58
PARKS VICTORIA TECHNICAL SERIES NUMBER 53 Species diversity and composition of benthic infaunal communities found in Marine National Parks along the outer Victorian coast S. Heislers and G.D. Parry November 2007

PV Technical Series No.53 - Soft sediment benthos

Embed Size (px)

Citation preview

Page 1: PV Technical Series No.53 - Soft sediment benthos

p a r k s v i c t o r i a t e c h n i c a l s e r i e s

number 53

species diversity and composition of benthic infaunal communities found in marine national

parks along the outer victorian coast

S. Heislers and G.D. Parry

November 2007

Page 2: PV Technical Series No.53 - Soft sediment benthos

© Parks Victoria

All rights reserved. This document is subject to the Copyright Act 1968, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopying or otherwise without the prior permission of the publisher.

First published 2007

Published by Parks Victoria Level 10, 535 Bourke Street, Melbourne Victoria 3000

Opinions expressed by the Authors of this publication are not necessarily those of Parks Victoria, unless expressly stated. Parks Victoria and all persons involved in the preparation and distribution of this publication do not accept any responsibility for the accuracy of any of the opinions or information contained in the publication.

Authors:

Simon Heislers – Science Officer, DPI Queenscliff

Gregory D. Parry – Senior Science Officer, DPI Queenscliff

National Library of Australia Cataloguing-in-publication data

Includes bibliography ISSN 1448-4935

Citation

Heislers S, and Parry, G.D. (2007). Species diversity and composition of benthic infaunal communities found in Marine National Parks along the outer Victorian coast. Parks Victoria Technical Series No. 53. Parks Victoria, Melbourne.

Printed on environmentally friendly paper

Page 3: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Paper Series No. 53

Species diversity and composition of benthic infaunal communities found in Marine National Parks along the outer

Victorian coast

S. Heislers and G.D. Parry Fisheries Victoria (Fisheries Research Branch), DPI, Queenscliff

December 2007

Page 4: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

II

EXECUTIVE SUMMARY In 1998 the Department of Natural Resources and Environment commissioned a survey of sediment and infauna along the entire length of the open Victorian coast. This study, known as the “Victorian coastal benthos study” (VCBS), sampled sites at 3 depths (10 m, 20 m and 40 m) on 50 transects running perpendicular to the coast. Infauna was initially analysed from only 58 of the 441 samples taken (Coleman et al. 2007), but following the declaration of 13 new Marine National Parks along the Victorian coast in 2002, Parks Victoria commissioned the identification of benthic infauna from a further 46 samples from the VCBS, all of which were located in or near Marine National Parks. This report summarises the results of the analysis of these additional samples.

Data from both phases of the VCBS provide only weak support for the existence of bioregions along the Victoria coast, but provide evidence of a region of elevated species diversity in East Gippsland. Benthic species diversity in Bass Strait was compared with diversity found in other benthic studies. While benthic species diversity has only been measured in a small fraction of the world’s benthic communities, benthic diversity in Bass Strait was higher than that recorded in any other region. In particular, Bass Strait has a higher diversity of infauna than the deep sea, which many authors have claimed has the highest benthic species diversity so far recorded. Two factors that may contribute to this high diversity — historic-evolutionary factors, and temporal climatic variability resulting from the El Nino Southern Oscillation (ENSO) — are discussed.

This study also identified very high densities of the invasive New Zealand screw shell, Maoricolpus roseus, at 40 m depth in the Pt Hicks Marine National Park. Where this invasive species was most abundant, the diversity of infauna was reduced, suggesting that this exotic species poses a serious threat to the high diversity of infauna that is characteristic of much of Bass Strait.

Page 5: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

III

CONTENTS EXECUTIVE SUMMARY............................................................................................ II CONTENTS............................................................................................................... III INDEX OF FIGURES AND TABLES......................................................................... IV 1 INTRODUCTION .................................................................................................... 1 2 METHODS.............................................................................................................. 2

2.1 SAMPLE COLLECTION..................................................................................................................2 2.2 SELECTION OF SAMPLES FOR INFAUNAL ANALYSIS..............................................................3 2.3 ANALYTICAL METHODS ...............................................................................................................4

3 RESULTS............................................................................................................... 6 3.1 SEDIMENT......................................................................................................................................6 3.2 INFAUNA.........................................................................................................................................7 3.3 INTRODUCED SPECIES - N.Z. Screw Shell................................................................................12

4 DISCUSSION ....................................................................................................... 16 4.1 GEOGRAPHIC VARIATION IN SOFT SEDIMENT BENTHIC COMMUNITIES..........................16 4.2 SPECIES DIVERSITY IN SOFT SEDIMENT BENTHIC COMMUNITIES ....................................16 4.3 N.Z. SCREW SHELL....................................................................................................................20

ACKNOWLEDGMENTS........................................................................................... 20 REFERENCES......................................................................................................... 21 APPENDIX 1 .........................................................................................................A1.1 Victorian Coastal Benthic Survey site/sample locations and sediment characteristics. ............................................................. A1.1 APPENDIX 2 .........................................................................................................A2.1 Faunal characteristics of Victorian coastal benthic samples ...................................................................................................... A2.1 APPENDIX 3A.......................................................................................................A3.1 Mean number of species identified of each family identified from Victorian Coastal Benthic Survey sites collected from 10 m

depths................................................................................................................................................................................ A3.1 APPENDIX 3B.......................................................................................................A3.3 Mean number of species identified of each family identified from Victorian Coastal Benthic Survey sites collected from 20 m

depths................................................................................................................................................................................ A3.3 APPENDIX 3C.......................................................................................................A3.6 Mean number of species identified of each family identified from Victorian Coastal Benthic Survey sites collected from 40 m

depths................................................................................................................................................................................ A3.6 APPENDIX 4A.......................................................................................................A4.1 Mean number of individuals identified for each family identified from Victorian Coastal Benthic Survey sites collected from 10 m

depths................................................................................................................................................................................ A4.1 APPENDIX 4B.......................................................................................................A4.3 Mean number of individuals identified for each family identified from Victorian Coastal Benthic Survey sites collected from 20 m

depths................................................................................................................................................................................ A4.3 APPENDIX 4C.......................................................................................................A4.6 Mean number of individuals identified for each family identified from Victorian Coastal Benthic Survey sites collected from 40 m

depths................................................................................................................................................................................ A4.6 APPENDIX 5. ........................................................................................................A5.1 Maoricolpus roseus sampled off Point Hicks at 40 m depth....................................................................................................... A5.1

Page 6: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

IV

INDEX OF FIGURES AND TABLES FIGURES Figure 1. Map of the western and eastern coastline of Victoria showing the locations of transects (numbered 0-49) and sites

sampled during the Victorian Coastal Benthic Survey and the Orbost pulp mill study. The location of Marine National Parks and the four IMCRA bioregions are also shown. The number of replicate samples analysed at each site is shown.................................................................................................................................................................................................2

Figure 2. Plot of median grain size of sediments from VCBS sites (distinguished by transect number and depth). Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs. Dotted horizontal lines indicate the boundaries between fine and medium (0.25 mm), and medium and coarse (0.50mm) sands as defined by Roob et al (1999). ...........6

Figure 3. Plot of % carbonate of sediments from VCBS sites (distinguished by transect number and depth). Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Black dots indicate sites located within MNPs. ......................................................................................................................................7

Figure 4. Plot of mean number of species per 0.1m2 sample analysed during the VCBS (sites distinguished by transect number and depth) and Orbost Pulp Mill Study. Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs. The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study..........................11

Figure 5. Plot of mean number of individuals per 0.1m2 sample analysed during the VCBS (sites distinguished by transect number and depth) and Orbost Pulp Mill Study. Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs. The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study. ..11

TABLES Table 1. Number of replicate samples analysed for benthic infauna from each transect and depth during Phase 1 (Coleman et

al. 2000, 2007) and Phase 2 (this study, bold font) of the Victorian coastal benthos study. Shaded cells indicate sites located within Marine National Park (MNP) boundaries. NS indicates sites not sampled....................................................3

