29
Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University [email protected]

Principles of Communications Lecture 3: Analog Modulation ...twins.ee.nctu.edu.tw/courses/commu12/lecture/COMMI_lec3.pdf · Commun.-Lec3 [email protected] 3 Types of Modulation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Principles of CommunicationsLecture 3: Analog Modulation Techniques (1)

    Chih-Wei Liu 劉志尉National Chiao Tung [email protected]

  • Commun.-Lec3 [email protected] 2

    Outlines

    Linear Modulation

    Angle Modulation

    Interference

    Feedback Demodulators

    Analog Pulse Modulation

    Delta Modulation and PCM

    Multiplexing

  • Commun.-Lec3 [email protected] 3

    Types of Modulation

    Analog modulation and Digital modulationA process to translate the information data to a new spectral location depending on the intended frequency for transmission.

    Modulation, historically, is done on the RF transmission system. Thus, the conversion from message signals to RF signals is called modulation.

    Analog modulation: continuous-wave modulation and pulse modulation (sampled data)

    Continuous-wave modulation: linear modulation (AM) and angle modulation (FM)

    m(t) xc(t)

    modulated carrier

  • Commun.-Lec3 [email protected] 4

    Linear Modulation

    General form:

    Ac(t): 1-to-1 correspondence to the message m(t)

    cos(ωct): carrier (ωct is fixed)

    DSB (Double-Sideband) Suppressed Carrier (SC)

    ttAtx ccc ωcos)()( =

    )(21)(

    21)(X

    cos)()(

    C CCCC

    cCc

    ffMAffMAf

    ttmAtx

    −++=⇔

    = ω

  • Commun.-Lec3 [email protected] 5

    DSB-SC

    Upper sideband (USB)

    Lower sideband (LSB)

  • Commun.-Lec3 [email protected] 6

    DSB-SC

    Coherent (Synchronous) Demodulator (Detector): The receiver knows exactly the phase and frequency of the carrier in the received signal.

    ttmAtmAtttmAttxtd

    cCC

    ccCcc

    ωωωω

    2cos)()( cos2]cos)([cos2)()(

    +=⋅=⋅=

    Message m(t) is recovered!

    desired part High freq. noise

  • Commun.-Lec3 [email protected] 7

    What if the receiver reference is not coherent? -- A phase error occurs (θ(t), unknown, random, time-varying, …)

    2cos(ωct+θ(t))

    xc(t) d(t)

    ))(2cos()()(cos)( ))(cos(cos)(2)(

    tttmAttmAttttmAtd

    cCC

    ccC

    θωθθωω

    ++=+⋅=

    1)(cos1 ),(cos)()( ≤≤−= tttmtyD θθIt is time-varying !!

  • Commun.-Lec3 [email protected] 8

    Carrier Recovery

    Carrier recovery: Regenerate the carrier (fc and θ(t)) at the receiver site

    Example: Square circuit

    ( )2 NarrowbandBPF at 2fc 2÷fxr(t)

    cos2ωct cosωct

    ttmAtmAttmAtx cCCcCr ωω cos2)(21)(

    21cos)()( 22222222 +==

    Carrier (2xf)!DC

  • Commun.-Lec3 [email protected] 9

    Carrier Recover (2)

    How to extract the carrier? It becomes clearer when we examine it in the frequency domain.FT of xr2(t):

    0 2fc-2fc

    FT(m2(t))

    Narrow BPF

    f

  • Commun.-Lec3 [email protected] 10

    Remarks

    The spectrum of DSB signal does not contain a discrete spectral component at the carrier frequency unless m(t) has a DC component.DSB systems with no carrier frequency component present are often referred to as suppressed carrier (SC) systems.If the carrier frequency is transmitted along with DSB signal, the demodulation process can be rather simplified. Alternatively, let’s see the following amplitude modulation (AM) scheme.

  • Commun.-Lec3 [email protected] 11

    Amplitude Modulation

    A DC bias A is added to m(t) prior to the modulation process

    The result is that a carrier component is present in the transmitted signal

    DefinitionttamA

    tAtmAtx

    cnc

    ccc

    ωω

    cos)](1[ cos)]([)(

    +=

    ′+=

  • Commun.-Lec3 [email protected] 12

    Amplitude Modulation (AM): DSB with carrier

    Normalized message 1+mn(t)>=0

    AM

    mn(t): the normalized message

    A

    tma t

    )(min= a: the modulation index (had better be less than 1)

    ttamAtx cnCc ωcos)](1[)( +=

    ,)(min

    )()(tm

    tmtmt

    n =m(t): the original message

    A: the DC bias

  • Commun.-Lec3 [email protected] 13

    Envelope Detection

    The modulation index is defined such that if a=1, the minimum value of Ac[1+amn(t)] is zero

    a 0 for all tIn AM, all the information is just the envelop.The envelop detection is a simple and straightforward technique

  • Commun.-Lec3 [email protected] 14

    Over-modulation: modulation index a > 1DC bias: the shifted level of the zero-value message

    AM (2)

    mn(t)m(t)

    mmin

    mn(t)+1/am(t)+A

    -1

    A

    mmax

    1/a

    x 1/mmin→

    ↓ dc bias ↓ dc bias

    x 1/mmin→

  • Commun.-Lec3 [email protected] 15

    -fc fc0 0

    AM

  • Commun.-Lec3 [email protected] 16

  • Commun.-Lec3 [email protected] 17

    AM Demodulation

    Coherent detection: precise but requires carrier recovery circuit.

