7
GEOS 24705 / ENST 24705 / ENSC 21100 Problem set #18 Due: Tues. May 30 th Problem 1: Can solar power the world? Background We determined at the very beginning of class that the ultimate source of energy for a renewable world had to be the sun, and we computed a requirement of a 5% conversion efficiency of that sunlight (10 W/m 2 ) for any technology to power the world. The conversion efficiency of plants, wind, and hydro were all too low. (Hydro and wind both capture kinetic energy produced by the atmosphere as a heat engine, and you know that heat engines are not efficient unless they involve large temperature gradients.) Natural conversions of solar energy are not good enough. We can however capture enough sunlight with humanmade technology. Two potential technologies for conversion of solar radiation energy that could power the world are solar photovoltaics and solar thermal (also called “concentrating solar power” or CSP). Solar photovoltaic panels are semiconductors that use the photoelectric effect to convert solar radiation directly to electricity. The average efficiency of conversion for commercial panels sold today is 1218%. Furthermore, you can put them places where the solar radiation is higher than the world or U.S. average. The panels have typically had a nonlinear response to being partially shaded – shade from a passing cloud on even a small part of the panel can cut power dramatically – but if you site them in the desert that is not a problem. (And recent changes in how they are wired reduces the partialshading problem). You can boost your capacity factor by an extra 20% or so (multiply it by 1.2) if you install more expensive tracking solar panels that rotate with the sun to maximize the amount of solar energy they catch. These facilities take up a bit more land – the panels have to be spaced a bit further but are generally considered the most costeffective for utilityscale solar. Solar thermal plants are less hightech and consist of no elements that would be unfamiliar to a 19 th century engineer. They involve concentrating sunlight to power a heat engine. Mirrors capture incoming solar radiation (very efficiently, perhaps 90%) and direct it onto a tube of some substance (usually oil, sometimes molten salt) to heat it to very high temperatures (usually ~ 600 C). The hot fluid is circulated to make steam and run a perfectly ordinary steam turbine (or in some cases to power a Stirling cycle engine); the turbine or engine then spins a generator just as in any other fossilfuelpowered power plant. The high temperature means that you get the normal efficiency of industrial heat engines (~30%), rather than the low efficiency of the atmospheric heat engine: concentrating mirrors overcome the low areal energy density of renewables. The chief advantage of CSP that it is easy to store heat, unlike electricity, so a CSP plant can generate power at all times, whether or not the sun is shining. 18 MW tracking solar PV installation at Five Points, CA. Image: Blue Oak Energy

PS18 l - University of Chicago

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PS18 l - University of Chicago

GEOS  24705  /  ENST  24705  /  ENSC  21100  Problem  set  #18  Due:  Tues.  May  30th    Problem  1:  Can  solar  power  the  world?  

Background  We  determined  at  the  very  beginning  of  class  that  the  ultimate  source  of  energy  for  a  renewable  world  had  to  be  the  sun,  and  we  computed  a  requirement  of  a  5%  conversion  efficiency  of  that  sunlight  (10  W/m2)  for  any  technology  to  power  the  world.  The  conversion  efficiency  of  plants,  wind,  and  hydro  were  all  too  low.  (Hydro  and  wind  both  capture  kinetic  energy  produced  by  the  atmosphere  as  a  heat  engine,  and  you  know  that  heat  engines  are  not  efficient  unless  they  involve  large  temperature  gradients.)  Natural  conversions  of  solar  energy  are  not  good  enough.  We  can  however  capture  enough  sunlight  with  human-­‐made  technology.  

Two  potential  technologies  for  conversion  of  solar  radiation  energy    that  could  power  the  world  are  solar  photovoltaics  and  solar  thermal  (also  called  “concentrating  solar  power”  or  CSP).  