Table 2. Number of sites and replicates sampled per depth class and per season (ie. month) during the Orbost Pulp Mill Study................................................................................................................................................................................................5

Table 3. Mean number of individuals per site of the top 20 most abundant families in 10, 20 and 40 m depth classes of the VCBS. Ranks are based on the overall mean number of individuals across all sites sampled in each depth class. Transects are grouped by bioregion (as defined by IMCRA, 1998). Blank cells indicate sites not sampled. Sites within MNP boundaries are shaded.. ..............................................................................................................................................8

Table 4. Mean number of species per site of the top 20 most abundant families in 10, 20 and 40 m depth classes of the VCBS. Ranks are based on the overall mean number of species across all sites sampled in each depth class. Transects are grouped by bioregion (as defined by IMCRA, 1998). Blank cells indicate sites not sampled. Sites within MP / MNP boundaries are shaded.. .......................................................................................................................................................9

Table 5. Number of families identified per major taxa within 10, 20 and 40 m depth classes of the VCBS. ‘+’ indicates taxa where family level identifications weren’t made and were given a value of 1 in the totals. Numbers of replicate samples are indictaed in parentheses.. ............................................................................................................................................10

Table 6. Total number of species and individuals, and number and biomass of Maoricolpus roseus identified from three replicate samples collected off Point Hicks (transect 46) at 40 m depth during the VCBS.. ..............................................13

Table 7. Comparison of species diversity of benthic infaunal communities found in different geographic areas in coastal and deep sea regions.. ..............................................................................................................................................................18

Page 7: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

1

1 INTRODUCTION Environmental studies undertaken in the late 1980s and the mid 1990s, when a new pulp mill was proposed for the Orbost region, showed that the diversity of infauna off eastern Victoria was exceptionally high (Parry et al. 1989, Coleman et al. 1997). Coleman et al. (1997) found a total of 803 species in a sampled area of only 10.4 m2 along a 50 km stretch of coastline. This diversity of infauna, in sandy sediments from depths 11–51 m, was higher than had been measured in all previous studies of benthic communities, including those in the deep sea and Norwegian fiords, which had previously been considered the world’s most diverse soft sediment habitats (Coleman et al. 1997).

The very high diversity of infaunal species found in eastern Victoria, and plans to establish a representative series of Marine National Parks (MNPs) along the Victorian coast, lead in 1998 to the former Department of Natural Resources and Environment commissioning a survey of sediment and infauna along the entire length of the open Victorian coast. This survey was intended to determine whether the high diversity found in eastern Victoria extended along the entire Victorian coastline. This study, known as the “Victorian coastal benthos study” (VCBS), sampled sites at 3 depths (10 m, 20 m and 40 m) on 50 transects running perpendicular to the coast. The sediment composition of essentially all samples was analysed by Roob et al (1999), but infauna were analysed from only 58 of the 441 samples taken. The results of this analysis of benthic infauna were reported by Coleman et al. (2000, 2007) and have been termed the ‘Phase 1 study’ throughout this report.

Following the declaration of 13 new Marine National Parks (MNP) along the Victorian coast in 2002, Parks Victoria commissioned the identification of benthic infauna from a further 46 samples from the VCBS. These samples had been stored since the field sampling in 1998. The examination of these additional samples has been termed the ‘Phase 2 study’ throughout this report, but all analyses have included data from both phases of the study. Phase 2 samples were mostly located in, or adjacent to, Marine National Parks including: Discovery Bay MNP, Twelve Apostles MNP, Point Addis MNP, Wilsons Promontory MP and MNP, Point Hicks MNP and Cape Howe MNP. However, as the VCBS sampling pre-dated the declaration of most of Victoria’s MNPs, the Port Phillip Heads MNP, Bunurong MNP and Ninety Mile Beach MNP were not sampled.

This study aimed to: (1) document the fauna from the Marine National Parks to assist with the design of on-going monitoring; (2) determine whether the larger data set now available for benthos along the Victorian coast identified any Victoria-wide patterns in species diversity not detected in the smaller data set analysed by Coleman et al. (2000, 2007); and, (3) where possible, identify any threatening processes to Victoria’s Marine National Parks.

Page 8: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

2

2 METHODS 2.1 SAMPLE COLLECTION Benthic sediment samples were collected during May 1998, along transects running perpendicular to the coastline for the length of the entire Victorian coastline (Roob et al., 1999). Fifty transects were spaced at intervals of approximately 20 km along the coast. Sampling sites were located at depths of 10, 20 and 40 m along each transect, and three replicates taken at each site.

Samples were collected with a Smith-McIntyre grab which sampled an area of 0.1 m2. A small sub-sample (core) of sediment was taken from each grab sample, placed in a Whirl-Pak® sample bag and retained for grain-size analysis. The remaining portion of each replicate sample was preserved in 10% neutral-buffered formalin for analysis of infauna. Samples could not be collected from a small number of sites which occurred on rocky reef.

Figure 1. Map of the western and eastern coastline of Victoria showing the locations of transects (numbered 0–49) and sites sampled during the Victorian Coastal Benthic Survey and the Orbost pulp mill study. The location of Marine National Parks and the four IMCRA bioregions are also shown. The number of replicate samples analysed at each site is shown.

Page 9: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

3

2.2 SELECTION OF SAMPLES FOR INFAUNAL ANALYSIS During the Phase 1 study infauna were sorted from 58 grab samples from 36 sites (25 transects) by Coleman et al. (2000, 2007) (Table 1). Samples were chosen from the four Victorian coastal IMCRA (1998) bioregions, and from each depth and sediment type. A single replicate was analysed from most sites to maximise spatial coverage, while two or three replicates were analysed from a small number of sites to measure small-scale variability.

Table 1. Number of replicate samples analysed for benthic infauna from each transect and depth during Phase 1 (Coleman et al. 2000, 2007) and Phase 2 (this study, bold font) of the Victorian coastal benthos study. Shaded cells indicate sites located within Marine National Park (MNP) boundaries. NS indicates sites not sampled.

Depth (m) Transect Number 10 20 40

Marine National Park

2 2 2 NS Discovery Bay MNP 3 - - 1 4 - - 1 8 2 - 1 12 2 2 2 Twelve Apostles MNP 14 - - 1 15 2 - 1 17 - - 1 18 3 3 3 Point Addis MNP 19 3 3 - 20 3 3 - - NS NS NS Port Phillip Heads MNP

21 - - 1 22 2 NS NS 23 NS NS 1 26 NS NS 1 27 - - 1 - NS NS NS Bunurong MNP

28 2 - - 30 2 1 1 Wilsons Promontory MP 31 2 2 1 + 1 Wilsons Promontory MNP 32 2 2 2 Wilsons Promontory MNP 33 1 1 1 34 3 - 1 - NS NS NS Ninety Mile Beach MNP

37 2 - 1 38 1 - - 39 - - 1 40 1 - 1 41 3 3 3 45 1 - - 46 2 2 3 Point Hicks MNP 48 2 1 1 49 2 2 - Cape Howe MNP

Total 45 27 32

Page 10: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

4

During the Phase 2 study infauna were sorted from a further 46 samples from 23 sites (11 transects) located within (31) or adjacent to (15) MNPs (Table 1).

The geographic coordinates of each sample and (where present) the occurrence of reef are noted in Appendix 1.

2.3 ANALYTICAL METHODS 2.3.1 Infaunal Analysis

Samples retained for faunal analysis were sieved through a 0.5 mm mesh. All animals retained on the sieve were identified and counted at the Marine and Freshwater Fisheries Research Institute of Department of Primary Industries, or at Museum Victoria.

Taxonomic identifications were made by the senior author (S. Heislers) during Phase 1 (in part) and Phase 2 (in full), assuring consistency in identifications between the two phases of this study.

During the Phase 1 analysis of benthic infauna, the majority of polychaetes, molluscs, crustaceans, cnidarians, pycnogonids and echinoderms were identified to species, while higher-level identifications were made for other groups. Nematodes and epifaunal groups (e.g. sponges, hydroids, bryozoa, ascidians) were not identified or recorded.

