26
Intro POD Results POD Problem extras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor: Dr. Sorensen CAAM699 Department of Computational and Applied Mathematics Rice University September 5, 2008 Saifon Chaturantabut POD

Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

  • Upload
    habao

  • View
    228

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras

Proper Orthogonal Decomposition (POD)

Saifon Chaturantabut

Advisor: Dr. SorensenCAAM699

Department of Computational and Applied MathematicsRice University

September 5, 2008

Saifon Chaturantabut POD

Page 2: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras

Outline

1 Introduction/MotivationLow Rank Approximation and PODModel Reduction for ODEs and PDEs

2 Proper Orthogonal Decomposition(POD)Introduction to PODPOD in Euclidean SpacePOD in General Hilbert Space

3 Numerical ResultsSolutions from Full and Reduced Systems of PDE: 1DBurgers’Equation

4 Problem: POD for PDEs with nonlinearitiesNonlinear ApproximationError and Computational Time

Saifon Chaturantabut POD

Page 3: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Low Rank Approx and POD Model Reduction for ODEs and PDEs

Problem in finite dimensional spaceGiven y1, . . . , yn ∈ Rm. Let Y = spany1, y2, . . . , yn ⊂ Rm;r = rank(Y )

y1, . . . , yn ∈ Rm possible (almost) linearly dependent⇒ NOT agood basis for Y

Goal: Find orthonormal basis vectors φ1, . . . , φk that bestapproximates Y , for given k < rSolution: Use Low Rank ApproximationForm a matrix of known data:

Y =

| |y1 . . . yn| |

∈ Rm×n.

Saifon Chaturantabut POD

Page 4: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Low Rank Approx and POD Model Reduction for ODEs and PDEs

Low Rank ApproximationSingular Value Decomposition (SVD)

Let Y ∈ Rm×n, r = rank(Y ), and k < r .

Problem: Low Rank Approximation

minY‖Y − Y‖2

F : rank(Y ) = k

Solution

Y ∗ = Uk Σk V Tk with min error ‖Y − Y ∗‖2

F =∑r

i=k+1 σ2i

where Y = UΣV T is SVD of Y ; Σ = diag(σ1, . . . , σr ) ∈ Rr×r withσ1 ≥ σ2 ≥ . . . ≥ σr > 0

Optimal orthonormal basis of rank k =: POD basis

Y ∗ =∑k

i=1 σiuivTi ⇒ φk

i=1 = uiki=1

Saifon Chaturantabut POD

Page 5: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Low Rank Approx and POD Model Reduction for ODEs and PDEs

EX: Image Compression via SVD

1 % Low Rank Approximation

source: http://demonstrations.wolfram.com/demonstrations.wolfram.com

Saifon Chaturantabut POD

Page 6: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Low Rank Approx and POD Model Reduction for ODEs and PDEs

EX: Image Compression via SVD

50 % Low Rank Approximation

source: http://demonstrations.wolfram.com/demonstrations.wolfram.com

Saifon Chaturantabut POD

Page 7: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Low Rank Approx and POD Model Reduction for ODEs and PDEs

Model Reduction for ODEs

Full-order system (dim = N)

ddt

y(t) = Ky(t) + g(t) + N(y(t))⇒ y(t)

Reduced-order system (dim = k < N)

Let y = Uk y, for Uk ∈ RN×k , with orthonormal columns:UT

k Uk = I ∈ Rk×k .

Ukddt y(t) = KUk y(t) + g(t) + N(Uk y(t))⇒ d

dt y(t) = UTk KUk︸ ︷︷ ︸ y(t) + UT

k g(t)︸ ︷︷ ︸+UTk N(Uk y(t))

ddt

y(t) = Ky(t) + g(t) + UTk N(Uk y(t))⇒ y(t)

How to construct Uk? .....Use POD!

