Presentation on LM 79 & 80

Embed Size (px)

Citation preview

  • 8/17/2019 Presentation on LM 79 & 80

    1/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    LED Testing Standards Overview

    Presented by: Andrew Bierman, MS and Jean Paul Freyssinier, MSwith contributions from Yiting Zhu, PhD and N. Narendran, PhD

    Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA 

    Meeting and Measuring 

    ENERGY STAR® Requirements

  • 8/17/2019 Presentation on LM 79 & 80

    2/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Outline

    Background

    › Relative vs. absolute photometry LED photometric testing standards:

    › IES LM-79-08

    › IES LM-80-08› IES TM-21-11

    › IES LM-82-12

    General questions and answers

  • 8/17/2019 Presentation on LM 79 & 80

    3/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Relative and Absolute Photometry

    Relative Photometry:› Output is relative to an easily-measured

    condition› E.g., bare lamp operated on a referenceballast, base up at 25°C

    › Specific lamp performance doesn’t matter

     Absolute photometry:› Output is measured in calibrated units

    under specific operating and environmentalconditions

    • Orientation

    • Input voltage•  Ambient temperature

    › Lamp and system performance matters

    3

    CFL

  • 8/17/2019 Presentation on LM 79 & 80

    4/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Relative and Absolute Photometry

     Absolute is more difficult because:

    Need to maintain flux standards and calibrate equipment› Calibrate with incandescent, measure other SPDs and directional light

    sources

    Sampling concerns› How many? How to choose? Are samples representative?

    Must reproduce environmental and operating conditionswhile maintaining calibrated equipment› Temperature, input voltage or current (driver)

    4

    Comfortable and accurate at 25° C, buthow to take measurements at 85° C?

  • 8/17/2019 Presentation on LM 79 & 80

    5/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Relative and Absolute Photometry

    Relative photometry is used to simplify testing

    › Works well when the system is well defined and characterized

    • E.g., linear fluorescent lamp systems

     –  Flux = (rated lumens) x (ballast factor) x (luminaire efficiency)

    › Does not work well for making comparisons across differentsystems

    • E.g., CFL replacements for incandescent lamps

     –  Geometry issues, lack of reference ballast definitions, temperatureeffects

    › Useful for measuring variations under different testing

    conditions• Light output over time

    • Elevated temperature

    5

  • 8/17/2019 Presentation on LM 79 & 80

    6/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Standard Test Methods for LED Products

    Standard Method Purpose

    IES LM-79-08 Absolute Light output, efficacy,color for LED products

    IES LM-80-08 Relative Light output over time,temperature for LEDpackages

    IES LM-82-12 Relative

    (references LM-79)

    Light output, efficacy,

    color over temperature forlight engines

    IES TM-21-11 Calculation, modeling Extrapolating LM-80 testdata to predict life

     ANSI/UL 153:2002 (Secs.124-128A) ANSI/UL 1574:2004 (Sec.54) ANSI/UL 1598:2008 (Secs.

    19.7, 19.10-16)

    Portable ElectricLuminairesTrack Lighting Systems

    Luminaires

    Methods for in-situtemperature method(ISTM) testing forEnergyStar

  • 8/17/2019 Presentation on LM 79 & 80

    7/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES LM-79-08 Approved method: Electrical and PhotometricMeasurements of Solid-state Lighting Products

  • 8/17/2019 Presentation on LM 79 & 80

    8/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.8

    Scope LM-79-08

    Solid-state lighting products for illumination purposes Complete systems with electrical drivers and heat sinks

    › Powered by AC mains or dc voltage Measurements under standard conditions

    › Total luminous flux› Electrical power, input voltage and current› Luminous intensity distribution

    › Chromaticity, correlated color temperature (CCT), Color Rendering Index(CRI)

    Luminaires (including light source) and integrated LED lamps› e.g., recessed down lights (must include light source)› e.g., A-lamp replacements

    Methods for individual product performance. Does not cover howindividual variations affect performance.

