62
Pulse Methods for Preserving Quantum Coherences T. S. Mahesh Indian Institute of Science Education and Research, Pune

Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

  • Upload
    shina

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

Pulse Methods for Preserving Quantum Coherences T. S. Mahesh Indian Institute of Science Education and Research, Pune. Criteria for Physical Realization of QIP. Scalable physical system with mapping of qubits A method to initialize the system Big decoherence time to gate time - PowerPoint PPT Presentation

Citation preview

Page 1: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Pulse Methods for Preserving Quantum Coherences

T. S. Mahesh

Indian Institute of Science Education and Research, Pune

Page 2: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Criteria for Physical Realization of QIP

1. Scalable physical system with mapping of qubits

2. A method to initialize the system

3. Big decoherence time to gate time

4. Sufficient control of the system via time-dependent Hamiltonians

(availability of universal set of gates).

5. Efficient measurement of qubits

DiVincenzo, Phys. Rev. A 1998

Page 3: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 4: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 5: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Closed and Open Quantum System

EnvironmentEnvironment

Hypothetical

Page 6: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Coherent Superposition

| = c0|0 + c1|1, with |c0|2 + |c1|2 = 1

An isolated 2-level quantum system

rs = || = c0c0*|0 0| + c1c1

*|1 1|+

c0c1*|0 1| + c1c0

*|1 0|

c0c0* c0c1

*

c1c0* c1c1

*

Density Matrix

Coherence

Population

=

Page 7: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Effect of environmentQuantum System – Environment interaction Evolution U(t)

|0|E |0|E0

|1|E |1|E1

U(t)

U(t)

||E = (c0|0 + c1|1)|E U(t)

c0|0|E0 + c1|1|E1

System Environment

System Environment

System Environment

Entangled

Page 8: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Decoherencer = ||E |E|

= c0c0*|0 0||E0 E0| + c1c1

*|1 1||E1 E1| +

c0c1*|0 1||E0 E1| + c1c0

*|1 0||E1 E0|

rs = TraceE[r] = c0c0*|0 0| + c1c1

*|1 1|+

E1|E0 c0c1*|0 1| + E0|E1 c1c0

*|1 0|

c0c0* E1|E0 c0c1

*

E0|E1 c1c0* c1c1

*

=Coherence

Population

|E1(t)|E0(t)| = eG(t)

Coherence decays irreversibly

Decoherence

Page 9: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 10: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Signal Decay

Time Frequency

13-C signal of chloroformin liquid

Signal x

Page 11: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Signal Decay

IncoherenceDecoherence

DepolarizationAmplitude decay

Phasedecay

T1 process

T2 process

Relaxation

Page 12: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Signal Decay

IncoherenceDecoherence

DepolarizationAmplitude decay

Phasedecay

T1 process

T2 process

Relaxation

Page 13: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Incoherence

Individual (30 Hz, 31 Hz)

Net signal – faster decay

Time

Page 14: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Hahn-echo or Spin-echo (1950)

y

t t

+ d

d

y

Symmetric distribution of pulses removes incoherence

Signal

Echo

/2-x

Page 15: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Signal Decay

IncoherenceDecoherence

DepolarizationAmplitude decay

Phasedecay

T1 process

T2 process

Relaxation

Page 16: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

2

2

1

10

10

1

0 00 00 0 0 0

0 0 0 0 0

x Tx x

y y yTeq

z z z zT

M M Md M M Mdt

M M M M

M

eqzM

T1

Time to reach equilibrium, (energy of spin-system is not conserved)

T2Lifetime of coherences, (energy of spin-system is conserved)

Bloch’s Phenomenological Equations (1940s)

Page 17: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Bloch’s Phenomenological Equations (1940s)

2

2

1

10

10

1

0 00 00 0 0 0

0 0 0 0 0

x Tx x

y y yTeq

z z z zT

M M Md M M Mdt

M M M M

M

eqzM

1

2

2

exp)0()(

exp)0()(

exp)0()(

TtMMMtM

TtMtM

TtMtM

eqzz

eqzz

yy

xx

Solutions in rotating frame:

eqzM

0

0

Page 18: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Signal Decay

IncoherenceDecoherence

DepolarizationAmplitude decay

Phasedecay

T1 process

T2 process

Relaxation

Page 19: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Effect of environment

r r’ = E(r)

= ∑ Ek r Ek†

k(operator-sum representation)

Page 20: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Amplitude damping (T1 process, dissipative)

