27
Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National Laboratory 10 nm spin charge

Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

Embed Size (px)

Citation preview

Page 1: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

Pure Spin Currentsvia Non-Local Injection

and Spin Pumping

Axel Hoffmann

Materials Science Division and Center for Nanoscale MaterialsArgonne National Laboratory

10 nm

spin charge

Page 2: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

2

Thanks toGoran Mihajlović, Oleksandr Mosendz, Yi Ji, John E. Pearson,

Frank Y. Fradin, J. Sam Jiang, and Sam D. Bader

Materials Science Division and Center for Nanoscale MaterialsArgonne National Laboratory

Miguel A. Garcia

Departamento Física de Materiales, Universidad Complutense de Madrid

Gerrit E. W. Bauer

Kavli Institute of NanoScience, Delft University of Technology

Peter Fischer and Mi-Young Im

Center for X-ray Optics, Lawrence Berkeley National Laboratory

$$$ Financial Support $$$DOE-BES

Page 3: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

3

Outline

Why Pure Spin Currents?

Electrical Injection

Spin Hall Effect

Spin Pumping

Conclusions

10 nm

spin charge

1 m

I V

Page 4: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

4

Spintronics

Putting

into Electronics

Novel DevicesNobel Prize New Physics

Page 5: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

5

Charge vs. Spin CurrentsCharge Spin

J. Shi, et al., Phys. Rev. Lett. 96, 076604 (2006).

rj e = d

dt qr r ( )

rj e = q

r v

rj s = d

dt σr r ( )

rj s = σ

r v + ˙ σ

r r

Moving Spins

Spin Dynamics

No Need for Moving Spin: Potential for Low Power Dissipation!

Page 6: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

Courtesy Claude Chappert, Université Paris Sud

Page 7: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

7

New Goal:

Page 8: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

8

Can we generate pure spin-currentsin paramagnetic materials?

• Non-local geometries

• Spin-dependent scattering (Spin-Hall)

• Spin pumping

Page 9: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

9

Pure Spin Currents: The Johnson Transistor

F1 F2

N V

e-

L

F1 N F2

Emitter Base

or

Collector

M. Johnson,Science 260, 320 (1993)

M. Johnson and R. H. Silsbee,Phys. Rev. Lett. 55, 1790 (1985)

0

F2

F2

First Experimental Demonstrations

M. Johnson and R. H. Silsbee,Phys. Rev. Lett. 55, 1790 (1985)

Bulk Al: s = 450 m (4.2 K)

I+

I- V

Jedema et al., Nature 410, 345 (2001)

Cu film: s = 1 m (4.2 K)

Page 10: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

10

Lateral Spin-Valve with Gold

Y. Ji, et al., Appl. Phys. Lett. 85, 6218 (2004)

a.c. current source

Lock-in detection

s = 63 15 nmIn gold at 10 K

Page 11: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

11

Lateral Spin-Valve with Copper

500 nm

Shadow Evaporation SEM ImageFinished Device

Y. Ji, et al.,Appl. Phys. Lett. 88, 052509 (2006)

Page 12: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

12

Spin Diffusion Length in Copper

T = 10 K

Y. Ji, et al.,Appl. Phys. Lett. 88, 052509 (2006)

P = 7%

Page 13: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

13

Spin-Signal at Room Temperature

L = 300 nm, T = 10 K L = 350 nm, T = 300 K

Co/Cu Lateral Spin-Valve

s ≈ 110 nmat room temperature

Page 14: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

14

Spin Hall Effect

Spin-dependent scattering gives rise to transverse spin imbalance

of charge currents

Direct observation in GaAswith optical detection

Y. K. Kato et al., Science 306, 1910 (2004)

J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)M. I. Dyakonov and V. I. Perel, JETP Lett. 13, 467 (1971)