During the Phase 2 analysis, infauna were identified to family level, but the number of species in each family was also counted. Counting the number of species present, without determining their identity (i.e. their scientific name), enabled species abundance to be compared with samples from the Phase 1 study, at minimal cost. Because species-level identifications were not made during Phase 2, estimates of species abundance of some of the more taxonomically-challenging and species-rich families may have been underestimated by 1 or 2 species per sample. We consider it very unlikely that the number of species in a sample was under-estimated by more than 5%.

2.3.2 Sediment Analysis

Sediment sub-samples (cores) from the two most visually similar replicate samples (i.e. based on sediment texture) from each site were combined to provide a composite sample for sediment analysis (Roob et al. 1999).

Sediment mean grain size was determined by settling-tube analysis, and percentage carbonate content was determined by gravimetric determination (Roob et al. 1999). Details of analytical method for the determination of sediment particle size and for carbonate content are given in Appendices 1 and 2 of Roob et al. (1999).

2.3.3 Statistical Analysis

Mean numbers of individuals and species and standard errors were calculated for each family at all sites analysed during Phase 1 and 2 of the VCBS. In addition, mean numbers of individuals and species were calculated for each site for the twenty most abundant families within each of the 10, 20 and 40 m depth classes.

The number of species in a sample may be overestimated when specimens are identified at a taxonomic level higher than species level (e.g. in the case of damaged or incomplete specimens) and counted as unique species when the same species has already been identified from other specimens. This error may be further compounded when calculating species richness across multiple samples (e.g. through the production of species accumulation curves) where the same species is counted multiple times from partially identified specimens from a number of different samples.

All records of taxa (i.e. polychaetes, molluscs, crustaceans, cnidarians, pycnogonids and echinoderms) that were not positively identified to species were excluded from the analysis of Phase 1 data by Coleman et al. (2000, 2007) to avoid overestimating species richness.

Page 11: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

5

However, as a consequence they underestimated the numbers of species and individuals in many samples. In most cases this error was insignificant, but in a small number of cases it was as much as 10 or more species in a sample (i.e. up to 10% of the total) or 100 or more individuals (i.e. up to 50% of the total). In this study, only those records of partially identified taxa were excluded where there was a possibility that the taxa had already been identified from other specimens in the sample. Partially identified taxa were only excluded where the sample contained other specimens from the same taxonomic group as the partially identified specimen.

In addition to the VCBS, data on benthic species diversity were collected along 50 km of coastline in East Gippsland by Coleman et al. (1997) to assess potential impacts of a proposed pulp mill near Orbost. Sampling and data analysis were identical to those in Phase 1 of the VCBS. Samples were collected from 38 sites located within three study areas (Figure 1) at depths ranging from 11 m to 51 m, and on three separate occasions (September 1990, February and June 1991). To enable comparison with the VCBS data, Orbost Pulp Mill study sites were placed into one of 5 depth classes including 10 m (one site at 11 m), 20 m (16–25 m), 30 m (26–35 m), 40 m (36–45 m) and 50 m (46–55 m), and data was pooled over the three sampling events. The number of sites and the number of replicates included in each of these depth classes are shown in Table 2. As the species richness/site in the Orbost study was much higher than in the VCBS these differences were further explored by examining temporal differences in species richness in the Orbost study. Mean species richness/site was plotted against depth for three seasons in which sampling occurred.

Table 2. Number of sites and replicates sampled per depth class and per season (ie. month) during the Orbost Pulp Mill Study.

September 1990 February 1991 June 1991 Total Depth (m) N sites N replicates N sites N replicates N sites N replicates N sites N replicates

10 1 3 1 3 1 3 1 9 20 6 6 2 6 2 6 6 18 30 12 20 2 6 2 6 12 32 40 11 11 3 9 3 9 11 29 50 8 10 1 3 1 3 8 16

Coleman et al. (2000, 2007) calculated diversity (Shannon Wiener) and evenness (Pielou) values for samples analysed during Phase 1 of the VCBS. However, neither species diversity nor evenness could be calculated for samples analysed during Phase 2 because the number of individuals of each species present in each sample were not determined.

Families from each depth class were ranked by their abundance across the entire zone, and the distribution patterns of the more abundant taxa were summarised.

Page 12: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

6

3 RESULTS 3.1 SEDIMENT 3.1.1 Particle Size

Median sediment grain size analysis classified the sediments from all sites sampled during the VCBS as fine, medium or coarse sand (Figure 2, Appendix 1).

Sediments from sites within the 10 m depth class from the western and central coasts were consistently classed as fine. However, there was considerable variation in sediment particle size between 10 m sites from the east coast which were classed as fine, medium or (at one site) coarse.

There was a large amount of variation in grain size between sites from the 20 and 40 m depth classes across the entire coastline with fine, medium and coarse sand sediment classes represented. Despite this variation, sites within 20 and 40 m depth classes sampled from the east coast generally had a larger grain size than those from the western and central coasts.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

Med

ian

Gra

in S

ize

(mm

)

Transect Number

Vict Coast 40m

Vict Coast 20m

Vict Coast 10m

M NP

Figure 2. Plot of median grain size of sediments from VCBS sites (distinguished by transect number and depth). Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs. Dotted horizontal lines indicate the boundaries between fine and medium (0.25 mm), and medium and coarse (0.50mm) sands as defined by Roob et al (1999).

3.1.2 % Carbonate

The proportion of carbonate in sediments appears to be strongly related to geographic location with percentage carbonate greatest in sediments from the far west of the state (more than 90%) and smallest (approximately 10%) in those from the far east of the state (Figure 3, Appendix 1). Though there was a considerable variation in sediment % carbonate between neighbouring sites, particularly for sites from the 40 m depth class, the pattern of decreasing sediment % carbonate from west to east was apparent in all depth classes.

Page 13: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

7

0

10

20

30

40

50

60

70

80

90

100

Site Number0 10 20 30 40 50

% C

arbo

nate

Transect number

Vict Coast 40m

Vict Coast 20m

Vict Coast 10m

M NP

Figure 3. Plot of % carbonate of sediments from VCBS sites (distinguished by transect number and depth). Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Black dots indicate sites located within MNPs.

3.2 INFAUNA 3.2.1 Community Composition

The number of species, families and individuals identified from each sample analysed during Phase 1 and 2, and evenness and diversity for samples analysed during Phase 1 are detailed in Appendix 2. The mean number of species and individuals identified in each family at each site analysed during Phases 1 and 2 are shown in Appendices 3 and 4.

The number of individuals in the 20 most abundant families in each depth class along the Victorian coast is shown in Table 3, and the number of species in each of these families is shown in Table 4. There were no clear differences in representation of families between bioregions within the 10, 20 or 40 m depth classes.

Representation of major taxa was relatively consistent between depth classes. Crustaceans were the dominant taxa in each depth class in each bioregion, representing more than half (i.e. 11–14) of the twenty most abundant families. The majority of these were amphipods and cumaceans, while isopods and ostracods were also common in all depth classes. Polychaetes represented the bulk (ie. 5–9) of the remaining families while molluscs were poorly represented (ie. 0-1 families). Nemertea were common to all depth classes.

Nine families were common in all depth classes, including four amphipod families (Phoxocephalidae, Caprellidae, Urohaustoriidae and Ampeliscidae), three polychaete families (Spionidae, Syllidae and Paraonidae) and two cumacean families (Gynodiastylidae and Diastylidae).

The total number of families identified in each major taxon for each of the 10, 20 and 40 m depth classes of the VCBS is summarised in Table 5. The 40 m depth class was represented by the highest number of families, and the 10 m depth class was represented by the least. Approximately one quarter of all families identified during the VCBS were represented in all depth classes, while more than half were common to just one depth class. The 20 and 40 m

Page 14: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

8

depth classes were most similar sharing 59% families in common, and the 10 and 40 m classes were least similar with just 41% of families in common.

