80
Pseudogaps and strongly correlated superconductivity A.-M. Tremblay Brookhaven National Laboratory Wednesday January 18, 2017 Institut quantique

Pseudogapsand strongly correlated superconductivity

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Pseudogapsand strongly correlated superconductivity

Pseudogaps and strongly correlated superconductivity

A.-M. Tremblay

Brookhaven National LaboratoryWednesday January 18, 2017

Institut quantique

Page 2: Pseudogapsand strongly correlated superconductivity

CDW

Our road mapTh

èse

de F

ranc

is L

alib

erté

,U

nive

rsité

de

Sher

broo

ke

Page 3: Pseudogapsand strongly correlated superconductivity

Outline

• Part I– Pseudogap

• Mott physics• Precursor to LRO

• Part II– Strongly correlated superconductivity (BEDT)– Retardation

Page 4: Pseudogapsand strongly correlated superconductivity

Pseudogap

Part I

Page 5: Pseudogapsand strongly correlated superconductivity

Three broad classes of mechanisms for pseudogap

• Phase with a broken symmetry (discrete)• Mott Physics + J• Precursor of LRO (d = 2)

– Mermin-Wagner allows a large fluctuation regime– Even with weak correlations

Page 6: Pseudogapsand strongly correlated superconductivity

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Page 7: Pseudogapsand strongly correlated superconductivity

Density of states

Page 8: Pseudogapsand strongly correlated superconductivity

Density of states

Page 9: Pseudogapsand strongly correlated superconductivity

U = 6.2 t Normal state. Density of states

Page 10: Pseudogapsand strongly correlated superconductivity

Density of states

Khosaka et al. Science 315, 1380 (2007);

Page 11: Pseudogapsand strongly correlated superconductivity

Spin susceptibility

Page 12: Pseudogapsand strongly correlated superconductivity

Spin susceptibility

Underdoped Hg1223Julien et al. PRL 76, 4238 (1996)

Page 13: Pseudogapsand strongly correlated superconductivity

Two crossover lines

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B 89, 165113/1-6 (2014)

Giovanni SordiGiovanni SordiGiovanni SordiPatrick SémonPatrick SémonPatrick Sémon

Page 14: Pseudogapsand strongly correlated superconductivity

c-axis resistivity

K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, Phys. Rev.B 50, 6534 (1994).

Page 15: Pseudogapsand strongly correlated superconductivity

Physics

Page 16: Pseudogapsand strongly correlated superconductivity

Plaquette eigenstates

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB 80, 064501 (2009)

See also:

Page 17: Pseudogapsand strongly correlated superconductivity

The pseudogap in electron-doped cuprates

Page 18: Pseudogapsand strongly correlated superconductivity

TPSC: Theory vs experiment

Page 19: Pseudogapsand strongly correlated superconductivity

CDW

Our road mapTh

èse

de F

ranc

is L

alib

erté

,U

nive

rsité

de

Sher

broo

ke

Page 20: Pseudogapsand strongly correlated superconductivity

Model parameters

Ut

t’

t’’

Weak coupling U<8t

t’=-0.175t, t’’=0.05tt=350 meV, T=200 K

n=1+x – electron filling

fixed

H −∑ij t i,j ci cj cj

ci U∑ i ni↑ni↓

Page 21: Pseudogapsand strongly correlated superconductivity

Hot spots from AFM quasi-static scattering

Armitage et al. PRL 2001

d = 2

Mermin-Wagner

Vilk, A.-M.S.T (1997)Kyung, Hankevych, A.-M.S.T., PRL, 2004

Page 22: Pseudogapsand strongly correlated superconductivity

15% doping: EDCs along the Fermi surfaceTPSC

Exp

Hankevych, Kyung, A.-M.S.T., PRL, sept. 2004

Umin< U< Umax

Umax also from CPT

Page 23: Pseudogapsand strongly correlated superconductivity

Fermi surface plots

be not too large

increase for smaller doping

Hubbard repulsion U has to…

U=5.75

U=5.75

U=6.25

U=6.25

B.Kyung et al.,PRB 68, 174502 (2003)Hankevych, Kyung, A.-M.S.T., PRL, sept. 2004

15%

10%

Page 24: Pseudogapsand strongly correlated superconductivity

Pseudogap temperature and QCP

ΔPG≈10kBT* comparable with optical measurements

Hankevych, Kyung, A.-M.S.T., PRL 2004 : Expt: Y. Onose et al., PRL (2001).