Solar  photovoltaic  panels  are  semiconductors  that  use  the  photoelectric  effect  to  convert  solar  radiation  directly  to  electricity.  The  average  efficiency  of  conversion  for  commercial  panels  sold  today  is  12-­‐18%.  Furthermore,  you  can  put  them  places  where  the  solar  radiation  is  higher  than  the  world  or  U.S.  average.  The  panels  have  typically  had  a  nonlinear  response  to  being  partially  shaded  –  shade  from  a  passing  cloud  on  even  a  small  part  of  the  panel  can  cut  power  dramatically  –  but  if  you  site  them  in  the  desert  that  is  not  a  problem.  (And  recent  changes  in  how  they  are  wired  reduces  the  partial-­‐shading  problem).  You  can  boost  your  capacity  factor  by  an  extra  20%  or  so  (multiply  it  by  1.2)  if  you  install  more  expensive  tracking  solar  panels  that  rotate  with  the  sun  to  maximize  the  amount  of  solar  energy  they  catch.  These  facilities  take  up  a  bit  more  land  –  the  panels  have  to  be  spaced  a  bit  further  -­‐  but  are  generally  considered  the  most  cost-­‐effective  for  utility-­‐scale  solar.  

Solar  thermal  plants  are  less  high-­‐tech  and  consist  of  no  elements  that  would  be  unfamiliar  to  a  19th  century  engineer.  They  involve  concentrating  sunlight  to  power  a  heat  engine.  Mirrors  capture  incoming  solar  radiation  (very  efficiently,  perhaps  90%)  and  direct  it  onto  a  tube  of  some  substance  (usually  oil,  sometimes  molten  salt)  to  heat  it  to  very  high  temperatures  (usually  ~  600  C).  The  hot  fluid  is  circulated  to  make  steam  and  run  a  perfectly  ordinary  steam  turbine  (or  in  some  cases  to  power  a  Stirling  cycle  engine);  the  turbine  or  engine  then  spins  a  generator  just  as  in  any  other  fossil-­‐fuel-­‐powered  power  plant.  The  high  temperature  means  that  you  get  the  normal  efficiency  of  industrial  heat  engines  (~30%),  rather  than  the  low  efficiency  of  the  atmospheric  heat  engine:  concentrating  mirrors  overcome  the  low  areal  energy  density  of  renewables.  The  chief  advantage  of  CSP  that  it  is  easy  to  store  heat,  unlike  electricity,  so  a  CSP  plant  can  generate  power  at  all  times,  whether  or  not  the  sun  is  shining.    

18 MW tracking solar PV installation at Five Points, CA. Image: Blue Oak Energy

Page 2: PS18 l - University of Chicago

 

 

 

 

 

 

 

 

 

Most  solar  thermal  plants  no  longer  use  the  trough  system  (above)  Instead,  they  use  a  “power  tower”  system  where  multiple  mirrors  focus  solar  radiation  on  the  top  of  a  tower  and  heat  a  boiler  there.  By  concentrating  more  solar  power  on  one  small  location  they  obtain  higher  temperatures  and  so  higher  efficiencies.  The  towers  and  tracking  systems  are  obviously  more  expensive  than  troughs,  so  there’s  a  financial  tradeoff,  but  the  extra  power  generated  seems  to  be  worth  it.  

Problems  

A. Rescale  the  solar  PV  efficiency  to  account  for  the  fact  that  panels  have  to  have  some  physical  spacing  –  you  need  extra  land  from  which  you  can’t  generate  power.  What  fraction  of  the  sunlight  falling  on  the  whole  PV  facility  is  turned  to  electricity?  You  can  look  at  the  image  for  a  PV  facility  here  in  the  “Background”  section.  Try  to  visualize  the  panels  rotated  flat  to  the  ground,  and  then  estimate  how  much  extra  space  the  facility  needs  beyond  the  areas  of  the  panels.  

B. Now,  decide  you  are  the  Energy  Czar  of  the  U.S.  with  unlimited  powers  of  eminent  domain  to  seize  land  for  energy  production.  Pick  a  general  region  for  installing  large-­‐scale  solar  plants  based  on  the  NREL  map  of  annual  mean  solar  insolation.  The  NREL  site  is  buggy  but  there’s  an  older  map  here:  http://www.c2es.org/docUploads/Solar-­‐1.png.  You  want  to  pick  locations  that  are  sunny,  cloud-­‐free,  flat,  and  cheap.  The  map  uses  irritating  areal  energy  density  units  of  kWh/m2/day  rather  than  W/m2  so  you  have  to  convert  units.  State  the  (estimated)  average  W/m2  of  solar  insolation  in  the  region  you  are  considering  appropriating.  