Table 3. Mean number of individuals per site of the top 20 most abundant families in 10, 20 and 40 m depth classes of the VCBS. Ranks are based on the overall mean number of individuals across all sites sampled in each depth class. Transects are grouped by bioregion (as defined by IMCRA, 1998). Blank cells indicate sites not sampled. Sites within MNP boundaries are shaded. Dots represent zeros.

Otway Central Victoria Flinders Two-fold shelfDepth Rank Phylum Family 2 3 4 8 12 14151718 19 20 21 22 23 26 27283031 32 33 34 37 38 39 4041 45 46 48 491 Polychaeta Spionidae 3 8 6 95 8 20 51 379 6 16 10 6 32 1 35 21 1 29 1 11 . 42 Crustacea Urohaustoriidae 8 41 56 2 15 36 57 4 16 12 4 21 18 15 50 31 5 77 2 19 29 103 Crustacea Platyischnopidae 6 42 18 31 4 16 71 6 1 3 5 5 . 2 122 7 13 39 . . 79 84 Polychaeta Syllidae 2 60 6 2 5 10 20 1 . 8 9 64 2 . 5 3 2 1 136 13 2 375 Polychaeta Cirratulidae 35 5 150 2 . . . . 9 9 . 60 . 1 2 . . 3 . 6 12 .6 Mollusca Trochidae . . . . . . . . . . . 1 . 1 . . . . . . 285 .7 Crustacea Phoxocephalidae 14 38 4 8 3 4 3 6 2 2 14 62 21 3 18 . 1 4 2 7 15 108 Crustacea Gynodiastylidae 1 . . . . 7 5 . . . 3 1 158 . 1 4 2 2 . 1 1 19 Crustacea Diastylidae . 2 2 3 9 4 2 1 1 . 1 . 158 . 2 . . . . . . .10 Crustacea Corophiidae . 27 4 . 28 1 2 2 3 . 8 11 3 . 1 . . . 3 6 . 511 Crustacea Philomedidae 9 8 2 . 23 5 10 3 3 3 1 . . 3 13 10 . 6 . 3 . .12 Polychaeta Lumbrineridae 3 1 . 1 1 . 1 . 11 7 . 40 1 2 . 2 . 1 . 11 3 1313 Polychaeta Opheliidae 1 37 4 16 2 1 3 1 . 1 1 5 . . 5 1 . 16 1 1 . 214 Crustacea Paranthuridae 1 1 . 60 3 . . 2 1 2 . . . 1 12 . 1 1 . 2 . .15 Crustacea Callianassidae . . . . 7 1 . . . . . . 18 . 1 . . 43 . . . .16 Crustacea Leptanthuridae . . . . . 15 6 . . . . 40 3 . . . . . . . . 517 Nemertea Nemertea 10 2 3 2 . . 2 6 2 5 . 2 5 1 1 8 3 3 . 3 6 .18 Crustacea Lysianassidae 1 2 2 9 4 3 1 5 3 1 3 3 8 . 3 . . 6 . 3 4 119 Polychaeta Paraonidae . 11 5 1 2 3 5 4 . 6 2 2 2 . 7 . 5 . . 1 . 2

10 m

20 Crustacea Ampeliscidae 1 . 5 1 8 5 4 11 . . . 13 8 . 1 . . . . . . .1 Polychaeta Syllidae 90 2 24 11 1 1 12 116 13 91 292 1 212 Polychaeta Spionidae 9 16 57 128197 21 53 51 16 3 3 1 13 Polychaeta Cirratulidae 318 8 1 . 1 . 1 3 4 3 . 9 .4 Crustacea Urohaustoriidae 8 16 33 48 57 8 13 22 1 . 3 41 135 Crustacea Platyischnopidae 2 58 1 27 88 1 27 . . 3 3 31 96 Crustacea Phoxocephalidae 50 8 6 8 23 4 17 12 30 7 6 14 187 Crustacea Corophiidae . . 6 1 27 55 26 16 17 1 . 8 48 Crustacea Ampeliscidae 18 80 4 . 2 1 14 3 36 . . . 19 Crustacea Gynodiastylidae . . 5 11 88 3 13 8 5 . . 10 310 Crustacea Cylindroleberididae 10 1 1 1 29 . 2 3 68 . . 4 311 Polychaeta Dorvilleidae . . 3 . . . . 22 1 22 29 . .11 Polychaeta Paraonidae 2 . 2 1 2 1 3 16 18 19 . 4 913 Crustacea Philomedidae 4 6 5 25 16 2 1 1 2 2 1 . .14 Crustacea Apseudidae . . 1 . . . . 58 . . . . .15 Nemertea Nemertea 4 . 6 1 3 2 3 9 10 15 3 3 .16 Polychaeta Orbiniidae 1 . 1 4 5 . 1 16 19 3 6 . .17 Polychaeta Hesionidae . . 47 . . . . . . 3 . . .18 Crustacea Diastylidae . . 2 4 34 1 4 . 1 . 1 . .19 Crustacea Lysianassidae 6 4 1 6 4 3 9 . 11 . . 1 1

20 m

20 Polychaeta Nereididae 4 . 9 . . . . . . 30 . . 11 Polychaeta Spionidae 1 1 5 10 20 . 27 5 34 1 107 14 38 53 11 34 113 22 16 11 6 70 172 Polychaeta Paraonidae . 1 . 1 . . 6 10 . . . 7 22 66 18 146 51 10 11 45 51 18 343 Polychaeta Syllidae 1 1 25 2 . . 2 28 . 1 2 14 9 41 1 38 31 44 12 21 34 94 454 Crustacea Kalliapseudidae . . . . . . . 3 . 5 . . 3 10 . 4 78 7 25 14 . 5 .5 Crustacea Phoxocephalidae 2 8 8 9 9 3 9 6 . . 10 11 16 13 . 2 1 18 8 7 4 6 16 Crustacea Corophiidae 1 3 40 1 6 . . 3 4 13 6 4 1 21 1 7 11 8 5 3 2 5 .7 Mollusca Turritellidae . . . . . . . . . . . . . . . . . . . . . 140 .8 Crustacea Pagurapseudidae . . . . . . . . . . . 1 . . . . . . . . . 126 .9 Crustacea Paranthuridae 1 . 1 . 1 . . 4 . 10 10 2 6 6 . 26 7 6 17 20 4 . .10 Crustacea Ischyroceridae 3 . 24 . 1 1 . 2 . 86 . 1 . . . . 1 . . . 1 1 .11 Crustacea Urohaustoriidae 9 19 1 17 14 . 3 . 1 . 23 . 16 1 . . . 3 . . . . 212 Nemertea Nemertea . 1 . 1 2 . 1 3 . . 1 4 1 8 1 14 5 3 8 8 9 16 813 Polychaeta Orbiniidae . 1 . . . 1 3 1 . . 2 . 1 1 3 5 . 1 30 40 1 1 .14 Crustacea Aoridae 50 2 . . . . . 2 . 12 . . 1 6 . . 1 . . . 3 . .15 Crustacea Janiridae . . . . . . . 5 . 5 . 6 . . . . 8 . . . 4 42 116 Polychaeta Capitellidae . . . . . . 1 3 . . . 3 2 18 7 7 1 1 . 3 9 9 617 Crustacea Ampeliscidae 1 . . 35 . . . 1 . . 1 . 6 7 1 3 . 1 8 1 . . .18 Crustacea Bairdiidae . . . . . . . 1 . . . 1 . . . . 1 7 . . 6 41 619 Crustacea Apseudidae . . . . . . . 32 . 6 . 1 . 1 1 . 3 15 . . 1 . .

40 m

19 Crustacea Gynodiastylidae 1410 2 1 1 . 4 2 2 1 6 2 6 3 . 2 . . 3 . . 1 .

Page 15: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

9

Table 4. Mean number of species per site of the top 20 most abundant families in 10, 20 and 40 m depth classes of the VCBS. Ranks are based on the overall mean number of species across all sites sampled in each depth class. Transects are grouped by bioregion (as defined by IMCRA, 1998). Blank cells indicate sites not sampled. Sites within MP / MNP boundaries are shaded. Dots represent zeros.