  • 8/17/2019 Presentation on LM 79 & 80

    9/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.9

     Ambient Conditions

     Air Temperature

    › 25°C ±1°C

    › Measured at the same height as the fixture› Shielded from direct radiation

    Thermal Conditions for Mounting SSL Products

    › Heat conduction through supporting objects must be negligible

    › If sample is provided with a support structure used for thermalmanagement, then the sample shall be tested with the support structureattached

     Air Movement

    › Keep airflow around SSL sample to a minimum

    › Should only be natural convection air current from sample operation

  • 8/17/2019 Presentation on LM 79 & 80

    10/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.10

    Power Supply Characteristics

    Waveshape of AC power supply

    › Shall have a sinusoidal shape with ≤ 3% distortion of the

    fundamental frequency

     Voltage regulation

    ±0.2% of the rated value

    For a product rated at 120V

    119.76V < Vin < 120.24V

  • 8/17/2019 Presentation on LM 79 & 80

    11/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.11

    Seasoning of SSL Products

    No seasoning of samples priorto testing

    › The test committee determinedthis method would produce themost repeatable results

    Other light sources

    › Incandescent lamps: 0.5% ofrated life

    › Fluorescent lamps: 100 hrswith 3-hr on and 20-min off

    cycle

    › HID: 100 hrs with 11-hr on and1-hr off operating cycle

    Initial lumenmaintenance of LEDs

  • 8/17/2019 Presentation on LM 79 & 80

    12/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.12

    Stabilization of SSL Products

    Stability based on both input power

    and light output Stability is when the variation of at

    least 3 readings over a period of 30

    min, taken 15 min apart, is less than0.5 %

  • 8/17/2019 Presentation on LM 79 & 80

    13/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.13

    Test of an SSL Downlight Product

    10.00

    10.05

    10.10

    10.15

    10.20

    10.25

    10.30

    10.35

    10.40

    10.45

    10.50

    0 10 20 30 40 50 60 70 80

    Time (min)

       I  n  p  u   t   P

      o  w  e  r   (   W   )

    12

    12.1

    12.2

    12.3

    12.4

    12.5

    12.6

       R  e   l  a   t   i  v  e   L

       i  g   h   t   O  u   t  p  u   t

    Input Power 

    Light Output

  • 8/17/2019 Presentation on LM 79 & 80

    14/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.14

    Test of an SSL Downlight Product

    10.00

    10.05

    10.10

    10.15

    10.20

    10.25

    10.30

    10.35

    10.40

    10.45

    10.50

    0 200 400 600 800 1000

    Time (min)

       I  n  p  u   t   P  o  w  e  r   (   W   )

    12

    12.1

    12.2

    12.3

    12.4

    12.5

    12.6

       R  e   l  a   t   i  v  e

       L   i  g   h   t   O  u   t  p  u   t

    Input Power 

    Light Output

    1.4%

    0.9%

    Efficacy by 2.3%Over next 12 hours

  • 8/17/2019 Presentation on LM 79 & 80

    15/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.15

    Operating Orientation

    Shall be evaluated in the orientation recommended by themanufacturer for an intended use of the sample

    Stabilization and photometric measurements of SSLproducts shall be done in such operating orientation

    Note:The light emission process of anLED is not affected by orientation

    Orientation can change the thermal

    conditions for the LEDs used in theproduct, and so…

    The light output may be affected byorientation of the SSL product

  • 8/17/2019 Presentation on LM 79 & 80

    16/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Electrical Settings

    Operated at rated voltage according to its normaluse

    › No pulsed operation

    If the product has dimming capability,measurements shall be performed at the maximum

    input power condition If the product has multiple modes of operation

    including variable CCT, measurement may be made

    at different modes of operation (and CCTs) ifnecessary, and such setting conditions shall beclearly reported

    16

  • 8/17/2019 Presentation on LM 79 & 80

    17/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.17

    Electrical Instrumentation

    Instrumentation Calibration

    Uncertainties (u)Expanded uncertainty: 2-sigma, 95%

    confidence

    ac voltage and current u  ≤ 0.2%

    ac power u ≤ 0.5%

    dc voltage and current u  ≤ 0.1%

  • 8/17/2019 Presentation on LM 79 & 80

    18/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.18

    Test Methods for Total Luminous Flux Measurement

    Two options

    1. Integrating Spherea) with spectroradiometer

    b) with photometer head (requires spectral mismatch error

    correction – not trivial)