Parabolic trench collectors, solar thermal installation near Barstow, CA, built in 1984. Operated by NextEra Energy. Image copyright unknown.

PS20 power tower, Seveille, Spain, 1255 mirrors, power up to 20 MW. Operational 2013. Image: SWNS.com.

Page 3: PS18 l - University of Chicago

C. Given  the  effective  efficiency  of  your  PV  facility,  what  is  the  Welect/m2  you  can  generate  from  your  choice  of  solar  technology  in  that  location?    

D. (Optional)  Repeat  C  for  solar  thermal.  Estimate  the  effective  efficiency  of  solar  thermal  at  producing  electricity  from  the  information  above  and  from  the  photographs  shown,  and  then  compute  the  resulting  areal  energy  density  (i.e.  Welect/m2),How  does  it  compare  to  solar  PV?  

E. Compare  your  answers  in  C  (and  D  if  you  did  it)  to  the  target  areal  energy  density  for  powering  a  future  world  that  we’ve  been  using  in  class.  Note:  remember  that  the  number  you  computed  above  is  for  generating  electricity,  so  is  not  truly  comparable  to  the  metric  we  wrote  down  in  class.  For  solar  PV  there  is  no  waste  heat  as  you’d  have  in  a  heat  engine;  for  solar  thermal  the  number  you  have  in  D  is  “downstream”  of  that  energy  loss.  So  a  world  powered  by  solar  PV  or  thermal  would  really  need  to  meet  only  about  ½  your  target  number.  

F. Appropriate  as  much  land  as  you  need  to  set  up  an  energy  system  capable  of  meeting  current  U.S.  electricity  needs.  Print  out  the  NREL  map  and  block  out  on  it  the  land  you  would  have  to  seize  to  fill  all  current  U.S.  electricity  needs  with  your  favorite  solar  technology.    

G. Repeat  the  above  but  now  assume  that  you  will  get  rid  of  fossil  fuels  entirely  –  you’ll  electrify  cars  etc.  Appropriate  enough  land  to  meet  all  of  US  current  primary  energy  needs,  and  mark  your  appropriation  on  a  new  printout  of  the  map.  Again,  remember  that  if  you  move  to  solar  power  you  can  reduce  the  primary  energy  usage  you  need  because  in  the  case  of  PV,  you  avoid  heat  losses,  and  for  solar  thermal  you  already  accounted  for  them.  Compare  to  your  wind  maps  and  discuss.  

To  actually  implement  a  transition  to  solar,  you’d  have  to  also  build  infrastructure  to  move  electricity  from  where  it  is  generated  to  where  it  is  needed.  There  is  limited  transmission  into  the  sunny  desert  areas  you  likely  appropriated,  so  you’ll  basically  need  to  build  from  scratch.  The  slides  handed  out  for  the  electricity  markets  discussion  list  a  rule  of  thumb  for  transmission  line  cost  of  $500-­‐700/(MW  km),  though  other  estimates  are  higher  (https://iea-­‐etsap.org/E-­‐TechDS/PDF/E12_el-­‐t&d_KV_Apr2014_GSOK.pdf)  Sub  

H. (Optional)  For  your  replace-­‐electricity  generation  solution  of  F,  draw  on  your  map  the  primary  transmission  lines  you’d  need  to  include  and  estimate  their  total  cost.  Since  you’re  not  proposing  increasing  total  electricity  usage,  you  can  assume  that  the  existing  grid  is  more  or  less  fine;  you  just  need  to  build  high-­‐voltage  transmission  lines  to  get  your  electricity  closer  to  the  demand  locations.  

I. (Optional).  Repeat  the  above  for  the  all-­‐primary-­‐energy  solution  of  G.  Now  you’re  going  to  need  to  expand  the  entire  electrical  grid  since  you’re  proposing  a  radical  expansion  of  electricity  use  –  that  is,  you’re  going  to  also  have  to  build  new  low-­‐voltage  transmission  and  distributions  lines.  

