25
Proposed Text for DL subcarrier permutation and UL tile permutation IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-09/0582r5 Date Submitted: 2009-03-09 Source: Taeyoung Kim, Jeongho Park, Kichun Cho, Jaeweon Cho, Voice: +82-31-279- 0202 Hokyu Choi , Heewon Kang E-mail:[email protected] Samsung Electronics Co., Ltd. 416 Maetan-3, Suwon, 443-770, Korea Jong-Kae (JK) Fwu, Minh-Anh Vuong, Huaning Niu, Rongzhen Yang, Yuval Lomnitz, Wei Guan, Sassan Ahmadi, Hujun Yin E-mail: [email protected] Intel Corporation Jihyung Kim, Wooram Shin, Dong Seung Kwon E-mail: [email protected] ETRI Yu-Tao Hsieh, Pang-An Ting, Zheng Yan-Xiu E-mail: [email protected] ITRI

Proposed Text for DL subcarrier permutation and UL tile permutation IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-09/0582r5

Embed Size (px)

Citation preview

Proposed Text for DL subcarrier permutation and UL tile permutation

IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number:

IEEE C802.16m-09/0582r5Date Submitted:

2009-03-09Source:

Taeyoung Kim, Jeongho Park, Kichun Cho, Jaeweon Cho, Voice: +82-31-279-0202Hokyu Choi , Heewon Kang E-mail: [email protected]

Samsung Electronics Co., Ltd. 416 Maetan-3, Suwon, 443-770, Korea

Jong-Kae (JK) Fwu, Minh-Anh Vuong, Huaning Niu, Rongzhen Yang, Yuval Lomnitz, Wei Guan, Sassan Ahmadi, Hujun Yin E-mail: [email protected]

Intel Corporation

Jihyung Kim, Wooram Shin, Dong Seung Kwon E-mail: [email protected]

ETRI

Yu-Tao Hsieh, Pang-An Ting, Zheng Yan-Xiu E-mail: [email protected]

ITRI

Venue: IEEE 802.16m Session#60, Vancouver, Canada IEEE 802.16m-09/0012, “Call for Comments on Amendment Working Document”.

Base Contribution:None Purpose:Discussion and ApprovalNotice:This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Release:The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this

contribution may be made public by IEEE 802.16.

Patent Policy:The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

<http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>.Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat >.

Motivation

• In the current IEEE 802.16m Amendment Working Document (IEEE80216m-09/0010), – Subcarrier permutation for DL is NOT determined yet– Tile permutation for UL is NOT determined yet

• This contribution shows the evaluation results to compare the permutation rules proposed from many companies (e.g. Intel, LGE, Samsung)– For Downlink, LLS results under the multicell environment– For Uplink, SLS and Hitting Count Results

3/14

Uplink Tile PermutationPart 1

4/17

Issue• Different Permutation Approaches

– Intel/Samsung :

– LG :

5/17

)*3mod()),,(),(),((),,( ,, FPiDRUFPiDRU LCellIDtnsPermSeqgsnfLtnsTile

where

where

where

3mod)75(),( snsnf

)),((),,(),( tOssnfPermSeqtnsPermSeqg TP

1,,1,0 mod})(

{)( ,,,,

,,

FPiDRUFPiDRU

FPiDRU

TPFPiDRUTPTP LiL

L

DLGCDiOiDiPermSeq

1))1mod(ID Cell( , FPiDRUTP LD 1)1(

ID Cell

,

FPiDRUTP L

Oand

Tile(s,n,t) = LDRU,FPi n + g(PermSeq(), s, n, t)

PermSeq() is permutation sequence generated with SEED={IDcell*1367} mod 210.

g(PermSeq(),s,n, t) = {PermSeq[(n+107*s+t) mod LDRU,FPi]+UL_PermBase} mod LDRU,FPi,

UL_PermBase is set to IDcell.

Hitting Count Verification

• Methodology– Select 2 Sector IDs from total 768

• Total number of cases : combination 2 among 768 = 294528 cases

– Count the number of tiles two sectors share• Full loading case obviously 100% hitting• Not full loading case worst case is 100% hitting

– Results metric• Histogram of hitting count • Average value is not important• The more high hitting case, the higher IoT. Var. worse performance

• Assumptions– Total 48 DRU

– Case 1 : resource loading ratio is 1/6 8 DRU (24 tiles)

– Case 2 : resource loading ratio is 2/6 16 DRU (48 tiles)

SLS Verification (1)• Sequential Sector ID Case

1. Difference is too small. Nothing worth to compare.

7/17

0

20

40

60

80

100

120

140

160

180

200

0

1

2

3

4

5

6

1/6 2/6 3/6 4/6 5/6 6/6

5%-ti

le M

S Th

roug

hput

(Kbp

s)

Sect

or T

hrou

ghpu

t (M

bps)