    2. Goniophotometer

    a) Most use photometer head

    b) Spectroradiometer needed for color measurements

  • 8/17/2019 Presentation on LM 79 & 80

    19/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.19

    Sphere geometry

    4 Geometry› total SA of product should be

  • 8/17/2019 Presentation on LM 79 & 80

    20/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Goniophotometer

    Primarily used for the measurement of the

    luminous intensity distribution of lamps andluminaires

    www.npl.co.uk

    www.intertek-etlsemko.com

  • 8/17/2019 Presentation on LM 79 & 80

    21/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.21

    Goniophotometer measurements

    LM-79 specifies type C goniometers› Burning position of the sample is

    unchanged relative to gravity› Minimal impact of thermalperformance of sample

    Two sub-types› Moving detector

    › Moving mirror The speed of rotation should be such

    as to minimize the disturbance of thethermal equilibrium of the sample

    Relative photometry method,

    commonly used in traditionalluminaire testing, cannot be used forSSL products with integral lamps

  • 8/17/2019 Presentation on LM 79 & 80

    22/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.22

    Colorimetric calculations

    The chromaticity coordinates (x, y ) and/or (u’, v’ ), andcorrelated color temperature (CCT, unit: kelvin) are

    calculated from the relative spectral distribution› Commission Internationale de l'Eclairage, Colorimetry , 3rd edition,

    CIE 15:2004

    The Color Rendering Index (CRI) is calculated according tothe formulae defined in

    › Commission Internationale de l'Eclairage, Method of Measuring andSpecifying Colour Rendering of Light Sources, CIE 13.3-1995

  • 8/17/2019 Presentation on LM 79 & 80

    23/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.23

    Spatial non-uniformity of chromaticity

    Products may have variation of color with angle of emission

    Spatial non-uniformity of chromaticity shall be evaluated

    › The spatial non-uniformity of chromaticity, u’v’ , is determined as

    the maximum deviation among all measured points from the

    spatially averaged chromaticity coordinate

    › distance on the CIE (u’, v’ ) diagram For this evaluation, accuracy only in chromaticity differences

    is critical, and thus, measurements may be made with a

    tristimulus colorimeter if a spectroradiometer is not available

    If u’v’ < 0.001 a single, directional measurement with a

    spectroradiometer suffices for color. Else …

  • 8/17/2019 Presentation on LM 79 & 80

    24/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.24

    12.2 Method using spectroradiometer or colorimeter spatially

    scanned

    Manually positioning theinstrument for given directions

    at a constant distance Shall be measured at

    ›   ≤10° intervals for verticalangle over the angle rangewhere light is intentionallyemitted from the source

    › Minimum two horizontal angles=0° and 90°

    The chromaticity measurements

    need to be made only for theangles where the averageluminous intensity is >10% ofthe peak intensity

    IES-LM-79-08

  • 8/17/2019 Presentation on LM 79 & 80

    25/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.25

    Method using spatially scanned spectroradiometeror colorimeter

    May be used when

    › Sphere-spectroradiometer system is not available

    › Test sample is too large for a sphere-spectroradiometer system

    Can be achieved most efficiently by mounting the color-measuring instrument on a goniometer

    › Called gonio-spectroradiometer , or gonio-colorimeter  Luminous intensity distribution and chromaticity coordinates

    can be measured at the same time

    › taking readings at appropriate angle intervals over the entire angle

    range where the light is intentionally emitted from the product

    › Then, the spatially averaged chromaticity is obtained from allmeasured points by spatially-integrated tristimulus values

  • 8/17/2019 Presentation on LM 79 & 80

    26/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES LM-80-08 Approved Method for Lumen MaintenanceTesting of LED Light Sources

  • 8/17/2019 Presentation on LM 79 & 80

    27/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.27

    Scope IES LM-80-08

    Measuring lumen maintenance for LED› Packages

    ›  Arrays› Modules

    Does not provide guidance or make anyrecommendations regarding predictive estimations orextrapolation beyond that from actual measurements(TM-21 covers this)

    CREE LED Supply CREE

  • 8/17/2019 Presentation on LM 79 & 80

    28/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.28

    Definitions

    LED light source

    ›  An LED package, array, or module that is operated via an auxiliary driver

    Lumen maintenance

    › Luminous flux output at any selected elapsed operating time

    › Usually expressed as a percentage of the maximum output)