Otway Central Victoria Flinders Two-fold shelfDepth Rank Phylum Family 2 3 4 8 12 14 15 17 18 19 20 21 22 23 26 27 28 30 31 32 33 34 37 38 39 40 41 45 46 48 49

1 Crustacea Phoxocephalid 3 4 2 3 2 2 1 2 2 1 4 4 3 2 3 . 1 1 2 2 4 32 Polychaeta Spionidae 2 3 2 3 3 3 2 2 1 2 2 2 5 1 2 3 1 2 1 2 . 23 Crustacea Caprellidae . . . . . . . . . . 2 . . . . . . . . . . .4 Crustacea Urohaustoriida 1 2 1 2 3 1 1 1 3 3 1 1 1 2 3 4 4 3 1 1 3 15 Polychaeta Paraonidae . 2 1 1 2 1 2 2 . 3 2 1 2 . 2 . 2 . . 1 . 15 Polychaeta Syllidae 1 2 2 1 1 3 2 1 . 1 3 3 1 . 1 1 1 1 2 3 1 37 Crustacea Bodotriidae 1 1 2 . 2 2 1 2 1 1 1 . . 1 3 2 2 1 . 2 . .8 Crustacea Lysianassidae 1 1 2 2 1 2 1 2 2 1 2 1 2 . 1 . . 1 . 1 2 19 Polychaeta Nephtyidae . . . . . 1 . . . . . . 2 . . . . 1 . . . .10 Crustacea Gynodiastylida 1 . . . . 1 1 . . . 1 1 3 . 1 2 2 1 . 1 1 111 Crustacea Platyischnopid 2 1 2 1 1 1 1 1 1 1 1 2 . 1 1 1 2 1 . . 1 212 Polychaeta Capitellidae . 1 . . . . . . . 1 . 1 1 . 2 2 . . . 1 . .13 Crustacea Leptanthuridae . . . . . 1 1 . . . . 1 2 . . . . . . . . 114 Mollusca Thraciidae . . . . . . . . 1 . . . 1 . . 1 . 1 . 2 . .15 Crustacea Diastylidae . 1 1 1 1 1 1 1 1 . 1 . 3 . 1 . . . . . . .16 Crustacea Corophiidae . 1 1 . 1 1 1 2 1 . 1 1 1 . 1 . . . 3 1 . 117 Crustacea Oedicerotidae . 1 1 . 1 . 1 2 1 2 1 1 . . 1 1 . 2 . . 2 118 Polychaeta Orbiniidae . . . . 1 . . . . . 1 1 2 . 1 . 1 . . 1 1 119 Crustacea Ampeliscidae 1 . 1 1 1 1 1 1 . . . 1 2 . 1 . . . . . . .19 Crustacea Paracalliopiida 2 . . . . 1 1 1 . . . 1 1 . 1 . . . . 1 2 1

10 m

19 Crustacea Sarsiellidae . . . . 1 . . . . 1 1 . . 1 1 2 . 1 . 1 1 11 Crustacea Phoxocephalid 3 3 3 3 4 2 4 2 4 3 2 4 32 Polychaeta Syllidae 2 1 3 2 1 1 3 4 2 5 3 1 23 Polychaeta Spionidae 3 2 2 2 3 2 2 3 4 2 2 1 14 Crustacea Ischyroceridae . . 2 . . . . . . . . . 05 Crustacea Bodotriidae 2 2 1 3 2 . 1 . . . 2 2 06 Crustacea Corophiidae . . 2 1 2 1 2 2 2 1 . 3 27 Crustacea Melitidae . . 4 . . . 1 1 . 1 . . 08 Polychaeta Phyllodocidae . . 3 . 1 . . 1 2 1 . . 09 Crustacea Arcturidae . . . . . . 2 . . . . . 09 Crustacea Caprellidea . . . . 1 . 2 . . . . . 09 Polychaeta Nephtyidae . . 1 . . . . 2 2 . . . 012 Polychaeta Paraonidae 1 . 1 1 1 1 2 3 1 4 . 1 113 Crustacea Gynodiastylida . . 2 1 3 1 2 1 1 . . 1 214 Crustacea Lysianassidae 2 2 1 1 2 1 2 . 2 . . 1 115 Crustacea Diastylidae . . 1 1 3 1 2 . 1 . 1 . 016 Crustacea Eusiridae . . 2 . . . . 1 . 1 . . 016 Crustacea Leptanthuridae 1 1 . . . . 1 2 2 . . . 116 Crustacea Liljeborgiidae . . . 1 1 . . . . 2 . . 016 Crustacea Urohaustoriida 1 1 5 1 1 1 1 2 1 . 1 1 1

20 m

16 Platyhelminth Turbellaria . . . . . . . . 2 . 1 1 01 Polychaeta Paraonidae . 1 . 1 . . 4 3 . . . 1 4 4 3 3 6 3 4 7 5 2 52 Crustacea Phoxocephalid 2 5 5 3 4 3 4 3 . . 4 7 6 5 . 2 1 5 2 2 2 3 13 Polychaeta Syllidae 1 1 8 1 . . 1 6 . 1 1 3 1 3 1 4 3 6 4 4 4 4 44 Polychaeta Spionidae 1 1 3 2 2 . 1 3 2 1 5 2 4 4 5 5 2 5 1 3 3 3 45 Crustacea Melitidae . . 1 . . . . 4 . 2 . 1 . 2 . . 2 4 . . 3 3 .6 Crustacea Corophiidae 1 2 8 1 3 . . 2 1 5 1 3 1 3 1 3 4 3 1 2 2 1 .7 Crustacea Diastylidae 1 . . . . . . 3 . . . . . . . . . . . . . . .7 Crustacea Rutidermatidae . . . . . . . . . . . . . . . . 2 2 . . . . .9 Crustacea Urohaustoriida 4 3 1 1 1 . 1 . 1 . 4 . 3 1 . . . 2 . . . . 110 Crustacea Janiridae . . . . . . . 2 . 2 . 2 . . . . 2 . . . 3 2 111 Polychaeta Terebellidae . . 2 . . . . 2 . 1 . 2 . 3 1 3 3 1 1 1 2 1 .12 Crustacea Paranthuridae 1 . 1 . 1 . . 1 . 1 2 1 3 3 . 2 3 2 2 2 1 . .13 Crustacea Kalliapseudida . . . . . . . 1 . 2 . . 1 2 . 2 2 2 2 1 . 1 .14 Polychaeta Onuphidae . . 1 . 2 . 1 1 . 1 . 4 2 2 . . 2 1 1 . 1 1 215 Polychaeta Nereididae . . 1 . . . . 2 . 1 . 1 . 2 2 1 1 . 2 1 2 2 .16 Polychaeta Dorvilleidae . . . . . . . 1 . 2 . . . 1 . 1 2 1 . . 2 1 .17 Crustacea Gynodiastylida 1 1 2 1 1 . 1 2 1 1 1 2 2 2 . 1 . . 3 . . 1 .18 Crustacea Joeropsidae . . . . . . . 1 . 2 . . . . . . 2 1 . . 1 . .19 Polychaeta Orbiniidae . 1 . . . 1 2 1 . . 1 . 1 1 2 1 . 1 3 3 1 1 .20 Crustacea Aoridae 1 1 . . . . . 1 . 2 . . 1 3 . . 1 . . . 1 . .

40 m

20 Polychaeta Lumbrineridae . . . . . . 2 . . . . . 1 1 1 . . 2 2 1 2 .

Page 16: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

10

Table 5. Number of families identified per major taxa within 10, 20 and 40 m depth classes of the VCBS. ‘+’ indicates taxa where family level identifications weren’t made and were given a value of 1 in the totals. Numbers of replicate samples are indicated in parentheses.

