meteorological characterization (temp)

2200 masl

3500 masl

3500 masl

2200 masl

http://www.hydrol-earth-syst-sci.net/16/4661/2012/hess-16-4661-2012.pdf L. Gao, M. Bernhardt, and K. Schulz 2012Fixed monthly lapse rates for diferent altitudes

𝜟𝜟20º

𝜟𝜟8º

Wind speed[m/s]

Jua Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec

Meteorological characterization(Wind speed and direction)

HRU’s and Geomorpholicalcharacterization (landcover)

Short grass

Wetland

Bare

Glacier Rock

Intersectwhit GIS interfase

HRU’s and Geomorpholicalcharacterization

ALTITUDE

ASPECT

SLOPE

LAND COVER

40 HRU(12 +1 FOR GLACIER)

HRUs20 y 21 > 2927 y 28 > 2924 y 25 > 2930 y 31 > 3432 y 33 > 34Avalanche

redistribution

HRUs 1-12 Glacier retreat

and massbalance

HRUs 23, 29, 34, 38, 39, 40

domain of infiltration

HRUs26 and 2030 and 3233 and 3137 and 36

Comparable with altitudeand aspect

HRUs29 y 34

Comparable with snow

pick and AWS nodes

Gauge pointdownflow of

moraine

Gauge point“Aguas

Panimávida”

Gauge point“Puente Conaf”

Characterization according to hydrological processes

COLD REGION HYDROLOGICAL MODEL

Reanalys data from Era InterimTime step Hourly 1979- 2015

-Precipitation-Temperature-Relative humidity-Wind speed (2 m)-Incoming longwave radiation-Incoming shortwave radiation

Obs

Basin

DEM SRTM 30 mts.

Global

Calcsum #1

Slope_Qsi #1

LongVt

Netall

Evap

Canopy Clearing #3

PbsmSnobal

Albedo

Glacier #1

SWE Slope

Snobal CRHM

Frozen ayers

Netroute_M

K_Estimate

Volumetric

Soil

The Meteorological data to HRU using adiabatic relationships, and saturation vapourpressure calculations

Parametersetting

Storage

Snow albedo

Fetch

K Snow

K soil, ssr, gw

Soil depth

lagRout length

Soil Type Class cover

Initial day of the hydrological year = 91

Depth and density of ice

Snow Density

Basin: physical, soil, and vegetation characteristics.

Pbsm: Blowing snowtransport and sublimation.

SWE slope: Resdistributionof avalanche.

Glacier: Mass and Energybalance.

Snow depth (CRHM)Preliminary results

0

0.5

1

1.5

5/26

/201

5

6/5/

2015

6/15

/201

5

6/25

/201

5

7/5/

2015

7/15

/201

5

7/25

/201

5

8/4/

2015

8/14

/201

5

8/24

/201

5

9/3/

2015

SNO

W D

EPTH

[M]

Snow depth Mod v/s Obs HRU 34

Mod Obs

SR50A Snow Depth Sensor

SWE(CRHM)Preliminary results

OBS V/S MOD HRU 23

SWE(CRHM)Preliminary results

SWE(CRHM) preliminary resultsHRU 20 HRU 21 HRU 23

HRU 26 HRU 29

HRU 30 HRU 32

HRU 33 HRU 34 HRU 35

HRU 28

HRU 31

SWE(CRHM) preliminary resultsSnow Slide model

SWE Slope (CRHM) preliminary results(Snow Slide model)

Glacier Model (CRHM)

Sonwlayer

Firnlayer

Ice layer

Energy-budget glacier melt model

SNOBAL CRHM

Pradhananga (2016) oral communication

𝑸𝑸𝒎𝒎 = 𝑸𝑸𝒏𝒏 + 𝑸𝑸𝒆𝒆 + 𝑸𝑸𝐡𝐡 + 𝑸𝑸𝐩𝐩 [MJ/d]

Ice depth (San Francisco Glacier)

(DGA 2012) http://documentos.dga.cl/GLA5398.pdf

Previous experience in temperate glaciers in Patagonia and polithermal glaciers in the SwissAlps and the Antarctic Peninsula indicates that radar with low frequency is suitable fordetecting ice thickness in temperate glaciers, always taking into consideration that the

maximum thicknesses obtained are of the order of 700 [m].

Ice depth (San Francisco Glacier)

Data set of ice depth ( ice_init in crhm)

TRANSECT LENGTH DEPTH MIN DEPTH MAX DEPTH MEAN STD DEV ELEV. MIN ELEV. MAX

[name] [m] [m] [m] [m] [m][masl]

LIDAR 2012[masl]

LIDAR2012L-L' 1749 5.6 89.5 40.8 22.8 3290 3698

T1-T1' 416 10.5 43.4 25.9 8.6 3612 3698T2-T2' 843 2.2 76.9 48.2 23.8 3278 3521T3-T3' 361 21.1 82.4 60.1 16.9 3236 3312

2011

2014TRANSECT LENGTH DEPTH MIN DEPTH MAX DEPTH MEAN STD DEV ELEV. MIN ELEV. MAX

[name] [m] [m] [m] [m] [m][masl]

LIDAR 2014[masl]

LIDAR 2014L-L' 1768 3.8 85.2 37.4 28.8 3288 3696

T1-T1' 425 8.4 40.1 22.9 10.4 3611 3694T2-T2' 852 1.5 71.1 44.2 19.8 3275 3518T3-T3' 349 17.2 80.1 57.3 14.9 3233 3309

TRANSECT LENGTH DEPTH MIN DEPTH MAX DEPTH MEAN STD DEV ELEV. MIN ELEV. MAX

[name] [m] [m] [m] [m] [m][masl] [masl]

LIDAR 2014 LIDAR 2014L-L' -19 1.8 4.3 3.4 -6 2 2

T1-T1' -9 2.1 3.3 3 -1.8 1 4T2-T2' -9 0.7 5.8 4 4 3 3T3-T3' 12 3.9 2.3 2.8 2 3 3

DIFFERENCE 2012 – 2014

BGR radar-P30 at a frequency of 20 [MHz]which manage to penetrate a maximum ice thickness of 370 [m]

Initial conditions 2011 (radar ice depth)

dh/dt from Glacier model

Final conditions (2014) (radar ice depth)firn lag [h] 5firn storage [d] 1firn albedo - 0.65firn layer 1 h [mm] 0firn layer 2 h [mm] 0firn dens l 1 Kg/m^3 550firn dens l 2 Kg/m^3 680ice lag [h] 5ice storage [d] 3ice albedo - 0.35ice dens [Kg/m^3] 900ice init [mm] 45000SWE to firn [Julian day] 91

Dh mod v/s obs = 35 cms

Mass balance (CRHM) Preliminary results

Icedepth[mt]NO DATA

Mass balance (CRHM) preliminary results

Mass balance (CRHM) preliminary results

Progress Report“Estero Morales, Maipo River Basin,

Región Metropolitana, Chile.”

CRHMCold Regions Hydrological Model