Primary Energy Analysis

Embed Size (px)

Citation preview

  • 8/12/2019 Primary Energy Analysis

    1/40

    Primary Energy Analysis

    L-2 & L-3 EN 402 8th January 2007

  • 8/12/2019 Primary Energy Analysis

    2/40

    ENERGY FLOW DIAGRAM

    PRIMARY ENERGY

    ENERGY CONVERSION FACILITY

    SECONDARY ENERGY

    TRANSMISSION & DISTRN. SYSTEM

    FINAL ENERGY

    ENERGY UTILISATION EQUIPMENT & SYSTEMS

    USEFUL ENERGY

    END USE ACTIVITIES

    (ENERGY SERVICES)

    COAL, OIL, SOLAR, GAS

    POWER PLANT,REFINERIES

    REFINED OIL,ELECTRICITY

    RAILWAYS, TRUCKS,

    PIPELINESWHAT CONSUMERS BUYDELIVERED ENERGY

    AUTOMOBILE, LAMP,

    MOTOR, STOVE

    MOTIVE POWERRADIANT ENERGY

    DISTANCE TRAVELLED,ILLUMINATION,COOKEDFOOD etc..

  • 8/12/2019 Primary Energy Analysis

    3/40

    Energy End Uses

    Boiler, GeyserFluid heatedHeating

    Fans,AC, refrigSpace CooledCooling

    motorsShaft workMotive Power

    Cycle, car, train,

    motorcycle, bus

    Distance

    travelled

    Transport

    Incandescent

    Fluorescent, CFL

    IlluminationLighting

    Chullah, stoveFood CookedCooking

    DeviceEnergy ServiceEnd Use

  • 8/12/2019 Primary Energy Analysis

    4/40Source : Energy After Rio: UNDP Publication.

  • 8/12/2019 Primary Energy Analysis

    5/40

    Load curve of a typical day MSEB(8/11/2000 source: WREB annual report-2001)

    10260 MW9892 MW

    6000

    7000

    8000

    9000

    10000

    11000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    Time hours

    Demand

    ,MW

    morning

    peak

    Eveningpeak

  • 8/12/2019 Primary Energy Analysis

    6/40

    Total Load Curve of IIT

    2 5 10 k VA

    19 0 0 k VA

    0

    500

    1000

    15002000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 1920 21222324

    Time h o u rs

    Working da y

    Non working da yAverage power factor of the day

    Working day-0.96

    Non-working day-0.97

  • 8/12/2019 Primary Energy Analysis

    7/40

    Load curve of Mechanical Building

    54 kW

    0

    10

    20

    30

    40

    50

    60

    Time (hr)

    Load(kW) average 26 kW

    2 4 6 8 10 12 14 16 18 20 22 24

  • 8/12/2019 Primary Energy Analysis

    8/40

    Primary Energy Analysis

    Compare options based on primaryenergy input

  • 8/12/2019 Primary Energy Analysis

    9/40

    Primary Energy Analysis

    Compare options based on primary energyinput

    Example : Agricultural Water Pumping

    3 GJ of end-use /year (typical value)

    Options A) Electric motor-pump

    B) Diesel engine-pumpC) Biomass Gasifier-Dual fuelengine-pump

  • 8/12/2019 Primary Energy Analysis

    10/40

    A)ELECTRIC MOTORCOAL

    COAL MINING/TRANSPORT

    TRANSMISSION & DISTRN. SYSTEM

    Electricity to Farmer

    MOTOR

    Pump output

    POWER PLANT

    PUMP

    cm

    pp

    T&D

    m

    p

  • 8/12/2019 Primary Energy Analysis

    11/40

    A)ELECTRIC MOTORCOAL

    COAL MINING/TRANSPORT

    TRANSMISSION & DISTRN. SYSTEM

    Electricity to Farmer

    MOTOR

    Pump output

    POWER PLANT

    PUMP

    cm 90 %

    pp 30 %

    T&D 78 %

    m 88 %

    p 75 %

  • 8/12/2019 Primary Energy Analysis

    12/40

    B) DIESEL ENGINE

    CRUDE OIL

    REFINERY

    DIESEL TRANSPORT

    Diesel to Farmer

    DIESEL ENGINE

    Pump output

    PUMP

    R

    DT

    D

    p

  • 8/12/2019 Primary Energy Analysis

    13/40

    B) DIESEL ENGINE

    CRUDE OIL

    REFINERY

    DIESEL TRANSPORT

    Diesel to Farmer

    DIESEL ENGINE

    Pump output

    PUMP

    R 92 %

    DT 95 %

    D 40 %

    p 75 %

  • 8/12/2019 Primary Energy Analysis

    14/40

    Comparison of Options

    Motor-Pump = cmppT&Dm p

    =0.9*0.3*0.78*0.88*0.75

    =0.139 (13.9%)

    Electricity bought=

    3*106/(3600*0.75*0.88)

    =1263 kWh

    Diesel Engine-Pump

    = RDTDTD p

    =0.92*0.95*0.40*0.75

    =0.262 (26.2%)