Taxa 10 m (n=45)

20 m (n=27)

40 m (n=32)

Crustacea 50 64 86 Polychaeta 23 34 41 Mollusca 22 24 32 Echinodermata 5 5 10 Pycnogonida 1 3 3 Cnidaria + + + Hemichordata + + + Nematoda + + + Nemertea + + + Platyhelminthes + + + Sipuncula + + + Ascidacea . + + Oligochaeta . + + Chaetognatha . + . Chelicerata . . + Chordata . . + Echiura . . + Phoronida . . + Porifera . . + Total 107 139 185

3.2.2 Trends in Species Diversity along the Victorian Coast

The total number of species per site increased with depth. There were more species at 40 m than at 20 m and more at 20 m than at 10 m. But variation between replicates within a site showed considerable overlap in species richness between sites from different depths (Figure 4). The variation in species richness between sites was considerably higher within the 40 m depth class than for either of the 10 or 20 m depth classes.

Variation in species richness at each depth along the Victorian coast showed considerable overlap, but at all depths species richness appeared higher between transects 32 (Wilsons Promontory) and 37 (Seaspray) in eastern Victoria. Samples collected from the east coast generally exhibited higher total numbers of species than samples collected from the central or west coasts.

The total number of species from samples analysed during the Orbost Pulp Mill study was higher than found in the VCBS at all depths. The number of species recorded per site during the Orbost study was twice that found during the VCBS at depths of 10 m and 40 m, but only marginally higher at a depth of 20 m. Only one site (11 m depth, 9 replicate samples) was sampled within the 10 m depth class for the Orbost study, but eleven sites (29 replicate samples) were sampled within the 40 m depth class (Table 2).

The total number of individuals in samples collected during the VCBS was generally highest for samples within the 20 m depth class, though there was strong overlap between all depth classes across the entire state (Figure 5). There was no strong relationship between the

Page 17: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

11

number of individuals and the geographic location of samples, though within the 40 m depth class there were more individuals per sample from the east of the state versus the west.

0

10 20 30 40 50 60 70 80 90

100110

120130

140

150160

170

180

190

200

Transect Number0 10 20 30 40 50

Num

ber o

f Spe

cies

Vict. Coast 40m

Vict. Coast 20m

Vict. Coast 10m

MNP

Orbost 30m

Orbost 20m

Orbost 50m

Orbost 40m

Orbost 10m

Figure 4. Plot of mean number of species per 0.1m2 sample analysed during the VCBS (sites distinguished by transect number and depth) and Orbost Pulp Mill Study. Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs. The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study.

0 100 200 300 400 500 600 700 800 900

1000

1100

1200

1300

1400

Transect Number0 10 20 30 40 50

Num

ber o

f Ind

ivid

uals

Vict. Coast 40m

Vict. Coast 20m

Vict. Coast 10m

MNP

Orbost 30m

Orbost 20m

Orbost 50m

Orbost 40m

Orbost 10m

Figure 5. Plot of mean number of individuals per 0.1m2 sample analysed during the VCBS (sites distinguished by transect number and depth) and Orbost Pulp Mill Study. Transects were located along the length of the Victorian coastline and numbered from west to east as shown in Figure 1. Error bars indicate one standard error. Black dots indicate sites located within MNPs. The shaded area represents the stretch of coastline sampled during the Orbost Pulp Mill study.

Page 18: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

12

There was no clear difference in the mean number of individuals per sample for sites within each depth class from the VCBS and the Orbost Pulp Mill study.

3.2.3 Seasonal Variation – Orbost Pulp Mill study

The mean number of species per 0.1m2 sample was generally highest in samples collected during February 1991 and lowest in September 1990 across all depth ranges sampled (11–51 m). Differences between number of species collected in September 1990 and June 1991 were generally not significant. The most significant differences occurred between samples collected during February 1991 and September 1990 from depths ranging from 29–43 m. The mean number of species in samples collected during February was on average approximately 50% greater than those collected during September, and up to 120% greater.

0 102030405060708090

100 110 120 130 140 150 160 170 180 190 200

0 5 10 15 20 25 30 35 40 45 50 55

Num

ber o

f Spe

cies

Depth (m)

Feb. 1991

June 1991

Sept. 1990

Figure 6. Seasonal variation in mean number of species of infauna per 0.1 m2 grab sample versus depth collected during the Orbost Pulp Mill study, from September 1990 – June 1991. Error bars represent one standard error.

3.3 INTRODUCED SPECIES - N.Z. Screw Shell An unusually high abundance of the invasive New Zealand screw shell, Maoricolpus roseus, was identified in all three replicate samples collected off Point Hicks (transect 46) in 40 m of water.

The N.Z. screw shell accounted for more than 90% of the total biomass of infauna in these samples (Table 6, Appendix 5). Replicate 2 had by far the highest biomass of NZ screw shells, the lowest number of individuals and fewer species of infauna than the other two replicate samples.

Page 19: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

13

Table 6. Total number of species and individuals, and number and biomass of Maoricolpus roseus identified from three replicate samples collected off Point Hicks (transect 46) at 40 m depth during the VCBS.

VCBS transect 46, 40m depth Replicate 1 Replicate 2 Replicate 3

Total number of infaunal species 62 37 71 Total no. of individuals (per m2) 9740 2350 12550

Number of M. roseus individuals (per m2) 1620 680 1930

Wet weight of M. roseus (gm / m2) 290 1800 400

Page 20: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

14

Figure 7a. Probablity of presence of NZ screw shells near Pt Hicks based on mapping during 2006 (from Holmes et al. 2007) and observations of distribution during this study in 1998 (Red= NZ screw shells abundant, green= NZ screw shells absent).

Page 21: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

15

Figure 7b. Observations of NZ screw shells near Pt Hicks based on ground truthing during 2006 (diamonds, from Holmes et al. 2007) and observations from this study in 1998 (Red= NZ screw shells abundant, green= NZ screw shells absent).

Page 22: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

16

4 DISCUSSION 4.1 GEOGRAPHIC VARIATION IN SOFT SEDIMENT BENTHIC

COMMUNITIES Coleman et al. (2000, 2007) detected no clear geographic variation in the taxonomic composition of benthic communities along the Victorian coast, providing only weak evidence supporting the subdivision of the Victorian coast into bioregions. Similarly, O’Hara (2001) found no evidence of a geographical gradient from west to east in Victorian subtidal rocky reef communities. In contrast, Coleman et al. (2007) found strong evidence for the influence of sediment type and depth on community composition.

A distinctive feature of benthic sediments (i.e. sand) along the Victorian coast is the marked reduction in carbonate content east of Wilsons Promontory and the relatively low carbonate fractions in East Gippsland. Sands of the west coast are of a biogenic origin (produced from living organisms or biological processes), consisting of foraminifera, bryozoans and molluscs with minimal terrigenous (derived from terrestrial environments) contribution, and consequenty have a high calcareous component (Bird, 1993; Wass et al., 1970). Sands from the east coast have been derived from the weathering of quartzose mantles and nearshore granite outcrops and have a low carbonate content. The contrasting biological productivity of eastern and western Victoria waters may also influence the carbonate content of sediments. The warm, nutrient poor East Australian current may contribute less carbonate than the cooler and biologically rich waters to the west (Bird, 1993).

Roob et al. (1999) also suggested that rocky reefs may contribute higher levels of calcium carbonate since they are capable of supporting greater biomass of marine fauna from which calcium carbonate is derived, and noted that a greater proportion of rocky reefs occur along the west and central Victorian coasts than on the east coast.

4.2 SPECIES DIVERSITY IN SOFT SEDIMENT BENTHIC COMMUNITIES

Coleman et al. (1997) and Etter and Grassle (1992) found that species richness increased with sediment heterogeneity, suggesting that resource partitioning of sediments with respect to grain size occurs, enabling more species to coexist (Levin et al. 2001). Although the degree of sorting was shown to be associated with depth, Coleman et al. (1997) concluded that sorting rather than depth was the major factor controlling species richness. They also suggested that because well-sorted sediments are in shallower water, reduced species richness in shallower water may be due to increased physical disturbance, through increased wave action.