Resource Loading Ratio

Sequential PermBase

LG Tput Samsung/Intel Tput LG edge Samsung/Intel edge

• Random Sector ID Case

1. A noticeable tendency in cell edge performance• Samsung’s is better up to 16.3%

0

20

40

60

80

100

120

140

160

180

200

0

1

2

3

4

5

6

1/6 2/6 3/6 4/6 5/6 6/6

5%-ti

le M

S Th

roug

hput

(Kbp

s)

Sect

or T

hrou

ghpu

t (M

bps)

Resource Loading Ratio

Random Permbase

LG Tput Samsung/Intel Tput LG edge Samsung/Intel edge

SLS Verification (2)

8/17

16.3%

12.3%7.6%

5.0%2.7% 0%

Theory

• Goal of Permutation– Interference Averaging, especially not in Full Loading Situation

• Worse Permutation– Would result in similar logical-physical mapping among neighbor

cells

• Eventually– Higher NI fluctuation results in error rate– This impacts on cell edge performance

9/17

NI Fluctuation• Observed Metric : Histogram of MS’s NI Variance

– MS_NI : NI power of the tones which are assigned to the MS– MS drop and collect total 570 MSs’ MS_NI

– Calculate variance along time for every MS V1~V570

• Time duration : total 2700 UL subframes

• Total number of drop : 11 drops

10/17

LGE’s has larger Mean{Vi}

LGE’s has larger Var{Vi}

High error rate

Worse Performance

[Note] See Appendix 2 for further cases (e.g. 4/6, 6/6 loading)

Hitting Count Verification

• Methodology– Select 2 Sector IDs from total 768

• Total number of cases : combination 2 among 768 = 294528 cases

– Count the number of tiles two sectors share• Full loading case obviously 100% hitting• Not full loading case worst case is 100% hitting

– Results metric• Histogram of hitting count • Average value is not important• The more high hitting case, the higher IoT. Var. worse performance

• Assumptions– Total 48 DRU

– Case 1 : resource loading ratio is 1/6 8 DRU (24 tiles)

– Case 2 : resource loading ratio is 2/6 16 DRU (48 tiles)

• Case 2

Hitting Count Results• Case 1

– For more cases, open this sheet

S/I 1 S/I 2 Intel LGE0 52204 3458 61440 191331 23694 17223 36864 172022 26140 39903 30720 52503 41699 59256 49152 549524 28712 63997 12288 459875 27739 51409 24576 544006 27077 32371 12288 221867 19337 16187 12288 205008 15746 6962 0 63879 11771 2569 36864 10667

10 7615 779 12288 1681411 5251 244 0 209912 3234 97 0 398013 1969 38 0 401914 1100 17 0 107215 652 13 0 20216 321 1 0 50517 149 0 0 51818 67 1 0 167619 20 0 0 12920 17 2 0 407621 10 1 0 94522 0 0 0 21223 0 0 0 48024 4 0 5760 1137

Num

ber

of ti

les

havi

ng c

ollis

ion

S/I 1 S/I 2 Intel LGE0 4124 0 0 21281 2796 1 0 02 2723 4 0 03 5546 8 12288 04 5059 22 0 05 5266 67 0 5126 7482 173 12288 07 7509 454 24576 42728 8175 1163 0 09 10390 2538 0 949

35 1174 1 0 80336 932 2 0 34037 607 0 0 65038 453 2 0 20339 293 0 0 040 173 0 0 041 108 0 0 042 70 1 0 868443 45 0 0 29144 14 1 0 439745 3 0 0 60946 1 0 0 19547 3 0 0 41848 4 0 5760 1209

Num

ber

of ti

les

havi

ng c

ollis

ion

hitting count

Downlink Subcarrier PermutationPart 2

13/17

• Evaluation methodology– User drop on the desired cell,

which is located in (radius, theta)• # of IDcell for desired cell = 0• Radius is variable, but theta is fixed as

30 degree

– Varying parameter of “radius”

– Select 7 strongest interferers • Calculating only path-loss according to

the distance between MS and BSs.• Not considering shadowing

– Calculate SINR

LLS in Multi-cells environment (1)• Cell ID Configuration

– Increasing sector ID

– ISD = 1.5km

1

2

3

67

910

11

13

14 1516

17

18

20

21

23

2425

26

2728

3031

323334

353637

38

4940

41

4243

44 4546

47 4849

50

5152

53

5455

56

0 5

48

19

22

29

12

[ Example] MS is located in (radius, theta) = (0.75*ISD/2, 30)

7 strongest interferers(I1~I7) = 8, 19, 5, 4, 12, 22, 29 SINR=6.36dB

MS

07

01 k

PSINR

I N

LLS in Multi-cells environment (2)• Simulation conditions

– Working scenarios

– Number of DRUs / LRUs / Miniband allocation• Half loading in DRUs(Ex. # of DRUs = 8, # of LRUs = 4)