    Diesel Input =

    3/(0.75*0.4) = 10 GJ =10*106/(9700*4.18*0.85)

    =290 litres

  • 8/12/2019 Primary Energy Analysis

    15/40

    Comparison of Options

    Motor-Pump Energy cost Rs 1263

    (@Rs 1/kWh)

    Capital Cost Rs 12000

    Power Cuts

    1300 kg of coal

    Coal relatively abundant

    Diesel Engine-Pump

    Energy cost Rs 4643

    (@Rs 16/litre)

    Capital Cost Rs 24000

    Uninterrupted

    300 kg of crude oil

    Refinery Mix

  • 8/12/2019 Primary Energy Analysis

    16/40

    Net Energy Analysis

    Source : www.oilanalytics.org/neteng/neteng.htm

  • 8/12/2019 Primary Energy Analysis

    17/40

    Gasifier Option

    75% Diesel replacement 70% gasifier efficiency

    75 litres diesel, 754 kg biomass Biomass price Rs 1/kg Rs 1915

    Capital Cost Rs 48000 Operation & Maintenance

  • 8/12/2019 Primary Energy Analysis

    18/40

    Energy Inputs and Outputs-Power Plant

    Source : www.oilanalytics.org/neteng/neteng.htm

  • 8/12/2019 Primary Energy Analysis

    19/40

    Levels of Net Energy analysis

    Source : www.oilanalytics.org/neteng/neteng.htm

  • 8/12/2019 Primary Energy Analysis

    20/40

    Primary energy analysis of RME

    Rapeseed Methyl Ester (RME)-Transport

    Plant Production(incl fertilisers) 9000 MJ/ha

    Harvesting, transport & oil extraction 5600 MJ/ha

    60% to rapeseed oil (meal 40%) 8800 MJ/ha Refining & Esterification 7900 MJ/ha

    96% to RME (glycerine 4%) 16000 MJ/ha

    Final transport 200 MJ/ha Total annual 16,200 MJ/ha (Kaltschmitt et al,1997)

    Diesel 4600 MJ (pre-chain) + 42500 (fuel) 47,100 MJ

  • 8/12/2019 Primary Energy Analysis

    21/40

    Comparison of RME & Diesel

    Parameter RME DieselPE (GJ) 16.2 47.1

    CO2 equiv kg 1594 3752

    CO2 kg 1037 3523

    SO2 equiv g 12487 11813

    SO2 g 1670 2857Nox g 14274 12691

    CO g 11689 11160Annual values/ha from Kaltschmitt et al,1997 - Germany

  • 8/12/2019 Primary Energy Analysis

    22/40

    Paper vs Polystyrene Cups

    Hocking, Martin B. "Reusable and Disposable Cups: An Energy-Based Evaluation."Environmental Management 18(6) pp. 889-899

    www.ilea.org/lcas/hocking1994.html

  • 8/12/2019 Primary Energy Analysis

    23/40

    Re-usable vs Disposable Cups

    www.ilea.org/lcas/hocking1994.html

  • 8/12/2019 Primary Energy Analysis

    24/40

    Hydrogen pathways

    Photo chemical

    Solar Energy Nuclear Energy Bio-Energy

    Electricity

    Wind

    Thermal

    ElectrolysisThermo chemical

    Fossil-Fuel

    Photo biological

    Hydrogen

    Gasification Fermentation

    Cracking + Shift Reaction

    Fuel Cell

  • 8/12/2019 Primary Energy Analysis

    25/40

    Applications A-Distributed Power Generation Rating 100

    kW

    B- Vehicle 4 wheeler passenger car (Maruti

    800) Base Case A1- Diesel Engine Generator

    (fuel diesel), A2 Gas Engine Generator (fuel

    natural gas) Base Case B1 - IC Engine - petrol , B2- CNG

    engine

  • 8/12/2019 Primary Energy Analysis

    26/40

    A1)DIESEL ENGINE

    ELECTRICITY

    OIL MINING/REFINING

    DIESEL ENGINE

    GENERATOR

    TRANSPORT OF DIESEL

    OM 95 %

    TD 97%

    DE 40 %

    CRUDE OIL

    GEN 95 %

  • 8/12/2019 Primary Energy Analysis

    27/40

    A2) GAS ENGINE

    ELECTRICITY

    EXTRACTION

    GAS ENGINE

    GENERATOR

    NATURAL GAS TRANSPORT

    OM 95 %

    TD 97%

    DE 42 %

    NATURAL GAS

    GEN 95 %

  • 8/12/2019 Primary Energy Analysis

    28/40

    FUEL CELL (NG)

    NATURAL GAS

    EXTRACTION

    NATURAL GAS TRANSPORT

    HYDROGEN

    STEAM REFORMING

    ELECTRICITY

    PEM FUEL CELL

    R 95 %

    GT 97 %

    FC 40 %(50%)