    Lumen maintenance life

    › Elapsed operating time at which the specified lumen maintenance is reached

    Rated lumen maintenance

    › L70: time to 70% lumen maintenance

    › L50: time to 50% lumen maintenance

    Case temperature› Temperature of the thermocouple attachment point on the LED source

    defined by manufacturer

  • 8/17/2019 Presentation on LM 79 & 80

    29/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    LED Life Definitions

    › 70% for general lighting, illumination (L70)

    • L70 (hrs) = 30% reduction in light output

    › 50% for decorative lighting, indicators (L50)• L50 (hrs) = 50% reduction in light output

    29

    Time

       L   i  g   h   t   O  u   t  p  u   t

    100%

    0%

    70%

    50%

    L70 L50

  • 8/17/2019 Presentation on LM 79 & 80

    30/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.30

    General Conditions

    Conduct test in clean environment

    Individual labeling of LED sources

    Representative sampling of LEDs and report samplingmethod

    Minimize vibration (although not nearly as sensitive as otherlamp types)

    Minimize airflow, but do not allow thermal stratification

    Operating orientation and spacing

    › Orient as specified by manufacturer

    › Space to allow air flow around units

  • 8/17/2019 Presentation on LM 79 & 80

    31/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.31

    Temperature and humidity

     A minimum of 3 case temperatures

    › 55°C

    › 85°C

    › The third is at the discretion of the manufacturer

    Temperature tolerance +0, -2° C

     Air temperature surrounding case within +0, -5°C

    Relative humidity < 65%

  • 8/17/2019 Presentation on LM 79 & 80

    32/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.32

    Electrical and instrumentation

    Current maintained ± 3% during life test

    ›   ± 0.5% during photometric testing

    Thermocouple accuracy limits: ≤ 1.1°C or 0.4%

    Elapsed time uncertainty within ± 0.5%

    Photometric measurements performed at 25 ± 2°C

    Test duration

    ›  At least 6000 hours, preferably 10,000 hours

    › Photometry every 1000 hours minimum

    Operating cycle

    › Constant current (no modulation, e.g. PWM)

  • 8/17/2019 Presentation on LM 79 & 80

    33/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11Projecting Long Term Lumen Maintenance ofLED Light Sources

    34

  • 8/17/2019 Presentation on LM 79 & 80

    34/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Scope:

    › Provides a recommendation for projecting longterm lumen maintenance of LED light sourcesusing LM-80-08 lumen maintenance data

    34

  • 8/17/2019 Presentation on LM 79 & 80

    35/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Projection method:› Data: LM-80-08 report

    • 6000-hour data with 1000-hour interval

    • Less than 1000-hour interval is encouraged

    • Data beyond 6000 hours is encouraged

    › Sample size:• 20 units for a multiplication factor of 6

    • 10-19 units for a multiplication factor of 5.5• Not applied for sample size less than 10

    units

    › Normalization:• Normalize all collected data to 100% at 0

    hour for each DUT›  Average

    •  Average the normalized measured data ofall samples

    •   Miller, C., 2011.  IES TM‐21‐11 Overview, History and Q&A Session. EPA ENERGY STAR Lamp Round Table, San Diego, CA, Oct. 24, 2011.

    IES‐TM‐21‐11

  • 8/17/2019 Presentation on LM 79 & 80

    36/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    6 times rule based on confidence band, which is determinedby:

    › Number of samples› Uncertainty of measurement system over time

    •   Miller, C., 2011.  IES TM‐21‐11 Overview, History and Q&A Session. EPA ENERGY STAR Lamp Round Table, San Diego, CA, Oct. 24, 2011.

  • 8/17/2019 Presentation on LM 79 & 80

    37/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Projection method (cont’d):

    › Data used for curve-fit

    • 6,000 h 10,000 h

     –  Last 50% of the total test duration shall beused

    (Miller, 2011)•   Miller, C., 2011.  IES TM‐21‐11 Overview, History and Q&A Session. EPA ENERGY STAR Lamp Round Table, San Diego, CA, Oct. 24, 2011.

    •   Tuttle, R. et al., 2011. TM‐21 Update: Method for Projecting Lumen Maintenance of  LEDs. CORM 2011 Technical Conference.

  • 8/17/2019 Presentation on LM 79 & 80

    38/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Projection method (cont’d):

    › Data used for curve-fit

    • show that using 1000-6000 hour data vs.