Saifon Chaturantabut POD

Page 8: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Low Rank Approx and POD Model Reduction for ODEs and PDEs

Model Reduction for PDEsEx. Unsteady 1D Burgers’Equation

∂ty(x , t)− ν ∂

2

∂x2 y(x , t) +∂

∂x

(y(x , t)2

2

)= 0 x ∈ [0,1], t ≥ 0

y(0, t) = y(1, t) = 0, t ≥ 0, y(x ,0) = y0(x), x ∈ [0,1],

Discretized system (Galerkin)

Full-order system (dim = N): FE basis ϕiNi=1

Mhddt

y(t) + νKhy(t)−Nh(y(t)) = 0⇒ yh(x , t) =∑N

i=1 ϕi (x)yi (t)

Reduced-order system (dim = k < N): orthonormal basis φiki=1

Mddt

y(t) + νKy(t)− N(y(t)) = 0⇒ yh(x , t) =∑k

i=1 φi (x)yi (t)

How to construct φiki=1? .....Use POD!Saifon Chaturantabut POD

Page 9: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Intro POD in Euclidean Space POD in General Hilbert Space

Proper Orthogonal Decomposition(POD)

POD is a method for finding alow-dimensional approximaterepresentation of:

large-scale dynamicalsystems, e.g. signalanalysis, turbulent fluid flowlarge data set, e.g. imageprocessing

≡ SVD in Euclidean space.Extracts basis functionscontaining characteristicsfrom the system of interestGenerally gives a goodapproximation withsubstantially lower dimension

0 0.5 1−2

−1

0 POD basis # 1

0 0.5 1−4

−2

0

2 POD basis # 2

0 0.5 1−4

−2

0

2 POD basis # 3

0 0.5 1−4

−2

0

2 POD basis # 4

0 0.2 0.4 0.6 0.8 1 0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

x

Sol of Full System (FE):dim = 100

y

Figure: Plots of the first 4 POD basisand the space of solutions

Saifon Chaturantabut POD

Page 10: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Intro POD in Euclidean Space POD in General Hilbert Space

Definition of POD

Let X be Hilbert Space(I.e. Complete Inner Product Space) withinner product 〈·, ·〉 and norm ‖ · ‖ =

√〈·, ·〉

Given y1, . . . , yn ∈ X . Define yi ≡ snapshot i , ∀i . LetY ≡ spany1, y2, . . . , yn ⊂ X .Given k ≤ n, POD generates a set of orthonormal basis ofdimension k , which minimizes the error from approximating thesnapshots:

POD basis ≡ Optimal solution of:

minφk

i=1

n∑j=1

‖yj − yj‖2, s.t. 〈φi , φj〉 = δij

where yj (x) =∑k

i=1〈yj , φi〉φi (x), an approximation of yj usingφk

i=1.Solve by SVD

Saifon Chaturantabut POD

Page 11: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Intro POD in Euclidean Space POD in General Hilbert Space

Derivation for POD in Euclidean Space: E.g. X = Rm

minφki=1

∑nj=1 ‖yj −

∑ki=1(yT

j φi )φi‖22 ≡ E(φ1, ..., φk )

s.t .

φTi φj = δij =

1 if i = j0 if i 6= j i , j = 1, ..., k

Lagrange Function:

L(φ1, . . . , φk , λ11, . . . , λij , . . . , λkk ) = E(φ1, ..., φk ) +k∑

i,j=1

λij (φTi φj − δij )

KKT Necessary Conditions:

∂∂φi

L = 0⇔ ∑n

j=1 yj (yTj φi ) = λiiφi

λij = 0, ifi 6= j

.

φTi φj = δij

Saifon Chaturantabut POD

Page 12: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Intro POD in Euclidean Space POD in General Hilbert Space

Optimal Condition: Symmetric m-by-m eigenvalue problem

YY Tφi = λiφi

where λi = λii ,Y =

| |y1 . . . yn| |

for i = 1, . . . , k

Error for POD basis:n∑

j=1

‖yi −k∑

i=1

(yTj φi )φi‖2

2 =r∑

i=k+1

λi

λiφi = YY Tφi =∑n

j=1 yj (yTj φi )⇒ λi =

∑nj=1(yT

j φi )2

Since φTi φj = δij and span(Y ) = spanφ1, . . . , φr (from SVD),

then yj =∑r

i=1(yTj φi )φi , forj = 1, . . . ,n, and

n∑j=1

‖yj −k∑

i=1

(yTj φi )φi‖2

2 =n∑

j=1

r∑i=k+1

(yTj φi )