• Half loading in Miniband based CRU– Assuming random QPSK modulated data bursts are transmitted– Assuming random sequence for CRU/DRU allocation sequence

– Channel condition: PedB, 3km/h

– MIMO configuration: 2x2 SFBC

– Pilot Structure• Pilot power = 3 dB

• Interlaced pilot structure

Freq. Partition # of subbands # of minibands # of PRUs in FPi

Scenario #1FP0 6 24 48

FP1 ~ FP3 0 0 0

FER vs SINR (1)• Evaluation Results

– # of DRUs=4 – # of DRUs=5

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.791.52

2.242.94

3.644.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.791.52

2.242.94

3.644.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

FER vs SINR (2)• Evaluation Results

– # of DRUs=6 – # of DRUs=7

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.791.52

2.242.94

3.644.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.79

1.522.24

2.943.64

4.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

FER vs SINR (3)• Evaluation Results

– # of DRUs=8 – # of DRUs=9

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.79

1.522.24

2.943.64

4.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.79

1.522.24

2.943.64

4.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

FER vs SINR (4)• Evaluation Results

– # of DRUs=10 – # of DRUs=11

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.79

1.522.24

2.943.64

4.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

1.E-03

1.E-02

1.E-01

1.E+00

-5.08

-4.16-3.28

-2.42-1.58

-0.770.02

0.79

1.522.24

2.943.64

4.32

5.005.68

6.366.98

7.598.20

8.81

SINR [dB]

FE

R

Intel(16QAM) Intel(QPSK)

LGE_Modified(16QAM) LGE_Modified(QPSK)

Proposed(16QAM) Proposed(QPSK)

z

Conclusion

• Uplink Tile Permutation– Samsung’s is better in Hitting Count Results– It will cause better interference averaging

• Downlink Subcarrier Permutation– Similar performance in both sequential and random case– Because BS Tx power is constant

• For DL and UL, it is natural to be same formula and permutation sequence.

Proposed Text for AWD (1)[Remedy-1: Change the text from line 35 to 38 on the page 31, in 15.3.5.3.3, as follows:]

21/14

Proposed Text for AWD (2)

15.3.5.3.4 Random sequence generation

The permutation sequence generation algorithm with 10-bit SEED (Sn-10, Sn-9,…,Sn-1) shall generate a permutation sequence of size M by the following process:

1)Initialization

A. Initialize the variables of the first order polynomial equation with the 10-bit seed, SEED.

• Set d1 = floor(SEED/25) + 1 and d2 = SEED mod 25.

B. Initialize the maximum iteration number, N=4.

C. Initialize an array A with size M with the numbers 0, 1, … , M-1 (i.e. A[0]=0, A[1]=1, … , A[M-1]=M-1).

D. Initialize the counter i to M-1.

E. Initialize x to -1.

2)Repeat the following steps if i > 0

A. Initialize the counter j to 0.

B. Repetition loop as follows,

a. Increment x and j by 1.

b. Calculate the output variable of y = {(d1*x + d2) mod 1031} mod M.

c. Repeat the above step a. and b., if yi and j<N.

C. If y i, set y = y mod i.

D. Swap the i-th and the y-th elements in the array (i.e. perform the steps Temp= A[i], A[i]= A[y], A[y]=Temp).

E. Decrement i by 1.

3) PermSeq[i] = A[i], where 0i<M.

[Remedy-2: Insert the text in line 48 on the page 31, in 15.3.5.3.3, as follows:]

22/14

Proposed Text for AWD (3)[Remedy-3: Change the text in line 1 on the page 42, in 15.3.8.3.3, as follows:]

23/14

[Remedy-4: Insert the text in line 13 on the page 42, in 15.3.8.3.3, as follows:]

Appendix 1: Parameters for UL SLS

24/#NN

Parameter Value Parameter Value

Carrier frequency (GHz) 2.5 GHz Site to site distance (m) 1500 m

System bandwidth (MHz) 11.2 MHz Number of users per sector 10

Reuse factor 1 Channel Ped B, 3km/h 100%

Frame ( Preamble +DL +UL ) duration

5 ms  (TDD, 29:18) Max power in MS (dBm) 23 dBm

Number of OFDM symbols in UL Frame

18 symbols(3 subframes =

 6 symbols per subframe)Antenna type 1x2 SIMO

FFT size (tone) 1024 HARQ On (Max retrans : 4 / Sync)

Useful tone 864 Target IoT Level 10 dB

Tile structure 6x6 DRU Link to system mapping RBIR

Number of LRU 48 Scheduler type PF

Number of tile per LRU 3 tiles PF exponent 1.0

Resource assignment block 8 LRU Penetration loss[dB] 10dB

Number of user per subframe 6 user Overhead No control channel, only pilot

Power Control Open loop power control UL Target IoT value 10dB

Appendix 2: NI Fluctuation• Observed Metric : Histogram of MS’s NI Variance

25/17