E0 = p1/2 1 00 (1g1/2

E1 = p1/2 0 g1/2

0 0

E2 = (1 p)1/2 (1g1/2 0 0 1

E3 = (1 p)1/2 0 0

g1/2 0

r = p 00 1 p

Asymptotic state (t , g 1 :

g(t) is net damping : eg., g(t) = 1 et/T1

In NMR, p =

~ 0.5 + 104

1 1 + eE/kT

E(r) = ∑ Ek r Ek†

k

Page 21: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

M(t) = 1 2exp( t/T1)

Amplitude damping (T1 process, dissipative)

Measurement of T1: Inversion Recovery

Equilibrium

Inversion

t

Page 22: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Signal Decay

IncoherenceDecoherence

DepolarizationAmplitude decay

Phasedecay

T1 process

T2 process

Relaxation

Page 23: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Phase damping (T2 process, non-dissipative)

E0 = 1 00 (1g1/2

r = a 00 1-a

Stationary state (t , g 1 :

g(t) is net damping : eg., g(t) = 1 et/T2

E1 = 0 00 g1/2

r(t) = a bb* 1-a

E(r) = ∑ Ek r Ek†

k

Page 24: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Bloch’s equation : dMx(t) Mx(t) dt T2

=

Solution : Mx(t) = Mx(0) exp( t/T2)

Transverse magnetization: Mx(t) Re{r01(t)}

Phase damping (T2 process, non-dissipative)

Spin-SpinRelaxation

Signal envelop: s(t) = exp( t/T2)

FWHH = /T2

Page 25: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 26: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Carr-Purcell (CP) sequence (1954)

y

t

Signal

t

/2y

tt

y

tt

y

t

Shorter t is better (limited by duty-cycle of hardware)

H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954)

Page 27: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Meiboom-Gill (CPMG) sequence (1958)

x

t

Signal

t

/2y

tt

x

tt

x

t

Robust against errors in pulse !!!

S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958)

Page 28: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

CPMG

t t

t t

t t

t t

Sampling points

Dynamical effects are minimized Dynamical decoupling

time1 2 3 4

j = T(2j-1) / (2N) Linear in j

Time

Signal

CPNopulse

HahnEcho

CPMG

S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958)

Page 29: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Dynamical Decoupling (DD)

Optimal distribution of pulses for a system with dephasing bath

T = total time of the sequence

N = total number of pulses

j = T sin2 ( j /(2N+1) )

PRL 98, 100504 (2007)Götz S. Uhrig

Uniformly distributed pulsesCPMG (1958):

Uhrig 2007 (UDD):

Page 30: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Carr Purcell Sequence

j = T(2j-1) / (2N) Linear in jWas believed to be optimal for N flips in duration T

1 2 3 4

5 6 70time

Carr & Purcell, Phys. Rev (1954) .Meiboom & Gill, Rev. Sci. Instru. (1958).

1

3

4

5

6

70time

Uhrig Sequence

2

j = T sin2 ( j /(2N+1) )

Uhrig, PRL (2007)

T

T

Proved to be optimal for N flips in duration T

Page 31: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Hahn-echo (1950)

CPMG (1958)

PDD (XY-4) (Viola et al, 1999)

UDD (Uhrig, 2007)

Dynamical Decoupling (DD)

CDDn = Cn = YCn−1XCn−1YCn−1XCn−1

C0 = t(Lidar et al, 2005)

Page 32: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 33: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

ION-TRAP qubits

M. J. Biercuk et al, Nature 458, 996 (2009)

DD performance

Page 34: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Time (s) Time (s)

DD performanceElectron Spin Resonance(g-irradiated malonic acidsingle crystal)

J. Du et al, Nature461, 1265 (2009)

Page 35: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

13C of Adamantane

Dieter et al, PRA 82, 042306 (2010)

Solid State NMR

DD performance

Page 36: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Dynamical Decoupling in Solids

D. Suter et al,PRL 106, 240501 (2011)

13C of Adamantane

Page 37: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 38: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Spin in acoherent

state

Randomlyfluctuating local fields

Sources of decoherence – dipole-dipole interaction

Page 39: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Spin loosescoherence

Randomlyfluctuating local fields

Sources of decoherence – dipole-dipole interaction

Page 40: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Source of Phase-damping – chemical shift anisotropy

B0

Page 41: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Redfield Theory: semi-classical

System - > Quantum, Lattice - > Classical

],[ rr Hidtd

Completely reversibleNo decoherence

System

System+Random field(coarse grain)

eqRHidtd

rrrr

,

Page 42: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Local field X(t)

time

G(t) = X(t) X*(t+t) = dx1 dx2 x1 x2 p(x1,t) p(x1,t | x2, t)