The Phase 2 study suggests that the diversity of species may be higher in at least some transects in eastern, although not in far eastern, Victoria. The reason that diversity may be higher in this region is uncertain, but differences in wave energy may be important. The region with elevated species diversity occurs in eastern Bass Strait, far enough east to have reduced influence from the large swells entering western Bass Strait, but not far enough east to have the full influence from swells from the Pacific Ocean. Regionally lower wave energy may cause sediments characteristic of deeper water elsewhere on the coast to be found closer inshore. As there is a clear relationship between sediment type, depth and diversity (Coleman et al. 1997, Figure 6) this may result in higher diversity at specific depths in those parts of East Gippsland subject to reduced wave energy. Analysis of additional samples from eastern Victoria would be helpful to confirm this apparent regional variation.

Coleman et al. (1997) concluded that the species diversity found in East Gippsland was the highest yet found in any marine sediments, including those in the deep sea. This conclusion

Page 23: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

17

was supported by Gray et al. (1997) and Poore and O’Hara (2007), both of whom emphasised the lack of strong evidence for species diversity in the deep sea being clearly higher than that in shelf sediments, and the paucity of data upon which generalisations on patterns in benthic species diversity have been based.

Species diversity is usually compared in one of two ways: on a unit area basis, or using rarefaction techniques to estimate the number of species expected for a particular number of individuals collected. The latter technique is the only possible basis when benthic samples are collected using qualitative sampling techniques such as deep sea sleds, and has often been considered more appropriate when comparing shallow and deep sea diversity, as the lower density of biota in the deep sea means that diversity per unit area in this region will necessarily be lower. Levin et al. (2001) further argue that it is inadequate to compare species diversity based on the number of individuals collected, but that species diversity should only be based on the asymptote of curves of the number of species vs no of individuals. If comparisons of species diversity between different regions are restricted as suggested by Levin et al. (2001), there are virtually no suitable data for regional comparisons, and for the deep sea there are no data for any region that suggests an asymptote has yet been reached. Indeed, as the deep sea may show a high degree of connectedness over very large areas, to restrict comparisons of diversity based just on asymptotic values of species number vs individuals may result in comparions of the number of species in very large (deep sea) areas with much smaller shallower regions. This concept of diversity seems at odds with the more usual concept that asks why some areas support more species than others (e.g. Connell and Orias 1964), which imply comparisons based on similar areas of sampling. We take the view that comparisons of species diversity on an area basis, on a per number of individuals basis, and as the asymptote of species vs number of individuals curves are all of interest, at least until we better understand the causes of diversity.

Large-scale marine biogeography is still in a descriptive phase, where establishing pattern is a primary objective (Rex et al. 2005). It therefore remains of interest whether the diversity of species in Bass Strait is unusually high. Species diversity has not been measured in soft sediments in most regions of the world, so benthic diversity in Bass Strait may yet prove to be unexceptional (Gray et al. 1997). However, there remains a view that the deep sea is exceptionally diverse (Levin et al. 2001), despite the diversity in Bass Strait being comparable or higher than that measured in the deep sea, based on a unit area and per number of individuals basis (Table 7).

Why should the East Gippsland area have high diversity? In a recent review Levin et al. (2001) outline a range of factors that may contribute to high benthic species diversity, but we will focus on two factors they did not consider; in particular, the contribution of historical-evolutionary factors and of temporal variation to the origin and maintenance of high species diversity in Bass Strait.

Levin et al. (2001) specifically excluded discussion of the role of historic factors leading to higher speciation in particular areas, as they were primarily concerned with “ecological structuring agents that function on a generational rather than evolutionary time scales.” But ecological and evolutionary factors that contribute to species diversity cannot be separated, and contemporary patterns in species diversity may originate in part from the unique history and biogeography of each region (Rickleffs and Schluter 1997). We support the view of Levin et al. (2001) that depth gradients in diversity, such as those between Georges Bank and ACSAR (Table 7), are more likely to be caused by contemporary ecological forces than by evolutionary-historical processes, due to the relatively small spatial scales involved (Rex et al. 2005). But, in contrast, the higher diversity apparent in Bass Strait compared to the Atlantic may reflect an important role for evolutionary-historical differences between these widely-separated geographic areas. A partial test of the importance of evolutionary history of an area would be an analysis of species richness off the continental slope near Bass Strait.

Page 24: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

18

This area may support even greater species richness than Bass Strait or the north Atlantic, but such data are not available.

Table 7. Comparison of species diversity of benthic infaunal communities found in different geographic areas in coastal and deep sea regions.

Region Depth range (m)

No of species

/m2

Total area sampled

(m2)

Total no. of

species

Total no. of

individuals

Reference

Orbost, Bass Strait

11–51 >400 10.2 803 60,258 Coleman et al. 1997, Gray et al. 1997

VCBS Phase 1 study, Victorian coast (10m depth)

10 96 2.8 160 4822 Coleman et al. 2007

VCBS Phase 1 study, Victorian coast (40 m depth)

40 285 2.4 454 4458 Coleman et al. 2007

Delaware, North Atlantic

1500–2100 220-300 21 798 90,677 Grassle & Maciolek (1992)

Georges Bank, North Atlantic

38–167 165 46 ~650 550,000 Levin et al. 2001

ACSAR† North, North Atlantic

1220–1350 319 5.7 ~600 27,906 Levin et al. 2001

† ACSAR, Atlantic Continental Slope and Rise

Rickleffs and Schluter (1997) suggest that “particular geographical configurations of islands, or of ecological barriers to dispersal, might result in different rates of species production and different levels of regional and local diversity.” The unusual geography and geological history of Bass Strait has at least the potential to create periodic geographic isolation that can generate allopatric speciation and contribute to a high regional diversity. The geographic area that currently forms Bass Strait extends in an east–west direction, where, depending on the prevailing sea level, it creates two geographically well-separated biotas or joins two biotas at the same latitude. Many authors (O’Hara and Poore 2000 and references therein) have speculated that this may contribute to high rates of speciation in the Bass Strait region.

On a broader scale the climate across southern Australia over the past 40 million years has remained relatively stable, as global cooling during this period was largely compensated by the drift of the Australian continent northwards (Flannery 1994, p76). At a minimum this prevented large-scale glaciation and the likelihood of mass extinctions. O’Hara and Poore (2001) note that there is no clear trend in species diversity of echinoderms or decapods across southern Australia, suggesting that diversity in Bass Strait may be no higher than occurs across all of southern Australia. Coleman et al. (1997) noted the very high diversity of phoxocephalid amphipods in southern Australia first recognised by Barnard and Drummond (1978), and the globally high diversity and the high levels of endemism of macroalgae, especially Rhodophyta (Phillips 2001), and Phaeophyta (Bolton 1994, 1996) in southern Australia. The high diversity of these taxonomic groups suggests evolutionary conditions have at least been suitable for atypical radiation of these groups in southern Australia. Similarly, the diversity of benthos elsewhere in Victoria, especially Port Phillip Bay (713 species in 43 m2 of sediment sampled, Poore et al. 1975) and Western Port (572 species in 12.3 m2, Coleman et al. 1978) is also high, although not as high as Bass Strait, further suggesting that regional historical-evolutionary factors may be of importance.

Page 25: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

19

Studies of benthic species diversity recognise that spatial differences in habitats, including differences in grain size, contribute to coexistence of species (e.g. Levin et al. 2001), but there are far fewer discussions of the contribution of temporal environmental variation to the coexistence of benthic species. While the role of intermediate levels of disturbance in maintaining species diversity is widely recognised (Connell 1978), temporal differences in benthic species diversity have not been widely reported. Grassle and Maciolek (1992) found only small temporal differences in species diversity in the deep North Atlantic. Their study monitored species richness at 9 stations at 2100 m depth every three months for two years, and they found a maximum of 20–30% variation in species diversity (per 500 individuals) over this period. In contrast, at depths >25 m, differences in Bass Strait species diversity varied by 100% over a 9 month period (Figure 6). There were approximately twice as many species collected at the same sites off Orbost during February 1991 as were collected there during September 1990 (Figure 6). Poore and Rainer (1979) also showed that species richness at three sites in Port Phillip Bay varied by a factor of 100% over a three year period, and that interannual differences in diversity were greater than any seasonal differences. Similarly, Stephenson et al. (1974) found that annual changes in species composition in Moreton Bay, Queensland, were greater than seasonal changes, and suggested that floods and droughts may have been important influencing factors. In contrast, in the north Atlantic differences in species diversity have been found to be small between years (Lie and Evans 1973, Levings 1975) or strongly seasonal (Watling 1975). The irregular fluctuations in species composition and diversity in coastal Australian benthos may result from large-scale influences on the Australian climate. Australia is the only continent where the overwhelming influence is a non-annual climatic change (Flannery 1994, p81). The El Nino Southern Oscillation drives these irregular changes that affect both the terrestrial and marine ecology of the Australian continent.