    5000-10,000 hour give different lifetimepredictions

    • later data show more characteristic decaycurve of interest

     –  Non-semiconductor related decay(encapsulant, etc.) occurs early on

     –  Later decay is semiconductordegradation-related and can beconsidered as classic exponential decay

     –  Long duration data sets (>10,000 h)show better verification

    (Miller, 2011)•   Miller, C., 2011.  IES TM‐21‐11 Overview, History and Q&A Session. EPA ENERGY STAR Lamp Round Table, San Diego, CA, Oct. 24, 2011.•   Tuttle, R. et al., 2011. TM‐21 Update: Method for Projecting Lumen Maintenance  of  LEDs. CORM 2011 Technical Conference.

  • 8/17/2019 Presentation on LM 79 & 80

    39/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Projection method:

    › Curve-fit

    )exp()(   t  Bt     

    •   t 

    = operating

     time

     in hours

    •   (t) = averaged normalized luminous flux output 

    at time t

    •   B = projected initial constant derived by the least 

    squares curve‐fit•   α = decay rate constant derived by the least 

    squares curve‐fitIES‐TM‐21‐11

  • 8/17/2019 Presentation on LM 79 & 80

    40/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Projection method (cont’d):

    › Curve-fit

     

    )100ln( p

     B

     L p

    Lp = lumen maintenance life expressed in 

    hours where p is the percentage of  initial 

    lumen output that is maintained.

     

    )7.0

    ln(

    70

     B

     L  

    For example:

    •   When α>0, the exponential curve‐fit decays to zero, Lp>0 (valid calculation)

    •   When α

  • 8/17/2019 Presentation on LM 79 & 80

    41/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Temperature interpolation

    › Interpolate Lp (@Ts,i=70C) between Ts,1 (55C) and

    Ts,2 (85C)

    A = pre‐exponential factor;Ea = activation energy (in eV);

    Ts,i = in‐situ absolute temperature (in K);

    kB= Boltzmann’s constant (8.6173x10‐5 eV/K)

    )exp(,is B

    ai

    T k 

     E  A    

    (After Tuttle et al., 2011)Arrhenius equation to calculate in situ decay rate constant. 

    •   Tuttle, R. et al., 2011. TM‐21 Update: Method for Projecting Lumen Maintenance  of  LEDs. CORM 2011 Technical Conference.

    55 C

    85 

    C

    70 

    C??

  • 8/17/2019 Presentation on LM 79 & 80

    42/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES TM-21-11

    Sample size - Sample size - Sample size -

    Number of failures - Number of failures - Number of failures -

    DUT drive current used

    in the test (mA)-

    DUT drive current used

    in the test (mA)-

    DUT drive current used

    in the test (mA)-

    Test duration (hours) - Test duration (hours) - Test duration (hours) -

    Test duration used for

    projection (hour to hour)-

    Test duration used for

    projection (hour to hour)-

    Test duration used for

    projection (hour to hour)-

    Tested case

    temperature (⁰C)-

    Tested case

    temperature (⁰C)-

    Tested case

    temperature (⁰C)-

    α -   α -   α -

    B - B - B -

    Calculated L70(Dk)(hours)

     - Calculated L70(Dk)(hours)

     - Calculated L70(Dk)(hours)

     -

    Reported L70(Dk)

    (hours) -

    Reported L70(Dk)

    (hours) -

    Reported L70(Dk)

    (hours) -

    Table 1: Report at each LM-80 Test Condition

    Description of LED Light Source

    Tested (manufacturer, model,

    catalog number)

    Ts,1 (⁰C) -

    Ts,1 (K) -

    α1 -

    B1 -

    Ts,2

     (⁰C) -

    Ts,2 (K) -

    α2 -

    B2 -

    Ea/kb -

     A -B0 -

    Ts,i (⁰C) -

    Ts,i (K) -

    αi -

    Projected L70(Dk)

    (hours)-

    Reported L70(Dk)

    (hours)-

    (projection based on in-situ  temperature entered)

    55 

    C

    85 

    C70 C??