2 =r∑

i=k+1

λi

Saifon Chaturantabut POD

Page 13: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Intro POD in Euclidean Space POD in General Hilbert Space

SOLUTION for POD basis in Rm

Recall Optimality Condition and the POD Error:YY Tφi = λiφi , i = 1, . . . , k∑n

j=1 ‖yj −∑k

i=1(yTj φi )φi‖2

2 =∑r

i=k+1 λi

Optimal solution:

POD basis: φ∗i ki=1 = uik

i=1

Lagrange multiplier: λ∗i = σ2i , i = 1, . . . , k ,

can be obtained by the SVD of Y ∈ Rm×n or EVD ofYY T ∈ Rm×m, i.e.,

Y = UΣV T ⇒ YY T ui = σ2i ui , i = 1, . . . , r ,

where Σ = diag(σ1, . . . , σr ) ∈ Rr×r with σ1 ≥ σ2 ≥ . . . ≥ σr > 0;U = [u1, . . . ,ur ] ∈ Rm×r and V = [v1, . . . , vr ] ∈ Rn×r haveorthonormal columns.This is equivalent to SVD solution for Low Rank Approximation

Saifon Chaturantabut POD

Page 14: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Intro POD in Euclidean Space POD in General Hilbert Space

SOLUTION for POD basis in a Hilbert Space XTwo approaches:

1 Define linear symmetric operator F (w) =∑n

j=1〈w , yj〉yj , w ∈ X .Find eigenfunction ui ∈ X :

EVD: F (ui ) = σ2i ui∑n

j=1〈ui , yj〉yj = σ2i ui ∼ (cf. YY T ui = σ2

i ui )

Sol: φ∗i = ui , λ∗i = σ2

i , i = 1, . . . , k

2 Define linear symmetric operator L = [〈yi , yj〉] ∈ Rn×n. Findeigenvector vi ∈ Rn:

EVD: L vi = σ2i vi

[〈yi , yj〉]vi = σ2i vi ∼ (cf. Y T Yvi = σ2

i vi )

Sol: φ∗i = 1σi

∑nj=1(vi )jyj , λ

∗i = σ2

i ∼ Uk = YVk Σ−1k

NOTE: vi ∈ Rn,but ui , yj ∈ X

Saifon Chaturantabut POD

Page 15: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Intro POD in Euclidean Space POD in General Hilbert Space

Remark: Practical way for computing the POD basis for discretized PDEs

Let ϕiNi=1 ⊂ X ≡ H1(Ω) be finite element(FE) basis.

FE snapshots(solutions): yjni=j ∈ X at time tjn

j=1.

yj = y(x , tj ) =N∑

i=1

Yij (tj )ϕi (x).

L = [〈yi , yj〉] = [m∑

k,`=1

Yik Yj`〈ϕi , ϕj〉] = Y T MY ∈ Rn×n,

where M = [〈ϕi , ϕj〉] ∈ RN×N .POD basis:

φ∗i =1σi

n∑j=1

(vi )jyj ,

whereL vi = σ2

i vi ,

with v1, v2, . . . , vk corresponding to σ1 ≥ σ2 ≥ . . . ≥ σk > 0.

Saifon Chaturantabut POD

Page 16: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Solutions from Full and Reduced Systems of PDE: 1D Burgers’Equation

Numerical Results for PDEs

Recall the 1D Burgers’Equation x ∈ [0, 1], t ≥ 0:∂∂t y(x, t)− ν ∂2

∂x2 y(x, t) + ∂∂x

(y(x,t)2

2

)= 0,

y(0, t) = y(1, t) = 0, t ≥ 0,

y(x, 0) = y0(x), x ∈ [0, 1].