 

Page 4: PS18 l - University of Chicago

Problem  2:  Fossil  fuel  extraction  &  consequences  

The  modern  “pumpjack”  looks  somewhat  like  an  early  Newcomen  or  Watt  engine:  

 

L.  Pumpjack,  R.  Watt’s  “Old  Bess”  engine,  both  used  for  pumping  liquids  

Both  actually  use  similar  pumps.  But,  in  the  steam  engines,  the  cycle  time  of  the  engine  was  the  same  as  that  of  the  pump  –  the  piston  connected  directly  to  the  rocker  beam.    The  pumpjack  is  driven  by  a  high-­‐speed  diesel  engine,  so  it  needs  complicated  gearing  to  allow  the  beam  to  rock  much  more  slowly  than  the  engine  pistons  are  oscillating.  

A. Watch  the  video  here  on  the  “sucker  rod  pump”  used  in  oil  wells.  What  reminds  you  of  the  older  lift  pump?  

http://www.youtube.com/watch?v=SFJFiyXTOa0    

B. Watch  the  video  here  on  the  pumpjack’s  gearing  system  and  explain  how  the  1200  rpm  rotation  of  the  engine  is  downconverted  to  the  speed  of  the  pump.  (What  is  that  speed?)  

http://www.youtube.com/watch?v=FU0dYV3LvAk&feature=related  

C. Watch  these  fracking  videos,  first  on  drilling  the  wells…  

http://www.youtube.com/watch?v=fBQCQ6HL2Yw  

D. ..and  then  on  the  fracking  process  itself,  and  comment  on  something  interesting.  Both  videos  are  by  a  drilling  company  so  obviously  are  positive  on  safety  issues.  

http://www.youtube.com/watch?v=7ned5L04o8w  

 

 

 

Page 5: PS18 l - University of Chicago

Problem  3:  Energy  losses  in  automobiles  /  fuel  economy  

Background:    Where  does  the  chemical  energy  of  the  fuel  you  burn  in  your  automobile  go?  When  you  think  about  it,  it’s  not  immediately  obvious  that  you’d  need  to  keep  the  engine  on  once  you  get  a  car  up  to  speed.  Of  course  you  need  to  apply  power  to  the  car  to  accelerate  it  up  to  speed    -­‐-­‐  you’re  adding  kinetic  energy.  But  once  the  car  is  at  cruising  speed,  its  kinetic  energy  is  constant,  and  there’s  no  change  in  energy/time.  Why  do  you  then  need  to  keep  burning  fuel  to  apply  mechanical  work  to  the  engine?  Wouldn’t  that  force  your  car  to  continue  accelerating?  

The  answer  is,  your  car  is  constantly  experiencing  losses  of  energy.  You  could  use  your  engine  only  on  accelerating  if  your  car  had  no  internal  friction,  slipped  frictionlessly  through  the  atmosphere,  and  had  perfectly  round,  perfectly  stiff  wheels  that  made  perfect  contact  with  the  ground  at  a  single  point.  In  real  life  though,  the  car  loses  energy  in  many  ways.  As  the  car  moves,  it  must  push  air  ahead  of  it,  giving  some  of  its  kinetic  energy  to  the  air  (“air  resistance”  or  “aerodynamic  drag”).  The  wheels  deform  on  contact  with  the  ground  and  so  scrape  along  it  and  lose  energy  as  they  roll.  (We  call  this  “rolling  resistance”.  You  have  experienced  it  personally  if  you  try  switching  between  a  road  bike  with  skinny  tires  and  then  a  mountain  bike  with  fat  knobby  tires  and  observe  how  much  slower  you  are  on  the  fat-­‐tired  bike.)  And  no  matter  how  well-­‐oiled  and  well-­‐greased  your  car  is,  the  parts  scrape  against  each  other  and  lose  energy  to  friction.  You  need  to  continue  drawing  power  from  your  engine  to  compensate  for  all  these  ongoing  losses.  And,  your  actual  power  draw  is  in  fact  significantly  more  than  the  losses  of  kinetic  energy,  because  the  thermodynamic  efficiency  of  a  car  engine  is  typically  only  around  25%.    Since  you  throw  ¾  of  the  chemical  energy  in  fuel  away  as  waste  heat,  you  need  to  burn  fuel  equivalent  to  4  times  as  much  power  as  the  car  is  losing  to  friction.  