ξ≈ξth at PG temperature T*, and ξ>ξth for T<T*

supports further AFM fluctuations origin of PG

Prediction

Page 25: Pseudogapsand strongly correlated superconductivity

Thermal de Broglie wavelength

Δ kBT

∇k Δk kBT

Δk k BTv F

2 th k BT

v F

th v FT

Page 26: Pseudogapsand strongly correlated superconductivity

e-doped pseudogap

E. M. Motoyama et al.. Nature 445, 186–189 (2007).

Vilk criterion

Page 27: Pseudogapsand strongly correlated superconductivity

Precursor of SDW state(dynamic symmetry breaking)

• Y.M. Vilk and A.-M.S. Tremblay, J. Phys.Chem. Solids 56, 1769-1771 (1995).

• Y. M. Vilk, Phys. Rev. B 55, 3870 (1997).• J. Schmalian, et al. Phys. Rev. B 60, 667 (1999).• B.Kyung et al.,PRB 68, 174502 (2003).• Hankevych, Kyung, A.-M.S.T., PRL, sept 2004 • Kusko et al. PRB 66, 140513 (2002).

Page 28: Pseudogapsand strongly correlated superconductivity

Benchmarks for TPSC

Normal state

Page 29: Pseudogapsand strongly correlated superconductivity

q0.0

0.4

(0,0) (0,0) q0

20.0

0.4

0

2

n S ch

(q)

n S sp

(q)

U = 8

U = 8

U = 4

U = 4n = 0.26

n = 0.94n = 0.60

n = 0.45n = 0.20

n = 0.80n = 0.33n = 0.19

n = 1.0n = 0.45n = 0.20

(a)

(b) (c)

(d)

U > 0 = 58 X 8

QMC + cal.: Vilk et al. P.R. B 49, 13267 (1994)

Notes:-F.L.parameters

-Self alsoFermi-liquid

(0.0) (

(

Benchmark comparison with QMCBenchmark comparison with QMC

Page 30: Pseudogapsand strongly correlated superconductivity

0.0 0.2 0.4 0.6 0.8 1.0T

0

4

8

12

16

S sp(

)

Monte Carlo

4x4

6x6

8x8

10x10

12x12

U=4n=1

TX Tmf

Calc.: Vilk et al. P.R. B 49, 13267 (1994) QMC: S. R. White, et al. Phys. Rev. 40, 506 (1989).

)( NO A.-M. Daré, Y.M. Vilk and A.-M.S.T Phys. Rev. B 53, 14236 (1996)

~ exp ( ) /C T T

n=1

Page 31: Pseudogapsand strongly correlated superconductivity

-5.00 0.00 5.00 -5.00 0.00 5.00/t

(0,0)

(0, )

( , )22

( , ) 4 4

( , ) 4 2

(0,0) (0, )

( ,0)

Monte Carlo Many-Body

-5.00 0.00 5.00

Flex

U = + 4

Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

Proofs...

TPSC

Page 32: Pseudogapsand strongly correlated superconductivity

I

II

kF

A()

E

k

A()

kF

III

99-aps/Explication...

E

k

A()

kF

TX

c

kF

kF

T = 0n

T

Page 33: Pseudogapsand strongly correlated superconductivity

Theoretical difficulties

Page 34: Pseudogapsand strongly correlated superconductivity

Theory without small parameter: How should we proceed?

• Identify important physical principles and laws to constrain non-perturbative approximation schemes– From weak coupling (kinetic)– From strong coupling (potential)

• Benchmark against “exact” (numerical) results.• Check that weak and strong correlation

approaches agree in intermediate range.• Compare with experiment

Page 35: Pseudogapsand strongly correlated superconductivity

TPSC: How it works

e-doped

Page 36: Pseudogapsand strongly correlated superconductivity

TPSC: general ideas

• General philosophy– Drop diagrams– Impose constraints and sum rules

• Conservation laws• Pauli principle ( <n> = <n > )• Local moment and local density sum-rules

• Get for free: • Mermin-Wagner theorem• Kanamori-Brückner screening• Consistency between one- and two-particle G =

U<n n->Vilk, AMT J. Phys. I France, 7, 1309 (1997); Theoretical methods for strongly correlated electrons also (Mahan, 3rd)

Page 37: Pseudogapsand strongly correlated superconductivity

= +

1

32 2

1

33

12

2

3

4

5

-

=1 2 +

2

45

2

1

1

21

A better approximation for single-particle properties (Ruckenstein)

Y.M. Vilk and A.-M.S. Tremblay, J. Phys. Chem. Solids 56, 1769 (1995).Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. 33, 159 (1996);

N.B.: No Migdal theorem

TPSC: Single-particle properties

Page 38: Pseudogapsand strongly correlated superconductivity

Crossing symmetry

Page 39: Pseudogapsand strongly correlated superconductivity

TPSC approach: two steps

I: Two-particle self consistency

1. Functional derivative formalism (conservation laws)

(a) spin vertex:

(b) analog of the Bethe-Salpeter equation:

(c) self-energy:

2. Factorization

Page 40: Pseudogapsand strongly correlated superconductivity

TPSC…

II: Improved self-energy

3. The F.D. theorem and Pauli principle

Kanamori-Brückner screening

Insert the first step resultsinto exact equation:

n ↑ − n↓2 ⟨n↑ ⟨n↓ − 2⟨n↑n↓

Page 41: Pseudogapsand strongly correlated superconductivity

Internal accuracy check

Internal accuracy check

f- sum rule (conservation law)

Page 42: Pseudogapsand strongly correlated superconductivity

Main collaborators on TPSC

Bumsoo KyungBumsoo KyungBumsoo Kyung

Dominic BergeronDominic Bergeron Syed Hassan

Yury VilkLiang Chen

Steve AllenBahman Davoudi

A.-M. DaréV. HankevychJ.S. Landry

D. Poulin S. Moukouri

F. Lemay H. Touchette

Page 43: Pseudogapsand strongly correlated superconductivity

Strongly correlated superconductivity

Part II

Page 44: Pseudogapsand strongly correlated superconductivity

Organics : Phase diagram, finite T

Made possible by algorithmic improvements

Patrick SémonPatrick SémonCharles-David Hébert

P. Sémon et al.PRB 85, 201101(R) (2012)

PRB 90 075149 (2014);and PRB 89, 165113 (2014)

Page 45: Pseudogapsand strongly correlated superconductivity

Layered organics (BEDT-X family)

meV 50t meV 400U

t’/t ~ 0.6 - 1.1

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn 65 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. 18, 309 (1998)

Y. Shimizu, et al. Phys. Rev. Lett. 91, 107001(2003)

tt

t’

Page 46: Pseudogapsand strongly correlated superconductivity

Anisotropic triangular lattice

See: Poster Shaheen Acheche

Page 47: Pseudogapsand strongly correlated superconductivity

Phase diagram for organics

Phase diagram (X=Cu[N(CN)2]Cl)S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

40

30

20

10

0

T

(K)

6004002000

P (bar)

AF

U-SCAF/SC

PI

M

F. Kagawa, K. Miyagawa, + K. Kanoda PRB 69 (2004) +Nature 436 (2005)

Powell, McKenzie cond-mat/0607078Bg for C2h and B2g for D2h

Page 48: Pseudogapsand strongly correlated superconductivity

Phase diagram at n = 1

Y. Kurisaki, et al. Phys. Rev. Lett. 95, 177001(2005)

Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

X= Cu2(CN)3 (t’~ t)

Page 49: Pseudogapsand strongly correlated superconductivity

Superconductivity near the Mott transition

n = 1, d = 2 square lattice

/ t

Page 50: Pseudogapsand strongly correlated superconductivity

Superconductivity near the Mott transition

n = 1, d = 2 square lattice

Page 51: Pseudogapsand strongly correlated superconductivity

Superconductivity near Mott transition (n = 1)

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Page 52: Pseudogapsand strongly correlated superconductivity

Doped Organics

Page 53: Pseudogapsand strongly correlated superconductivity

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Page 54: Pseudogapsand strongly correlated superconductivity

Doped organics

n = 1, d = 2 square lattice

Page 55: Pseudogapsand strongly correlated superconductivity

Doped organics

n = 1, d = 2 square lattice

Page 56: Pseudogapsand strongly correlated superconductivity

First order and Widom line in organics

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Compare: T. Watanabe, H. Yokoyamaand M. Ogata

JPS Conf. Proc. 3, 013004 (2014)

Page 57: Pseudogapsand strongly correlated superconductivity

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

n= 1

Page 58: Pseudogapsand strongly correlated superconductivity

t’ = 0.4t overview

Compare: T. Watanabe, H. Yokoyama and M. OgataJPS Conf. Proc. 3, 013004 (2014)

Page 59: Pseudogapsand strongly correlated superconductivity

Generic case highly frustrated case

Page 60: Pseudogapsand strongly correlated superconductivity

Summary : organics

• Agreement with experiment• SC: larger Tc and broader P range if doped• Larger frustration: Decrease TN much more than Tc

• Normal state metal to pseudogap crossover

• Predictions• First order transition at low T in normal state (B induced)• Crossovers in SC state associated with normal state.