0

0.5

1

0

0.5

1

1.5

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Sol of Reduced System (Direct POD):dim = 6

t

y

0

0.5

1

0

0.5

1

1.5

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Sol of Full System (Finite Element):dim = 100

t

y

0 10 20 30 40 50 60 7010−15

10−10

10−5

100 Singular values of the Snapshots

0 0.2 0.4 0.6 0.8 10

0.5

1

x

y(x,

t)

Sol of Full System (Finite Element) :dim = 100

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x,

t)

Sol of Reduced System (Direct POD):dim = 1

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x,

t)

Sol of Reduced System (Direct POD):dim = 2

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x,

t)

Sol of Reduced System (Direct POD):dim = 3

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x,

t)

Sol of Reduced System (Direct POD):dim = 4

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x,

t)

Sol of Reduced System (Direct POD):dim = 5

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

Figure: Direct PODSaifon Chaturantabut POD

Page 17: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Nonlinear Approximation Error and CPU Time

Problem: POD for PDEs with nonlinearities

If we apply the POD basis directly to construct a discretized system,the original system of order N:

Mhddt y(t) + νKhy(t)− Nh(y(t)) = 0

become a system of order k N:

M ddt y(t) + νKy(t)− N(y(t)) = 0,

where the nonlinear term :

N(y(t)) = UTk︸︷︷︸

k×N

Nh(Uk y(t))︸ ︷︷ ︸N×1

⇒ Computational Complexity still depends on N!!

Saifon Chaturantabut POD

Page 18: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Nonlinear Approximation Error and CPU Time

Nonlinear Approximation

Recall the problem from bf Direct POD :N(y(t)) = UT︸︷︷︸

k×N

Nh(Uy(t))︸ ︷︷ ︸N×1

WANT:

N(y(t))← C︸︷︷︸k×nm

N(y(t))︸ ︷︷ ︸nm×1

99K k ,nm N 99K Independent of N

2 Approaches:Precomputing Technique: Simple nonlinearEmpirical Interpolation Method (EIM): General nonlinear

Saifon Chaturantabut POD

Page 19: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Nonlinear Approximation Error and CPU Time

ACCURACY vs. COMPLEXITY

0 5 10 1510−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Number of POD basis used

Avera

ge R

ela

tive E

rror

Relative Error:= sumt||yFE(t)−y(t)||/||yFE(t)|| of Reconstruct Snapshots using POD

Direct PODPrecompute PODEIM−POD

0 5 10 150

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of POD basis usedcp

u t

ime

(se

c)

CPU TIME for solving reduced−order ODE system

Direct PODPrecompute PODEIM−POD

Figure: LEFT: Error Eavg = 1nt

∑nti=1‖yh(·,ti )−yh(·,ti )‖X‖yh(·,ti )‖X

.RIGHT: CPU time (sec)

Saifon Chaturantabut POD

Page 20: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Nonlinear Approximation Error and CPU Time

QUESTION ?

Saifon Chaturantabut POD

Page 21: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Empirical Interpolation Method (EIM) Solutions from EIM Conclusions and Future Works

Empirical Interpolation Method (EIM) [Patera; 2004]

Approximates nonlinear parametrized functionsLet s(x ;µ) be a parametrized function with spatial variable x ∈ Ωand parameter µ ∈ D .Function approximation from EIM:

s(x ;µ) =nm∑

m=1

qm(x)βm(µ),

where spanqmnmm=1 'M s ≡ s(·;µ) : µ ∈ D and βm(µ) is

specified from the interpolation points zmnmm=1, in Ω:

s(zi ;µ) =nm∑

m=1

qm(zi )βm(µ),

for i = 1, . . . ,nm.

Saifon Chaturantabut POD

Page 22: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Empirical Interpolation Method (EIM) Solutions from EIM Conclusions and Future Works

EIM: Numerical Example

s(x ;µ) = (1− x)cos(3πµ(x + 1))e−(1+x)µ,

where x ∈ [−1,1] and µ ∈ [1, π].

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x

s(x;

µ)

Plot of Approximate Functions (dim = 10) with Exact Functions (in black solid line)

µ= 1 µ= 1.1713 µ= 1.3855 µ= 3.1416

Figure: Approximate Function from EIM with 10 POD basisSaifon Chaturantabut POD

Page 23: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Empirical Interpolation Method (EIM) Solutions from EIM Conclusions and Future Works

Plots of Numerical Solutions from 3Approaches

Direct POD

Precomputed POD

EIM-POD

0 10 20 30 40 50 60 7010−15

10−10

10−5

100 Singular values of the Snapshots

Figure: SVD

0 0.2 0.4 0.6 0.8 10

0.5

1

x

y(x

,t)