Page 15: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

15

Spin-Skew Scattering

+

-

nucleus

electron

E

B- -

-

Page 16: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

16

Spin Hall vs. Inverse Spin Hall

Spin Hall

Charge Current

Transverse

Spin Imbalance

Inverse Spin Hall

Spin Current

Transverse

Charge Imbalance

Spin Dependent Scattering

Page 17: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

17

Spin Hall Angle

• understanding the effect of SO coupling on electron transport

• recognizing materials for spintronics applications

Importance:

c

SH

σσγ = spin Hall conductivity

charge conductivity

stronger spin orbit interaction larger 2γ

Goal:• experiments to quantify

Page 18: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

18

Quantifying Spin Hall Angle in Metals

= 0.0001- 0.0003Al:

S. O. Valenzuela & M. Tinkham, Nature 442, 176 (2006)

T. Kimura et al., PRL 98, 156601 (2007)

T. Seki et al., Nature Mater. 7, 125 (2008)

Magnetotransport measurements:

Ferromagnetic resonance:

= 0.0037Pt:

= 0.113Au:

K. Ando et al., PRL 101, 036601 (2008)

= 0.08Pt:

• Large discrepancies in γ values !• Ferromagnets always used to generate/detect spin currents need to know spin polarization efficiency at injector/detector

E. Saitoh et al., APL 88, 182509 (2006)

How about Spin Hall effects without ferromagnets!

possible spurious signals: Hall, Anomalous Hall, MR

γ

γ

γ

γ

Page 19: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

19

Charge Current Teleportation

Theoretical Idea: Use Spin Hall Effects Twice!

Direct Spin Hall Effect

Generate Pure Spin Current

Inverse Spin Hall Effect

Detect Pure Spin Current

L

D. A. Abanin et al., Phys. Rev. B 79, 035304 (2009)

J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999) E. M. Hankiewicz et al., Phys. Rev. B 70, 241301(R) (2004)

M. I. Dyakonov, Phys. Rev. Lett. 99, 126601 (2007)

Page 20: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

20

Gold Hall Bar Structures

1 µm

w = 110 nm t = 60 nm 5 μm

Spin Hall Angle in Gold: < 0.02

Too small to be practically useful!

Mihajlović et al., Phys. Rev. Lett. 103, 166601 (2009)

Page 21: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

21

Unusual Application of Spin Dynamics

As found in: Queen Victoria Pub, Durham, U. K.

Page 22: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

22

Spin Pumping• Ferromagnetic Resonance results

in time-dependent interfacial spin accumulation

• This spin accumulation diffuses away from the interface

• Results in net dc spin current perpendicular to interface

• Additional spin current gives rise to additional damping

• Quantify spin current from linewidth broadening

F N

IS

Page 23: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

23

Combine Spin Pumping and Inverse Hall Effect

• Use Spin Pumping to Generate Pure Spin Current

• Quantify Spin Current from FMR

• Measured Voltage Directly Determines Spin Hall Conductivity

• Key Advantage: Signal Scales with Device Dimension

Page 24: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

24

Determine Spin Hall Angle for Many Materials

Pt Au Mo

γ = 0.0120

±0.0001Technique easily adapted to any material!

γ = 0.0025

±0.0006

γ = -0.00096±0.00007

Page 25: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

Can we Image Spin Accumulation Directly?

25

How about X-ray Dichroism?

Image at Cu L-edge Magnetic Difference Images

Mosendz et al., Phys. Rev. B 80, 104439 (2009)

Page 26: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

Is There Any Hope for X-Rays?

26

s

d

E

N(E)

Ferromagnet(i.e., typical TM)

Contrast due to different density of states

at Fermi-level

s

d

E

N(E)

Spin Accumulation

Contrast due to spin-splitting?

Well below 1 meV!

Page 27: Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National

27

Conclusions

Spin Currents behave differentcompared to Charge Currents– Possibility of Reduced Power Dissipation

Non-Local Electrical Injection– Generate Pure Spin Currents– Study Spin Relaxation

Spin Hall Effects– Generate and Detect Spin Currents

w/o Ferromagnets

Spin Pumping– Generate Spin Currents

w/o Electric Charge Currents

10 nm

spin charge

1 m

I V