• Physics• SC dome without an AFM QCP. Extension of Mott• SC from short range J. • Tc dome maximum near normal state 1st order

Page 61: Pseudogapsand strongly correlated superconductivity

Pairing mechanism

Back to high Tc

Page 62: Pseudogapsand strongly correlated superconductivity

The glue

Page 63: Pseudogapsand strongly correlated superconductivity

A cartoon strong correlation picture

H M F ∑k ,

kck ,† c k , − 4Jmm̂ − Jdd̂ d̂ † F 0

J∑⟨i,j

S i S j J∑⟨i,j

12 c i

†c i 12 c j

†c j

d ⟨d̂ 1/N∑kcos k x − cos k y ⟨c k ,↑c −k ,↓

Pitaevskii Brückner: Pair state orthogonal to repulsive core of Coulomb interaction

Miyake, Schmitt–Rink, and VarmaP.R. B 34, 6554-6556 (1986)

P.W. Anderson Science 317, 1705 (2007)

More sophisticated Slave Boson: Kotliar Liu PRB 1988

Page 64: Pseudogapsand strongly correlated superconductivity

Im an and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

Page 65: Pseudogapsand strongly correlated superconductivity

The glue

Wakimoto … BirgeneauPRL (2004)

Kyung, Sénéchal, Tremblay, Phys. Rev. B 80, 205109 (2009)

Page 66: Pseudogapsand strongly correlated superconductivity

The glue and neutrons

Wakimoto … Birgeneau PRL (2007);PRL (2004)

Page 67: Pseudogapsand strongly correlated superconductivity

The glue in CDMFT and DCA

Th. Maier, D. Poilblanc, D.J. Scalapino, PRL (2008)M. Civelli, PRL 103, 136402 (2009)M. Civelli PRB 79, 195113 (2009)E. Gull, A. J. Millis PRB 90, 041110(R) (2014)S. Sakai, M. Civelli, M. Imada arXiv:1411.4365

Page 68: Pseudogapsand strongly correlated superconductivity

Cumulative order parameter:

Anomalous Green function

Anomalous spectral function

Frequencies important for pairingBumsoo Kyung David SénéchalDavid SénéchalDavid Sénéchal

1 2 3 4 5

Scalapino, Schrieffer, Wilkins, Phys. Rev. 148 (1966)

Page 69: Pseudogapsand strongly correlated superconductivity

Nearest-neighbor repulsion shoulddestroy Tc?

Page 70: Pseudogapsand strongly correlated superconductivity

Extended Hubbard model

Page 71: Pseudogapsand strongly correlated superconductivity

YBa2Cu3O7 :

In cuprates:

S. Raghu, E. Berg, A. V. Chubukov et S. A. Kivelson, PRB 85, 024516 (2012)S. Onari, R. Arita, K. Kuroki et H. Aoki, PRB 70, 094523 (2004)

We expect superconductivity to disappear when:

In weakly correlated case U/W < 1

In mean-field stronglycorrelated case

Resilience to near-neighbor repulsion V(Scalapino)

S. Sorella, et al. Phys. Rev. Lett. 88, 117002 (2002)

Anderson-Morel

Page 72: Pseudogapsand strongly correlated superconductivity

Miyake, Schmitt–Rink et Varma, PRB 34, 6554-6556 (1986)Anderson, Baskaran, Zou et Hsu, PRL 58, 26 (1987)

Hartree-Fock :

d-wave in mean-field

Page 73: Pseudogapsand strongly correlated superconductivity

Resilience to near-neighbor repulsionDavid SénéchalDavid SénéchalDavid Sénéchal

Sénéchal, Day, Bouliane, AMST PRB 87, 075123 (2013)

Alexandre Day

Vincent Bouliane

Page 74: Pseudogapsand strongly correlated superconductivity

V also increases J

Page 75: Pseudogapsand strongly correlated superconductivity

J increases with Vexplaining better pairing at

low frequency

But V also induces more repulsion at high frequency,

explaining the negativeimpact at high frequency on

binding

Binding aspects of V

Page 76: Pseudogapsand strongly correlated superconductivity

Antagonistic effects of V at finite T

A. Reymbaut et al. PRB 94 155146 (2016)

Alexis Reymbaut

Page 77: Pseudogapsand strongly correlated superconductivity

Summary

• Pseudogap in e-doped is a d=2 precursor of AFM

• Normal state first-order transition fromMott & J is an organizing principle for – The normal and superconducting states – Cuprates and organics are examples– Predictions for organics

• Mechanism: J short-range is retarded and resilient to V

Page 78: Pseudogapsand strongly correlated superconductivity

Open questions

• Why does Tc start to go down at such large filling?

• Effect of competition with other order.

Page 79: Pseudogapsand strongly correlated superconductivity

Mammouth

Page 80: Pseudogapsand strongly correlated superconductivity

C’est fini…

A.-M.S. Tremblay“Strongly correlated superconductivity”

Chapt. 10 : Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3, E. Pavarini, E. Koch, and U. Schollwöck (eds.)

Verlag des Forschungszentrum Jülich, 2013

Review: A.-M.S.T. arXiv: 1310.1481