41
Probing the Reheating with Probing the Reheating with Astrophysical Observations Astrophysical Observations Jérôme Jérôme Martin Martin Institut d’Astrophysique de Paris (IAP) Institut d’Astrophysique de Paris (IAP) 1 collaboration with K. Jedamzik & M. Lemoine, arXiv:1002.3039, arXiv:1002.32 and C. Ringeval, arXiv:1004.5525]

Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

Embed Size (px)

Citation preview

Page 1: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

Probing the Reheating with Probing the Reheating with Astrophysical Observations Astrophysical Observations

Jérôme Jérôme MartinMartin

Institut d’Astrophysique de Paris (IAP)Institut d’Astrophysique de Paris (IAP)

1

[In collaboration with K. Jedamzik & M. Lemoine, arXiv:1002.3039, arXiv:1002.3278 and C. Ringeval, arXiv:1004.5525]

Page 2: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

2

Outline

Introduction

A brief and naive description of reheating

Constraining the reheating with the CMB observations

Preheating: can it affect the behaviour of cosmological perturbations?

Production of gravitational waves during preheating

Conclusions

Page 3: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

321/04/23

Inflation is a phase of accelerated expansion taking place in the very early Universe. The scale factor is such that

This assumption allows us to solve several problems of the standard hot Big Bang model:

•Horizon problem

•Flatness problem

•Monopoles problem …

Usually +3p>0 (eg p=0) and the expansion is decelerated. Inflation requires negative pressure

Hot Big Bang problems

Page 4: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

4

Field theory is the correct description at high energies.

A natural realization is a scalar field slowly rolling down its flat potential

Inflation ends by violation of the slow-roll conditions or by instability

After inflation, the field oscillates at the bottom of its potential: this is the reheating

Inflation in brief

Inflation in a nutshell

Large field

Small field

Hybrid inflation

Page 5: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

5

End of Inflation (I)

Slow-roll phase

Oscillatory phase

p=2

p=4

p=2 p=4

Violation of Slow-roll

Page 6: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

6

End of Inflation (II)

Oscillatory phase

p=2 p=4

The field oscillates much faster than the Universe expands

Equation of state

For p=2

Page 7: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

7

End of Inflation (III)

The previous model cannot describe particle creation

Γ is the inflaton decay rate

Page 8: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

8

End of Inflation (IV)

Page 9: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

9

Reheating era

Oscillatory phase

Radiation-dominated era Matter –dominated era

p=2 p=4

Page 10: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

10

Reheating era (II)

So far we do not know so much on the reheating temperature, ie (can be (improved – the upper bound- if gravitinos production is taken into account)

end<reh<BBN

The previous description is a naive description of the infaton/rest of the world coupling. It can be much more complicated.

Theory of preheating, thermalization etc …

How does the reheating affect the inflationary predictions?

It modifies the relation between the physical scales now and the number of e-folds at which perturbations left the Hubble radius

Can the oscillations of the inflaton affect the behaviour of the perturbations?

Consequences of reheating

Page 11: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

11

Probing the reheating with CMB observations

Page 12: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

12

Inflationary Observables

Page 13: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

13

Parameterizing the Reheating (I)

Oscillatory phase

p=2 p=4

One needs two numbers, the mean equation of state and the energy density at reheating.

In fact, for the calculations of the perturbation power spectrum, one number is enough, the reheating parameter

Describing the reheating

Page 14: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

14

The reheating epoch can be described with a single parameter, the so-called reheating parameter; it appears naturally in the equation controlling the evolution of the perturbations

Parameterizing the Reheating (II)

Page 15: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

15

- Either one uses the constraint on the energy density at the end of reheating to constrain N*

If we are given a model, then the reheating epoch is constrained

- Or we consider Rrad as a new free parameter and we try to constrain it using Bayesian techniques

Parameterizing the Reheating (III)

Page 16: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

16

Constraining the reheating (I)

Large field inflation

Page 17: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

17

Large field inflation

Constraining the reheating (II)

Page 18: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

18

Small field inflation

Constraining the reheating (III)

Page 19: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

19

Small field inflation

Constraining the reheating (IV)

Page 20: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

20

Small field inflation

Constraining the reheating (V)

Page 21: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

21

Large field inflation

Constraining the reheating (VI)

Mean likelihoodsMarginalized posterior probability distributions

(flat prior) p2 [0.2,5]

Flat prior:

Page 22: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

22

Large field inflation

Constraining the reheating (VII)

(flat prior) p2 [1,5]

(flat prior) reh 2 [nuc,end]

Page 23: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

23

Small field inflation

Constraining the reheating (VIII)

(flat prior) p2 [2.4,10]

(flat prior) ln(/MPl) 2 [-1,2]

Page 24: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

24

Small field inflation

wreh=0_

wreh=-0.1_

wreh=-0.2_

wreh=-0.3_

Constraining the reheating (IX)

Page 25: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

25

Probing the reheating with Gravitational Waves Observations

Page 26: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

26

Cosmological Perturbations

Oscillatory phase

p=2 p=4

The cosmological perturbations are described by the quantity (curvature perturbation)

The Mukhanov variable obeys the equation of a parametric oscillator

The power spectrum is directly linked to CMB anisotropy

Page 27: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

27

CMB window 1st order sr

2nd order sr

Exact (numerical)

Inflationary Power Spectrum

Page 28: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

28

Are perturbations affected by (pre)heating?

Equation of motion during preheating

Mathieu Equation

with

Page 29: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

29

Are perturbations affected by (pre)heating?

stable

unstable

Mathieu Instablity Card

Page 30: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

30

Are perturbations affected by (pre)heating?

stable

unstable

Mathieu Instablity Card

Page 31: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

31

Resonance band

Page 32: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

32

Are perturbations affected by (pre)heating?

Solution: Floquet theory

Constant curvature perturbation

Early structure formation

μ=q/2 is the Floquet index

Page 33: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

33

Solution in the resonance band

Page 34: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

34

Haloes Formation

Page 35: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

35

no

Non-linearities become important

Virialization

Inflaton halo evaporation

Linear radius

Haloes Formation (II)

A halo of mass M collapses when

Page 36: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

36

GW Emission

At virialization, the halo emits GW with a frequency

Dynamical timescale at collapse ( is the density of the halo at collapse)

Page 37: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

37

GW Emission (II)

Energy density energy emitted during the collapse of perturbations corresponding to mass between M and M+dM

Number density of halos of massbetween M and M+dM

Luminosity

Page 38: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

38

Gravitational Waves Production (II)

Page 39: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

39

Gravitational Waves Production (III)

Page 40: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

40

Conclusions

Reheating can affect the inflationary predictions

The reheating temperature can be constrained with the CMB Observations; one obtains a lower bound.

Preheating can affect the perturbations on small scales, even in the single field slow-roll case

Production of gravitational waves; potentially observable

Production of black holes?

Many things remain to be studied

Page 41: Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,

41