    55 C

    55 C

    85 

    C

    85 

    C

    70 

    C

           (      A       f      t     e     r      T     u      t      t       l     e     e

          t     a       l . ,

          2      0      1      1       )

    www.energystar.gov/TM‐21calculator

    www.energystar.gov/

    TM‐21calculator

  • 8/17/2019 Presentation on LM 79 & 80

    43/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES LM-82-12 Approved method: Characterization of LEDLight Engines and LED Lamps for Electrical and

    Photometric Properties as a Function ofTemperature

    LED Light Engines LED Lamps

  • 8/17/2019 Presentation on LM 79 & 80

    44/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Decorative luminaires

    Commonly used in residential andhospitality applications

    Can provide a coordinated lookwhile serving different functions› Sconces, chandeliers, pendants, table

    and floor lamps

    ›  Available in a variety of shapes, stylesand finishes

    Combine “fashion with function,”….according to the AmericanLighting Association

    www.americanlightingassoc.com/about_news_detail.php?id=2

  • 8/17/2019 Presentation on LM 79 & 80

    45/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    LED industry trend

    Manufacturers often design families of decorative luminaires:

    › Sconces, pendants, table and floor lamps

    › These luminaires can provide a coordinated look while serving

    different functions

     A large number of decorative luminaires can use a commonlight source (LED light engine).

    Photometric testing of complete fixtures is not a feasibleconcept for such luminaires.

  • 8/17/2019 Presentation on LM 79 & 80

    46/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Why LM-82-12?

    Luminairephotometry is lessmeaningful forend-users ofdecorativeluminaires

    • Alex Baker and Taylor Jantz‐Sell, 2011. ENERGY STAR Luminaires Specification. ENERGY STAR Luminaires Conference Call , March 9, 2011. 

    • ASSIST, Recommendations for Testing and Evaluating White LED Light Engines and Integrated LED Lamps Used in Decorative Lighting Luminaires, Volume 4, Issue 1, revised April, 2009. 

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

         y

    CIE Chromaticity Diagram 1931

    Black Body Locus

    White Shade

    Blue Shade

    Amber Shade

    Decorative Glass Shade

    WAC Lighting luminaires tested by LRC

    Glass shade Vin (V) Pin (W)   Ф (lm)Efficacy

    (lm/W)x y CCT (K) CRI

    White 120.1 4.48 165.0 36.8 0.3929 0.3876 3761 73.6Blue 120.1 4.48 129.9 29.0 0.3468 0.3698 4998 72.0

    Amber  120.0 4.48 82.6 18.4 0.4507 0.4129 2851 69.0

    Highly decorative 120.1 4.48 34.9 7.8 0.4499 0.3942 2711 78.1

    IES LM 82 12

  • 8/17/2019 Presentation on LM 79 & 80

    47/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY

    © 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES LM-82-12

     ASSIST recommends formed the basis for LM-82-12.

    › LED performance (luminous flux, life) largely depends on theLED junction temperature, which varies depending on how theLED is integrated into the luminaire and the installationenvironment.

    LM-82-12 requires testing the performance of the LEDlight engine and the integrated lamp as a function oftemperature, so the performance at in situ temperaturecan be predicted:

    › Power (W)› Luminous flux (lm)

    › Color

    LM 82 12 LM 79 08

  • 8/17/2019 Presentation on LM 79 & 80

    48/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    LM-82-12 vs. LM-79-08

    LM-82-12 LM-79-08

    Scope • LED light engines• Integrated LED lamps

    • LED luminaires• Integrated LED lamps

    ENERGY STARLuminaires v1.1

    For non-directional luminaires LED light engines GU24 integrated LED lamps

    For directional luminaires

    Testing ambienttemperature

     At different temperatures(*UUT Tb: Tb±2°C)

    25°C±1°C

    *UUT stands for unit under test; Tb stands for UUT manufacturer‐specified temperature monitoring point temperature

    IES LM 82 12

  • 8/17/2019 Presentation on LM 79 & 80

    49/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES LM-82-12

    Thermal environment

    › Mounting the UUT to a thermoelectric cooler (TEC)

    › Mounting the UUT in a temperature chamber that onlycontrols the local environment around the UUT

    Temperature measurement› Tb: UUT

    › Td: driver

    www.cree.comhttp://m.grainger.com/mobile/details/;jsessionid=A011BDF9B

    AE709D7BBC43E004EB6A7FF.prgav06?R=4HGL3

    Tb: UUT  Td: driver

    Th l t t h b LED li ht i

  • 8/17/2019 Presentation on LM 79 & 80

    50/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Thermal test chamber: LED light engines

    Temperature

    sensor (Td)Driver 

    LED/LED array

    Heat Sink

    Heater  Insulation

    Temperature

    sensor (Ts)

    Test chamber – painted white on the outside

    ASSIST, Recommendations for Testing and Evaluating White LED Light Engines and Integrated LED Lamps Used in 

    Decorative Lighting Luminaires, Volume 4, Issue 1, revised April, 2009. 

