24
Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

Embed Size (px)

Citation preview

Page 1: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

1

Prof. David R. JacksonDept. of ECE

Notes 10

ECE 5317-6351 Microwave Engineering

Fall 2011

Waveguides Part 7:Planar Transmission Lines

Page 2: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

2

Stripline

Common on circuit boards

Fabricated with two circuit boards

Homogenous dielectric (perfect TEM mode)

Field structure for TEM mode:

(also TE & TM Modes)

bW

0, ,

Electric FieldMagnetic Field

TEM mode

Page 3: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

3

Analysis of stripline is not simple TEM mode fields can be obtained from static analysis Closed stripline structure is analyzed in the Pozar book

0, , W b/2

b

a >> ba

Stripline (cont.)

Page 4: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

4

For lossless TEM mode:

0

1

1 1

p

p

p

L LCZ

C C

Lv

LC

C

v

v C

We can find Z0 if C is known

Inductance / unit length

Capacitance / unit length

Stripline (cont.)

Page 5: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

5

From static, conformal mapping solution (S. Cohn)

0

30 ( )

( ')

K kZ

K k

sech2

' tanh2

Wk

b

Wk

b

K elliptical integral

Exact solution:

Stripline (cont.)

Page 6: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

6

Curve fitting this exact solution:

00 ln(4)4 r

e

bZ

W b

Effective width

2

0 ; 0.35

0.35 ; 0.1 0.35

e

W

bW W

b b W W

b b

for

for

Z0 as W

Stripline (cont.)

00

1 / 2

2 4 4PPW

r

bb bZ

W W W

Note: The factor of 1/2 in front is from the parallel combination of two PPWs.

ln 40.441

Note :

Fringing term

Page 7: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

7

Inverting this solution to find W for given Z0:

0

0

0

; 120

0.85 0.6 ; 120

30 ln(4)

r

r

r

X ZW

bX Z

XZ

for

for

Stripline (cont.)

Page 8: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

8

Attenuation

Dielectric Loss:

0 0tan tan2 2 2

r r cd

c

k kkk

t b

W0, ,

Rs

Stripline (cont.)

c c cj j

(TEM formula)

Page 9: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

9

3 00

00

(2.7 10 ) ; 12030 ( )

0.16 ; 120

1 21 2 ln

( )

1 11 0.414 ln 4

2 20.7

2

s rr

c

sr

R ZA Z

b t

RB Z

Z b

W b t b tA

b t b t t

b t WB

W W tt

wher

for

for

e 2sR

Stripline (cont.)Conductor Loss:

Page 10: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

10

Inhomogeneous dielectric

No TEM mode

Cannot phase match across dielectric interface

Requires advanced analysis techniques Exact fields are hybrid modes (Ez and Hz)

For d /0 << 1 dominate mode is quasi-TEM

, , W d

Microstrip

Page 11: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

11

Microstrip (cont.)

Page 12: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

12

For the equivalent TEM problem:

0

p effr

effr

cv

k

r0

effr

Equivalent TEM problem

Actual problem

Microstrip (cont.)

d

d

W

W

Page 13: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

13

1 1 1

2 21 12

eff r rr

dW

Microstrip (cont.)

1/ 0 :

2eff rrW d

/ : effr rW d

Effective permittivity:

Limiting cases:

(narrow strip)

(wide strip)

Page 14: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

14

0

60 8ln ; 1

4

120; 1

1.393 0.667 ln 1.444

effr

effr

d W W

W d d

Z W

dW W

d d

for

for

Microstrip (cont.)

Characteristic Impedance:

Page 15: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

15

Inverting this solution to find W gives Z0:

2

8; 2

2

12 0.611 ln(2 1) ln 1 0.39 ; 2

2

A

A

r

r r

e W

e dW

WdB B B

d

for

for

0

0

1 1 0.110.33

60 2 1

377

2

r r

r r

r

ZA

BZ

where

Microstrip (cont.)

Page 16: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

16

Attenuation

Dielectric loss:

01

tan2 1

effrr r

d effr r

k

0

sc

R

Z W

“filling” factor

very crude (“parallel-plate”) approximation

Conductor loss:

Microstrip (cont.)

(More accurate formulas are given later.)

Page 17: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

More accurate formulas for characteristic impedance that account for dispersion and conductor thickness:

0 0

1 00

0 1

eff effr reff effr r

fZ f Z

f

0

1200

0 / 1.393 0.667 ln / 1.444effr

ZW d W d

( / 1)W d

21 ln

t dW W

t

d

W

er

t

17

Microstrip (cont.)

Page 18: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

d

W

er

t

2

1.5

(0)(0)

1 4

effr reff eff

r rfF

1 1 11 /0

2 2 4.6 /1 12 /

eff r r rr

t d

W dd W

2

0

4 1 0.5 1 0.868ln 1r

d WF

d

18

Microstrip (cont.)

where

( / 1)W d

Note:

:

effr r

f

f

As

Page 19: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

19

Microstrip (cont.)

2

0

effr k

"A frequency-dependent solution for microstrip transmission lines," E. J. Denlinger, IEEE Trans. Microwave Theory and Techniques, Vol. 19, pp. 30-39, Jan. 1971.

Frequency variation

r

r

W

Page 20: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

d

W

er

t

20

Microstrip (cont.)More accurate formulas for conductor attenuation:

2

0

1 21 1 ln

2 4s

c

R W d d d t

hZ d W W t d

12

2

W

d

2

0

/2 2ln 2 0.94 1 ln

2 0.942

sc

W dR W W W d d d te

WhZ d d h W W t dd

2W

d

21 ln

t dW W

t

Page 21: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

21

Microstrip (cont.)Note:

It is necessary to assume a nonzero conductor thickness in order to accurately calculate the conductor attenuation.

The perturbational method predicts an infinite attenuation if a zero thickness is assumed.

10 : 0szt J s

s as

d

W

er

t

sszJ Practical note: A standard thickness

for PCBs is 0.7 [mils] (17.5 [m]), called “half-ounce copper”.

1 mil = 0.001 inch

Page 22: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

22

TXLINE

This is a public-domain software for calculating the properties of some common planar transmission lines.

http://web.awrcorp.com/Usa/Products/Optional-Products/TX-Line/

Page 23: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

23

TXLINE (cont.)

TX-Line™ Transmission Line Calculator

TX-Line is a FREE, easy-to-use, Windows-based interactive transmission line calculator for the analysis and synthesis of transmission line structures. TX-Line enables users enter either physical characteristics or electrical characteristic for common transmission medium such as:

MicrostripStriplineCoplanar waveguideGrounded coplanar WGSlotline

TX-Line runs on Microsoft® Windows® 2000-SP4, XP-SP2, Vista-SP1, Windows® 7

Page 24: Prof. David R. Jackson Dept. of ECE Notes 10 ECE 5317-6351 Microwave Engineering Fall 2011 Waveguides Part 7: Planar Transmission Lines 1

24

Microstrip (cont.)

REFERENCES

L. G. Maloratsky, Passive RF and Microwave Integrated Circuits, Elsevier, 2004.

I. Bahl and P. Bhartia, Microwave Solid State Circuit Design, Wiley, 2003.

R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in Microstrip,” IEEE Trans. Microwave Theory and Techniques, pp. 342-350, June 1968.

R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Corrections to ‘Losses in Microstrip’,” IEEE Trans. Microwave Theory and Techniques, Dec. 1968, p. 1064.