    Incoherent detection, envelope detection: simple receiver (LPF) but requires sufficient carrier power (a < 1) and fc >> W. (In theory, fc>W is sufficient, but a “good”LPF is needed.)

    Impulse response of RC circuit:

    1( ) ( )tRCh t e u t

    RC−=

  • Commun.-Lec3 [email protected] 18

    Remarks

    The time constant RC of the envelop detector is an important design parameter.The appropriate RC time constant is related to the carrier frequency fc and to the bandwidth W of the original signal m(t)

    1/fc

  • Commun.-Lec3 [email protected] 19

  • Commun.-Lec3 [email protected] 20

    Power Efficiency of AM

    Suppose that m(t) has zero mean, then the total power contained in the AM modulator output is

    The power efficiency : the power ratio of the input information to the transmitted signal

    ])([21

    ])()(2[21

    2cos)()]([21)()]([

    21

    cos)()]([)(

    222

    222

    2222

    2222

    tmAA

    tmtmAAA

    tAtmAAtmA

    tAtmAtx

    C

    C

    cCC

    cCc

    +′=

    ++′=

    ′++′+=

    ′+=

    ω

    ω

    %100)(1

    )(%100

    )(

    )(Efficiency

    22

    22

    22

    2

    ×+

    =×+

    ≡≡tma

    tma

    tmA

    tmE

    n

    n

    〈⋅〉 denotes the time average value

  • Commun.-Lec3 [email protected] 21

    Power Efficiency Example

    If the signal has symmetrical value, i.e. |minm(t)|=|maxm(t)|,then |mn(t)|≤1 and hence 〈mn2(t)〉≤1.

    If a≤1, the maximum efficiency is 50%, e.g. the square wave-type

    For a sine wave, 〈mn2(t)〉=1/2, for a=1, the efficiency is 33.3%If we allow a>1,

    Efficiency can exceed 50%, (a→∞, the efficiency=100%)

    But, the envelope detector is precluded.

    %)100()(1

    )(%)100(

    )(

    )(22

    22

    22

    2

    tma

    tma

    tmA

    tmEfficiencyE

    n

    n

    +=

    +≡≡

    ,)(min

    )()(tm

    tmtmt

    n =

  • Commun.-Lec3 [email protected] 22

    Remarks

    The main advantage of AM:A coherent reference is not necessary for demodulation as long as a≤1

    The disadvantage of AM:The power efficiency The DC value of the message signal m(t) cannot be accurately recovered. (mixed with carrier)

  • Commun.-Lec3 [email protected] 23

    Single Sideband (SSB) Modulation

    Why SSB? In DSB, either the USB and the LSB have equal amplitude and odd phase symmetry about the carrier frequency

    Send only “half” signal (USB & LSB symmetric);Good power efficiency; Good bandwidth utilizationBasis of more advanced modulations

    Methods to generate SSB signalsMethod 1: Sideband (BPF) filtering Easy to understand, but difficult to implement. Method 2: Phase-shift modulation

  • Commun.-Lec3 [email protected] 24

    Sideband Filtering

    Sideband filtering

    An ideal passband filter is necessaryThe (very) low frequency component will be encapulated

  • Commun.-Lec3 [email protected] 25

    SSB Modulation

  • Commun.-Lec3 [email protected] 26

    DSB signal: ( ) ( ) ( )2 2

    1LPF: ( ) [sgn( ) sgn( )]2

    ( ) ( ) ( )1 [ ( )sgn( ) ( )sgn( )]41 [ ( )sgn( ) ( )sgn( )]4

    C CDSB c c

    L c c

    c DSB L

    C c c c c

    C c c c c

    A AX f M f f M f f

    H f f f f f

    X f X f H f

    A M f f f f M f f f f

    A M f f f f M f f f f

    = + + −

    = + − −

    = ⋅

    = + + + − +

    − + − + − −

    [ ( ) ( )] part-A4

    [ ( )sgn( ) ( )sgn( )] part-B4

    Cc c

    Cc c c c

    A M f f M f f

    A M f f f f M f f f f

    = − + +

    + + + − − −

    SSB Signal Generation

  • Commun.-Lec3 [email protected] 27

    2 21

    2 2

    ˆ ˆ{part-B} [ ( ) ( ) ]4

    1ˆ ˆ ( )[ ( )] ( )sin2 2 2

    c c

    c c

    j f t j f tC

    j f t j f tC Cc

    A jm t e jm t e

    A Am t j e e m t t

    π π

    π π ω

    −−

    ℑ = −

    = − =

    SSB Signal Generation (2)

    1

    Part-A (FT of) DSB signal: ( )cos2

    ˆPart-B: Let ( ) { sgn( ) ( )}

    Cc

    A m t t

    m t j f M f

    ω

    ≡ ℑ − ⋅

    -jsgn(f)( )m t ˆ ( )m t

    ˆThus, ( ) sgn( ) ( )M f j f M f= − ⋅2ˆ ˆ( ) ( ) cj f tcM f f m t eπ− ↔

    Define Hilbert Transform:

  • Commun.-Lec3 [email protected] 28

    Phase-shift SSB Modulator

    ˆLower-Side Band: ( ) ( )cos ( )sin2 2C C

    c c cA Ax t m t t m t tω ω= +

    ttmAttmAtx cCcCc ωω sin)(ˆ2cos)(

    2)( +=

    ttmAttmAtx cCcCc ωω sin)(ˆ2cos)(

    2)( −=

  • Commun.-Lec3 [email protected] 29

    Phase-shift SSB Modulator (2)

    ˆUpper-Side Band: ( ) ( )cos ( )sin2 2C C

    c c cA Ax t m t t m t tω ω= −