    Th l t t h b LED li ht i

  • 8/17/2019 Presentation on LM 79 & 80

    51/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Example inside integrating sphere

    Thermal test chamber: LED light engines

    Proposed method

  • 8/17/2019 Presentation on LM 79 & 80

    52/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Proposed method

    First, the LED light engine performance is measured as afunction of temperature.

    › LED light engine is placed inside a thermal test chamber.› The heater is turned on until Ts reaches 40% (and 60% and 80% )

    of Tj max (specified by the LED manufacturer)

    › Photometric and electric quantities and life are measured at these

    three temperatures.

    Ts (°C)

    Flux (lm)

    Ts (°C)

    CIE x,y

    Ts (°C)

    Life (L70) (hrs)

    Proposed method

  • 8/17/2019 Presentation on LM 79 & 80

    53/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Ts (°C)

    Flux (lm)

    Ts (°C)

    CIE x,y

    Ts (°C)

    Life (L70) (hrs)

    Proposed method

    Estimating light engine performance in aluminaire

    › Temperature Ts is measured while the light engine isoperating in a luminaire in its operating environment.

    › The performance parameter is estimated from theplots generated during the engine’s characterization.

    Thermocouple(Ts)

    IES LM 82 12

  • 8/17/2019 Presentation on LM 79 & 80

    54/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES LM-82-12

    Troom   Troom+25°C   Troom+ΔT

         Φ

        (    l   m    )

    Tin‐situ

    Troom   Troom+25°C   Troom+ΔT

        P    (    W    )

    Tin‐situ

    Troom   Troom+25°C   Troom+ΔT

       x   Tin‐situ

    Troom   Troom+25°C   Troom+ΔT

       y   Tin‐situ

    Troom   Troom+25°C   Troom+ΔT

        C    C    T    (    K    )

    Tin‐situ

     “Simple curve fit” • Linear• Exponential

    • Etc.

    IES LM-82-12:Test report

  • 8/17/2019 Presentation on LM 79 & 80

    55/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    IES LM-82-12:Test report

    Test date, facility, equipment, and operator

    UUT description (manufacturer, description, catalog number)

    If applicable, UUT driver description (manufacturer, description, catalog number, input and output parameters)

    Description of test method including testing configuration.

    Internal procedure reference

    Initial Temperature First ElevatedTemperature(Initial+25°C)

    Second ElevatedTemperature (per TestRequesters)

    Measured temperature of Tb (or Td)

    Input power (W)

    Input voltage (V)

    Input current (A)

    Luminous flux (lm)

    Luminous efficacy (lm/W)

    CIE chromaticity (x,y or u’,v’)(optional)

    Correlated color temperature (K)(as optional)

    Uncertainties

    Troom   Troom+25°C   Troom+ΔT

    Summary

  • 8/17/2019 Presentation on LM 79 & 80

    56/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Summary

    Heat management is critical to LED performance› Short and long term: color shift, lumen depreciation

    Performance of bare LEDs is not predictive of thesystem’s performance

    Testing luminaires under realistic conditions (as a

    function of environment temperature) providesmore useful information to end users and designers

    SSL testing standards aim to measure LEDs andLED systems under repeatable conditions, but stillmay not provide all the information needed in thefield.

    Acknowledgements

  • 8/17/2019 Presentation on LM 79 & 80

    57/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

     Acknowledgements

    NYSERDA for sponsoring this event

     Acuity Brands Lighting forhosting the event

    › Jessica Lloyd

    LRC faculty, staff, and students

     ASSIST program sponsors

  • 8/17/2019 Presentation on LM 79 & 80

    58/58

    Capturing the Lighting Edge – August 13, 2012 New York, NY© 2012 Rensselaer Polytechnic Institute. All rights reserved.

    Thank you