Side  note:  we  use  the  terms  ‘fuel  economy’  or  ‘fuel  efficiency’  to  describe  the  amount  of  energy  a  car  uses  in  driving,  but  the  term  ‘efficiency’  is  deceptive.  Fuel  usage  differences  aren’t  mostly  due  to  differences  in  the  thermodynamic  efficiency  of  engines.  It’s  just  that  heavier,  blockier,  and  bigger  cars  necessarily  require  more  work  to  keep  in  motion.  Similarly,  driving  any  car  uses  more  energy  than  a  motorcycle.  Calling  this  ‘waste’  is  a  statement  of  values  as  much  as  physics.  

In  typical  average  driving  for  a  small  car,  the  energy  losses  in  driving  are  split  fairly  equally  between  braking,  rolling  resistance,  air  resistance,  and  frictional  losses.  The  slides  posted  online  help  walk  you  through  the  formulas  for  air  resistance  and  rolling  resistance.  You  may  want  to  read  also  the  posted  document  “Air_and_rolling_resistance.pdf”  for  the  physics.    

Note:  Despite  improved  engineering  of  automobiles,  fuel  economy  –  the  amount  of  energy  needed  to  drive  some  distance  –  remained  almost  flat  for  decades.  You  can  see  this  here:  http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_04_23.html  

from  the  Dept.  of  Transportation.  Over  time,  cars  became  more  streamlined  in  profile,  reducing  their  air  resistance  (see  figure  in  the  handout  pdf),  and  engine  technology  improved,  reducing  engine  losses.  But  cars  also  became  heavier  (note  that  both  rolling  resistance  and  the  power  needed  to  accelerate  scale  with  the  car’s  mass),  and  we  also  demand  that  cars  deliver  higher  performance,  so  their  engines  are  no  longer  optimized  for  the  kind  of  driving  they  actually  do.    Most  technological  improvements  since  the  1970s  were  thus  counteracted  by  driving  heavier  and  more  powerful  vehicles.  Only  in  recent  years,  since  new  fuel  economy  standards  were  imposed,  have  fuel  economy  numbers  begun  to  creep  up.  

 

Page 6: PS18 l - University of Chicago

Problems:  Assume  that  you  have  a  middle-­‐of-­‐the-­‐road  new  car  for  some  reasonable  year  (state  it).    You  can  use  the  DOT  table  if  you  want  to  estimate  fuel  economy  for  highway  driving.  Pick  values  for  drag  and  rolling  resistance  coefficients  (Cd  Crr)  from  the  figures  in  the  slides.  Make  reasonable  estimates  about  car  weight  and  size.  A  typical  passenger  car  will  have  mass  ~  1200  kg  and  cross  sectional  area  ~  3  m2.  60  mph  (100  km/hour)  is  a  reasonable  speed  for  highway  driving.  

For  optional  problems  –  a  passenger  train  weighs  ~  500  tons,  a  freight  train  ~  3000  tons  (with  super-­‐freights  up  to  5  x  as  much).  Freight  trains  travel  50  mph  max  (80  km/hr);  bullet  trains  travel  200  mph  (320  km/hr).  The  mass  of  a  bicycle  +  rider  is  dominated  by  that  of  the  rider  (the  bike  contributes  ~  10  kg),  a  reasonable  racing  speed  is  25  mph  ~  40  km/hr  

A. State  your  assumptions,  including  a  bit  higher  fuel  economy  for  highway  driving.  Give  speeds  in  m/s.  

B. Compute  your  gasoline  consumption  in  gallons  per  hour  for  highway  driving.    

C. Now  use  your  knowledge  of  the  energy  density  of  gasoline  and  convert  units  to  state  the  car’s  total  power  consumption  in  kW,  during  highway  driving.    

D. Divide  the  power  in  problem  C  by  ~4  to  get  the  mechanical  work  that  the  engine  puts  out,  in  kW.  This  term  is  often  called  the  power  “at  the  wheels”.  Convert  to  horsepower  for  additional  intuition.  