Sol of Full System (Finite Element) :dim = 100

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Direct POD):dim = 1

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Direct POD):dim = 2

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Direct POD):dim = 3

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

xy(x

,t)

Sol of Reduced System (Direct POD):dim = 4

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Direct POD):dim = 5

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

Figure: Direct POD

Saifon Chaturantabut POD

Page 24: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Empirical Interpolation Method (EIM) Solutions from EIM Conclusions and Future Works

0 0.2 0.4 0.6 0.8 10

0.5

1

x

y(x

,t)

Sol of Full System (Finite Element) :dim = 100

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

xy(x

,t)

Sol of Reduced System (Precompute POD):dim = 1

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Precompute POD):dim = 2

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Precompute POD):dim = 3

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Precompute POD):dim = 4

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (Precompute POD):dim = 5

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

Figure: Precomputed POD

0 0.2 0.4 0.6 0.8 10

0.5

1

x

y(x

,t)

Sol of Full System (Finite Element) :dim = 100

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (EIM−POD):dim = 1

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (EIM−POD):dim = 2

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (EIM−POD):dim = 3

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

xy(x

,t)

Sol of Reduced System (EIM−POD):dim = 4

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

0 0.2 0.4 0.6 0.8 10

0.20.40.60.8

x

y(x

,t)

Sol of Reduced System (EIM−POD):dim = 5

t= 0t= 0.2029t= 0.98551t= 1.2174t= 2

Figure: EIM-POD

Saifon Chaturantabut POD

Page 25: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Empirical Interpolation Method (EIM) Solutions from EIM Conclusions and Future Works

Conclusions

Unique Contribution: Cleardescription of the EIM⇒ SuccessfulImplementation of EIM with POD

EIM is comparable to widely acceptedmethods, such as precomputingtechnique

The results suggest that EIM withPOD basis is a promising modelreduction technique for more generalnonlinear PDEs.

Future WorkExtend to higher dimensions

Extend to PDEs with more generalnonlinearities

Apply to practical problem, e.g.optimal control problem

0 10 20 30 40 50 60 7010−8

10−6

10−4

10−2

100

102

Number of POD basis used

Aver

age

Rel

ativ

e Er

ror

Relative Error:=(1/nt)sumi=1n

t (||yFE(t)−y(t)||/||yFE(t)||)2 of Reconstructed Snapshots using different dim of basis from EIM−POD

EIM−POD dim=1EIM−POD dim=2EIM−POD dim=4EIM−POD dim=6EIM−POD dim=10EIM−POD dim=20Direct PODPrecompute POD

0 10 20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of POD basis used

CP

U ti

me

(sec

)

CPU TIME for solving reduced−order ODE system

EIM−POD dim=1EIM−POD dim=2EIM−POD dim=4EIM−POD dim=6EIM−POD dim=10EIM−POD dim=20Direct PODPrecompute POD

Figure: Plots of the first 4 POD basisand the space of solutions

Saifon Chaturantabut POD

Page 26: Proper Orthogonal Decomposition (POD) - Rice Ucaam699-2/slides_POD_699fall2008.pdf · IntroPODResultsPOD Problemextras Proper Orthogonal Decomposition (POD) Saifon Chaturantabut Advisor:

Intro POD Results POD Problem extras Empirical Interpolation Method (EIM) Solutions from EIM Conclusions and Future Works

Overview

Nonlinear PDE

⇓ L99 FE-Galerkin

FULL Discretized System (ODE)dim = N

⇓ L99 Solve ODE

SNAPSHOTS: y(x, t`)ns`=1

⇓ L99 POD

POD basis: φiki=1

⇓ L99 POD-Galerkin

REDUCED Discretized System (ODE)Linear Term: dim = k N

Non-Linear Term: dim ∼ N −→ −→(i) Memory Saving

(ii) Accuracy

⇓ L99

Nonlinear Approx-EIM

-Precomputing

REDUCED Discretized System (ODE)Linear Term: dim = k N

Non-Linear Term: dim = nm N −→ −→(iii) Efficiency(Time Saving)

Saifon Chaturantabut POD