14
PROTEUS: High-Fidelity Neutronics Code November 19, 2015 Changho Lee Neutronics Methods and Codes Section Nuclear Engineering Division Argonne National Laboratory

PROTEUS: High-Fidelity Neutronics Coderesearch.engr.oregonstate.edu/treat-irp/sites/...3D whole core calculations compared with MCNP solutions ThermalFast Flux Flux Configuration MCNP

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • PROTEUS: High-Fidelity Neutronics Code

    November 19, 2015

    Changho LeeNeutronics Methods and Codes SectionNuclear Engineering DivisionArgonne National Laboratory

  • SHARP

    Coupled Multi‐Physics Toolkit for Reactor Analysis, being developed under the DOE NEAMS program (Nuclear Energy Advanced Modeling & Simulation)– SHARP leverages state‐of‐the‐art physics codes to 

    take advantage of man‐years of effort, experience, and software V&V

    – High fidelity modeling and massive algorithm parallelization enable fundamental insights unattainable through experiments alone

    SHARP targets high‐fidelity transient phenomena– Address multi‐physics issues that are not well‐

    represented in standard homogenized or empirical models

    – Address problem‐size issues and/or compare against lower‐fidelity codes

    Multi‐disciplinary, multi‐laboratory effortFuel Deformation in SFR

  • Challenges in Neutronics

    Sodium‐cooled fast reactors– Rod bowing – Flowering due to thermal expansion 

    Very high temperature reactors– Double heterogeneity effects due to TRISO fuel particles and compacts– Large leakage fraction due to large migration area and annular core shape– Strong core/reflector coupling and thermal flux peaking– Asymmetric loading of burnable poison compacts, large gas channels in fuel blocks– Relatively large temperature feedback due to large temperature variation

    Light water reactors– Crud‐induced power shift and localized corrosion– Grid‐to‐rod fretting failure– Pellet clad interaction– Fuel assembly distortion: inhibit control rod insertion

    Small modular reactors– Enhanced transport effects (high leakage, local heterogeneity effect, etc.)– Significant power and spectral shifts with time– Deformation and aging of reactor materials

  • 4

    PROTEUS Development of high‐fidelity neutron 

    transport code, PROTEUS– High‐fidelity multi‐physics simulations with 

    geometry deformation– Reduce costly experiments, improve design 

    margin & safety

    Key capabilities– Fully unstructured finite element mesh (mixed 

    finite element types with tri/quad or prism/hex/tet), DOFs from 109 to >1012

    – Parallelization in space, angle, and energy: > 90% strong scaling, 75% weak scaling on BG/P

    – Transport solver: SN2ND, MOC 2D, MOC 3D,MOC 2D/3D (axially discontinuous galerkin FEM)

    – Transient capability (adiabatic) – Simulation and V&V: ZPR‐6, ZPPR‐15, Monju, EBR‐

    II, ABTR, C5, ATR, VHTR, etc.

    Total Cores

    Vertices/Process

    Total Time

    (seconds)

    ParallelEfficiency

    8,192 7,324 2,402 100%

    16,384 3,662 1,312 92%

    24,576 2,441 873 92%

    32,768 1,831 637 94%

  • 5

    Hexagonal Lattices (Fast Reactors)

  • Geometry Deformation (Advanced Burner Fast Reactor)

    Limited free bow restraint system allows deformation of assembly ducts as the system temperature rises

    6

  • ABTR Simulation with PROTEUS

    Multigroup cross section generation using MC2‐3

    Two models in terms of heterogeneity– Homogeneous assemblies 

    (conventional model)– Partially homogeneous assemblies 

    (heterogeneous duct + homogeneous fuel)

    3D whole core calculations compared with MCNP solutions

    Fast FluxThermal Flux

    Configuration MCNP PROTEUS

    Control Rod Out 1.23388 ±0.00010

    ‐152 pcm(116 groups)

    Control Rod In 1.04374 ±0.00011

    26 pcm(230 groups)

  • Zero Power Reactor Experiments

    8

    y

    x

    Fuel Drawer

  • ATR: Eigenvalue Comparison

    MCNP PROTEUS

    Angle Mesh ∆k (pcm)

    1.08770 ±0.00026

    L3T7 Mesh E ‐474

    L3T15 Mesh E  ‐397

    L3T15 Mesh E x 4 ‐299

    9

    Fast FluxThermal Flux* Mesh E x 4 : Auto‐refinement tool applied to Mesh E

    Good agreement in eigenvalue between PROTEUS and MCNP

    1

    2

    3

    4

    0 5 10 15 20

    Normalize

    d Group

     Flux

    Inner to Outer Fuel Meat

    MCNP       Group 1PROTEUS Group 1   (1MeV)MCNP       Group 22PROTEUS Group 22 (0.1eV)

  • C5: Group Fluxes

    Initial Verification of PROTEUS for Heterogeneous Geometries ‐ April 19‐23, 2015

    10

    Fast (G4: 111‐500 keV)

    Thermal (G21: 0.14‐0.1 eV)

  • Transient Reactor Test Facility(TREAT)

    Operated from 1959‐1994, plan to restart Fueled with 93.1% enriched UO2 particles 

    finely dispersed in graphite– Carbon‐to‐235U atom ratio of 

    approximately 10000:1 Graphite‐moderated, graphite‐reflected, 

    air‐cooled, 4’x4’ fuel assembly Core can accommodate maximum of 361 

    fuel assemblies in a 19 x 19 array

    Experiments performed in first six months of TREAT operation

    Results include– Neutron Flux Distribution– Temperature Distribution– Approach to Criticality Experiment– Temperature Coefficient of Reactivity

  • 3D Heterogeneous Geometry Simulationusing PROTEUS

    Top View of Fuel Section

    Minimum Critical Core

    Fuel / Reflector Control Rod

  • Cross Sections for PROTEUS

    Focus primarily on SFR and extensively on other reactor types (LWR, HTR, etc.)

    Need a multi‐group cross section capability (methodology) applicable to various reactor types

    Develop on‐line cross section generation capability (cross section API)

    13

    SFRATR

    LWR HTR

  • PROTEUS

    MC2-3

    Genesis

    BuildBot PERSENT

    Multigroup cross section

    Cross section library

    Steady-state & transport calc.

    Nightly regression test

    Perturbation and sensitivity

    SNMOC

    NODAL

    Mesh conversion

    tools

    Nek5000

    Diablo

    PROTEUS System