E. Even  my  tiny  little  Honda  Fit  has  a  stated  horsepower  (the  maximum  power  that  the  engine  can  provide  to  the  wheels)  of  130  hp.  Why  is  this  different  from  the  answer  in  D?  

F. Estimate  your  power  loss  to  aerodynamic  drag  during  highway  driving,  in  kW.    

G. Estimate  your  power  loss  to  rolling  resistance  during  highway  driving,  in  kW.    

H. Which  of  these  is  the  more  important  factor  to  your  fuel  efficiency  in  highway  driving?  

I. (Optional)  For  your  passenger  car  of  the  previous  problems,  assume  you  drop  your  speed  by  1/3  to  that  of  city  driving.  Which  now  matters  more,  aerodynamic  drag  or  rolling  resistance?  Hint:  do  this  simply,  just  use  scale  factors.  The  ratio  of  power  loss  to  aerodynamic  drag  vs  that  to  rolling  resistance  is    Ratio  =  (Cd  *  ½  ρ  A  v3)  /  (Crr  m  g  v)  ….which  scales  as  v3/v  or  v2.  So  just  take  the  ratio  of  F  to  G  (drag  loss  over  rolling  resistance  loss),  and  then  scale  it  by  the  appropriate  factor.  

J. For  vehicles  that  drive  slowly  and  do  a  lot  of  stopping  and  starting  (postal  trucks,  golf  carts),  energy  use  is  dominated  by  braking  and  rolling  resistance,  and  aerodynamic  drag  is  unimportant.  They  therefore  do  not  look  very  streamlined  in  profile.    Freight  trains  both  drive  fast  and  do  not  do  a  lot  of  braking,  and  yet  they  are  also  designed  with  blocky  profiles.  Explain  -­‐  why  is  aerodynamic  drag  not  important  for  a  freight  train?    

Page 7: PS18 l - University of Chicago

Optional  problems  for  #2  

K. (Optional)  A  bullet  train,  on  the  other  hand,  is  streamlined  in  profile,  suggesting  that  air  resistance  matters.  Plug  in  numbers  to  demonstrate  that  this  is  the  case.  

 

L. (Optional)  By  how  much  is  your  gasoline  consumption  increased  if  you  speed  on  the  highway,  driving  75  mph  instead  of  60  mph?  (This  difference  is  why  you’re  advised  to  drive  as  slowly  as  possible  if  you  are  low  on  gasoline.)    

M. (Optional)  The  U.S.  55  mph  speed  limit  was  set  in  1974  by  Congress  as  part  of  the  Emergency  Highway  Energy  Conservation  Act,  intended  to  reduce  gasoline  use  after  the  OPEC  oil  embargo.  Was  this  a  plausible  way  to  reduce  our  dependence  on  foreign  oil?  (See  handout  to  look  at  drag  coefficients  in  1974  –  cars  were  more  boxy  then.)  

N.  (Optional)  Formula  One  racing  cars  are  intended  to  go  very  fast,  in  races  where  fuel  consumption  matters,  but  they  aren’t  designed  like  Porsche  Boxsters  –  instead,  they  have  high  drag  coefficients  between  0.7  and  1.  Aerodynamically,  they  are  more  “blocky”  even  than  Hummers.  This  is  a  deliberate  design  choice  (and  the  engineers  are  good).  Why  was  it  chosen?  

O. (Optional)  Formula  One  cars  not  only  have  a  high  Cd  but  also  have  high  rolling  resistance  (see  figures  below).  Tires  for  racing  bikes,  on  the  other  hand,  are  designed  for  low  rolling  resistance.  These  must  be  rational  choices,  but  why?  Discuss  the  factors  that  led  to  these  opposite  choices  for  bike  racing  vs.  auto  racing.    

 

 

 

 

 

 

Michelin  Pro3  Race  tire,  116  psi      Pirelli  PZero  Formula  1  race  tire:  ~15  psi  

P. (Optional)  Go  to  a  Metra  station  and  observe  the  sanding  that  provides  enough  friction  to  let  the  train  start.  Photograph  the  sanding  system  in  action  if  you  can.