    POWER CONDITIONING

    REF 85 %

    PC 95 %

  • 8/12/2019 Primary Energy Analysis

    29/40

    Distributed Generation

    A1 Overall efficiency 35%0.246 kg of crude /kWh of electricity

    A2 Overall efficiency 37%

    0.25 kg of Natural gas/kWh ofelectricity

    Fuel cell Overall efficiency 30% 0.307 kgof Natural gas/kWh of electricity

    (37% like A2 FC eff 50%)

  • 8/12/2019 Primary Energy Analysis

    30/40

    Carbon Emissions

    A1 Crude oil (86% Carbon)

    0.211 kg Carbon/kWh

    A2- Natural gas (75% Carbon)

    0.187 kg Carbon/kWh

    Fuel cell ( 18 kg of Carbon / 1 GJ of Hydrogen

    energy SMR)FC eff 0.4 - 0.171 kg Carbon/kWh

    0.5- 0.136 kg Carbon/kWh

  • 8/12/2019 Primary Energy Analysis

    31/40

    Vehicle ApplicationWeight (excl engine

    +tank) 550 kg

    Passengers (max)350 kg

    Maruti

    CR 0.01

    CD 0.42m2 front area

    100 km travel /day

    Tank Engine

    Petrol 40 kg 60 kg

    CNG 140 kg 60 kg

    FC 130 kg 15 M+15 FC

    kg

    B1) PETROL ENGINE

  • 8/12/2019 Primary Energy Analysis

    32/40

    B1) PETROL ENGINE

    SHAFT WORK

    OIL MINING/REFINING

    IC ENGINE

    TRANSMISSION

    TRANSPORT OF PETROL

    OM 95 %

    TP 97%

    PE 30 %

    CRUDE OIL

    TRANS 70 %

    B2) GAS ENGINE

  • 8/12/2019 Primary Energy Analysis

    33/40

    B2) GAS ENGINE

    SHAFT WORK

    EXTRACTION

    COMPRESSION

    CNG ENGINE

    NATURAL GAS TRANSPORT

    OM 95 %

    TD 97%

    C 90%

    NATURAL GAS

    GE 40%

    TRANSMISSION

    TR70%

    FUEL CELL (NG)NATURAL GAS

  • 8/12/2019 Primary Energy Analysis

    34/40

    FUEL CELL (NG) E 95 %

    GT 97 %

    FC 40 %

    REF 85 %

    PC 95 %SHAFT WORK

    NATURAL GAS

    EXTRACTION

    NATURAL GAS TRANSPORT

    HYDROGEN

    STEAM REFORMING

    ELECTRICITY

    PEM FUEL CELL

    POWER CONDITIONING

    MOTOR

    TRANSMISSION

    m 90%

    TR 91%

  • 8/12/2019 Primary Energy Analysis

    35/40

    Vehicle Comparison

    B1 Overall efficiency 19.4%3.31 kg of crude /100 km of travel

    B2 Overall efficiency 23.2%3.0 kg of Natural gas/ 100 km oftravel

    Fuel cell Overall efficiency 24.3%

    2.82 kg of Natural gas/ 100 km of travel

  • 8/12/2019 Primary Energy Analysis

    36/40

    Vehicle Carbon Emissions

    B1 Crude oil (86% Carbon)2.84 kg Carbon/100 km of travel

    B2- Natural gas (75% Carbon)2.25 kg Carbon/ 100 km of travel

    Fuel cell ( 18 kg of Carbon / 1 GJ ofHydrogen energy SMR)

    FC 2.11 kg Carbon/100 km of travel

  • 8/12/2019 Primary Energy Analysis

    37/40

  • 8/12/2019 Primary Energy Analysis

    38/40

    Decision Types / Perspectives

    System selectionYes/NoBest possible amongst

    options System / Component

    Design

    Decide OperatingStrategy

    Decide Policies

    End Users Manufacturers

    Utility

    Society /Government

    Others

  • 8/12/2019 Primary Energy Analysis

    39/40

    Criteria Cost - Initial Cost, Operating Cost,

    Life Cycle Cost

    Reliability-Availability, Unmet Energy Emissions - Local, Global

    Sustainability

    Equity

  • 8/12/2019 Primary Energy Analysis

    40/40

    References www.oilanalytics.org/neteng/neteng.htm

    P. L. Spath, M. K. Mann, Life Cycle Assessment of Renewable HydrogenProduction via Wind/Electrolyses, NREL / MP-560-35404, February2004, Colorado, USDOE.

    Hocking, Martin B. "Reusable and Disposable Cups: An Energy-Based Evaluation." Environmental Management 18(6) pp. 889-899

    Hocking, M.B, Paper vs Polystyrene: A complex choice, Science, 251:504-505, 1991

    A. Sarkar, R. Banerjee, Net Energy Analysis of hydrogen storageoptions, International Journal of Hydrogen Energy 30 (2005), pp 867-

    877. K. T. Chan, Y. S. Wong, C. C. Chan, An overview of energy sources for

    electric vehicles, Energy Conversion & Management 40 (1999), pp1021-1039.