Auto-correlation function

Fluctuations have finite memory: G(t) = G(0) exp(|t|/ tc)

tc Correlation Time

Auto-correlation

Spectral density J() = G(t) exp(-it) dt = G(0) 2tc

1+ 2tc2

Page 43: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Spectral density

J()

tc = 1

G(0) 2tc

1+ 2tc2

J() =

rr

,)( XXJdtd

(after secular approximation)

Page 44: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Spectral density

J()

tc = 1

G(0) 2tc

1+ 2tc2

J() =

1T1

J(2) + J()

J(2) + J() + J(0)1T2

3 8

15 4

3 8

Dipolar Relaxation in Liquids

G = d2 J() 2

0

c0c0

* eGt c0c1*

eGt c1c0* c1c1

*

Page 45: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Effect of decoupling pulses L. Cywinski et al, PRB 77, 174509 (2008).M. J. Biercuk et al, Nature (London) 458, 996 (2009)

0

exp(-i H(t) dt ) Magnus expansion

Time-dependent Hamiltonian

Page 46: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Filter Functions

|x(t)|= e(t)

Cywiński, PRB 77, 174509 (2008)M. J. Biercuk et al, Nature (London) 458, 996 (2009)

F()

t

= F() d2 J() 2

0

F(t)

Fourier Transform of Pulse-train

Page 47: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

J(t)

Modified Spectral density: J’() = J() F()

Residual area contributes to decoherence

Filter Functions

Cywiński, PRB 77, 174509 (2008)M. J. Biercuk et al, Nature (London) 458, 996 (2009)

= F() d2 J() 2

0

Page 48: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 49: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Two-qubit DD

Page 50: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Wang et al, PRL 106, 040501 (2011)

Two-qubit DDElectron-nuclear entanglement(Phosphorous donors in Silicon)

No DD PDD

Page 51: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

S. S. Roy & T. S. Mahesh, JMR, 2010

Fidelity = 0.995

Two-qubit DD – in NMR Levitt et al, PRL, 2004

|00

|11

|01 |10

Eigenbasis of Hz

90x , , , 90y , 12J

Hamiltonian: H = h1Iz1 + h2Iz

2+ hJ I1 I2

Hz HE

Eigenbasis of HE

|01−|102

|01+|102

|00 |11

Page 52: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

5-chlorothiophene-2-carbonitrile

Two-qubit DD – in NMR

2 ms 2 ms

27sj = Nt sin2 ( j /(2N+1) )t = 4.027 ms

Page 53: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

UDD-7 on 2-qubits

SingletFidelity

S. S. Roy, T. S. Mahesh, and G. S. Agarwal,Phys. Rev. A 83, 062326 (2011)

Page 54: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Entanglement

Product state

0110

01+10

0011

00+11

UDD-7 on 2-qubits

S. S. Roy, T. S. Mahesh, and G. S. Agarwal,Phys. Rev. A 83, 062326 (2011)

Page 55: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Dynamical Decoupling in Solids

CPMG

UDD

RUDD

Abhishek et al

Uhrig, 2011

Page 56: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Dynamical Decoupling in Solids1H of Hexamethylbenzene

Abhishek et al

DD on single-quantum coherences

Page 57: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Dynamical Decoupling in Solids

1H of Hexamethyl Benzene

Abhishek et al

No DD RUDD

Page 58: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

2q 4q 6q 8q

Abhishek et al

Dynamical Decoupling in Solids

Page 59: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 60: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Noise Spectroscopy Alvarez and D. Suter,arXiv: 1106.3463 [quant-ph]

|x(t)|= e(t)

F(t)

(t) = F(t) d2 J(t) 2

0

Page 61: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Contents1. Coherence and decoherence

2. Sources of signal decay

3. Dynamical decoupling (DD)

4. Performance of DD in practice

5. Understanding DD

6. DD on two-qubits and many qubits

7. Noise spectroscopy

8. Summary

Page 62: Pulse Methods for Preserving Quantum Coherences T. S. Mahesh

Summary

1. Dynamical decoupling can greatly enhance the coherence times,

some times by orders of magnitude

2. Various types of pulsed DD sequences are available. Best DD depends

on the spectral density of the bath, the state to be preserved, robustness

to pulse errors, etc.

3. Filter-functions are useful tools to understand the performance of DD.

4. DD on large number of interacting qubits also shows improved performance.