A factor likely to contribute to high species diversity in Bass Strait is “resource partitioning” that may occur on a temporal basis, with particular species favoured in some years and others favoured by different conditions (temperature, insolation and productivity, etc) in other years. The unpredictably changeable conditions between years may cause changes to the species composition of communities over time, and are also likely to lead to higher diversity at any point in time, as at any time the community will consist of a mixture of species whose populations are in decline while others are increasing as conditions become more favourable for them. This effect will be reduced where conditions are less variable between years, where conditions are repeated more regularly (e.g. seasonally), and possibly when conditions become extremely harsh regularly (e.g. seasonally low temperatures and low productivity). There is also a pertinent corollary to this argument: where there is greater temporal variation in species diversity, global comparisons should be based on the number of species found at a site over a standardised time period of at least a few years. Otherwise the contribution of irregular, but benign, temporal variation in environmental conditions on species diversity may be underestimated.

The species richness found in the Orbost region during 1990/91 was markedly (typically 100%) higher than found at any site in the VCBS during 1998. The reason that diversity should be so much higher in this study is unclear, but there is significant temporal variation in the species richness near Orbost. As the Orbost region was sampled for less than one year the contribution of seasonality to temporal differences in species diversity is uncertain, but as the VCBS sampling occurred during May, close to June when the lowest species richness was recorded in the Orbost study, the time of sampling may be the reason species diversity was lower during 1998.

We agree with Rex et al (2005) that marine invertebrate communities offer tremendous potential to determine the relative importance of history and ecological opportunity in shaping large-scale patterns in species diversity. But, many more data sets are required to determine the patterns of species diversity with depth and with latitude to realise this potential (Gray et al. 1997, Rex et al. 2005). The current study also suggests that these additional data sets

Page 26: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

20

should also be collected over several years so that the contribution of temporal environmental changes to species diversity can be assessed more adequately.

4.3 N.Z. SCREW SHELL The New Zealand screw shell, Maoricolpus roseus, is a large (up to 90 mm long and 25 mm wide) filter-feeding gastropod that was unintentionally introduced to south-eastern Tasmania in the 1920s and has now become established in vast beds in northern Bass Strait and off the coasts of eastern Tasmania, Victoria and New South Wales. It is found from the intertidal to 150 m deep, can withstand low salinities, and has colonised more habitat than any other high-impact benthic marine pest in Australia. Its wide temperature and depth tolerance makes further spread likely (Gunasekera et al., 2005; NIMPIS, 2002).

There are few known predators of the N.Z. screw shell in Australia and most predation seems to occur on small juveniles (NIMPIS, 2002). It is highly competitive with other species, and builds substantial beds to the detriment of other animals on the sea floor (CSIRO, 2000). It may lead to a reduction in numbers of native screwshells and scallops through direct competition for food and space as they are all filter feeding species with overlapping habitat requirements (NIMPIS, 2002). In Tasmania, native screwshells (primarily Gazameda gunnii) and commercial scallop species have declined in abundance since the appearance of M. roseus (Allmon et al 1994, Caton and McLoughlin 2000 both cited in NIMPIS, 2002).

This study has identified very high densities of the invasive New Zealand screw shell, within the Point Hicks MNP. This species was only found at a depth of 40 m, where it was abundant in all three replicates. Densities recorded in this study (680–1930 m–2, Table 6) are similar to very high densities recorded in Otago Harbour (2240 m–2, Rainer 1981). Densities were similar, but the mean size and biomass of this invasive mollusc varied between replicates. While infaunal diversity at the invaded site (40 m transect 46, Figure 4) was not significantly lower than that in adjacent (uninvaded) sites, it is of concern that species diversity was clearly lower in the replicate sample with the highest biomass of NZ screw shell. This suggests that this abundant invasive species may pose a significant threat to the biodiversity of the Pt Hicks Marine National Park, as well as much of eastern Bass Strait, including other Marine National Parks.

5 MANAGEMENT IMPLICATIONS Large differences noted in species diversity measured during the Orbost study in 1990/01 and the coastal benthos study in 1998 indicate that there is much we still do not understand about the processes that maintain this high diversity. The role of temporal (both seasonal and interannual) environmental changes in maintaining this diversity needs further investigation. That there appear to be large natural temporal variations in species diversity suggests that long times series of infaunal data will be required to detect the effects of any human influences on diversity. That high densities of exotic species such as NZ screw shells can establish even in remote areas means that targeted monitoring, with possible active management of MNPs, is likely to be required to understand their long-term impact on the conservation of biodiversity in MNPs.

ACKNOWLEDGMENTS This study was funded by Parks Victoria. Thanks to Dr Anthony Boxshall, Parks Victoria for his support, and to Ms Julia Koburg who assisted with the sorting and identification of the samples during Phase 2 study of the VCBS.

Page 27: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

21

REFERENCES Allmon, W.D., Jones, D., Aiello, R.L., Gowlett-Holmes, K., and Probert, P.K. (1994) Observations on the biology of Maoricolpus roseus (Quoy and Gaimard) (Prosobranchia: Turritellidae) from New Zealand and Tasmania. Veliger 37: 267-279.

Barnard J.L. and Drummond M.L. (1978) Gammaridean Amphipoda of Australia. Part III, the Phoxocephalidae. Smithonian Contributions to Zoology No. 245. Smithsonian Institution Press, Washington, DC.

Bird E.C.F. (1993) The Coast of Victoria. Melbourne University Press.

Bolton J. (1994) Global seaweed diversity: patterns and anomalies. Botanica Marina 37: 241–245.

Bolton J. (1996). Patterns of species diversity and endemism in comparable temperate brown algal floras. Hydrobiologica 326/327: 173–178.

Caton, A., and McLoughlin, K. (2000). Fishery Status Reports 1999. Bureau of Rural Sciences, Agriculture, Fisheries and Forestry – Australia. Canberra

Coleman N., Cuff W., Drummond M., and Kudenov J.D. (1978) A quantitative survey of the macrobenthos of Western Port, Victoria. Australian Journal of Marine and freshwater Research 29: 445–466.

Coleman N., Gason A., Moverley J. & Heislers S. (2000) Depth, sediment type and the distribution of ingfauna along the coast of Victoria. Final report to Parks, Flora and Fauna Division of the Department of Natural Resources and Environment.

Coleman N., Gason A. S. H. and Poore G. C. B. (1997) High species richness in the shallow marine waters of south-east Australia Marine Ecology Progress Series 154: 17–26.

Coleman N., Cuff W., Moverley J., Gason A. S. H. & Heislers S. (2007) Depth, sediment type, biogeography and high species richness in shallow-water benthos. Marine and Freshwater Research. 58: 293-305.

Connell J.H. (1978) Diversity in troprical rain forests and coral reefs. Science 199:1302–1310.

Connell J.H. and Orias E. (1964) The ecological regulation of species diversity. American Naturalist 98:399–414.

CSIRO (2000) Media Release- Screw shell's marine marathon. Ref 2000/287 - Nov 01, 2000.

Etter R.J. and Grassle J.F. (1992) Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360: 576–578.

Flannery T.F. (1994) The future eaters. Reed Books, Chatswood, NSW.

Gray J.S., Poore G.C.B., Ugland K.I., Wilson R.S., Olsgard F., & Johannessen O. (1997) Coastal and deep-sea benthic diversities compared. Marine Ecology Progress Series 159: 97–103.

Gunasekera R. M., Patil J. G., McEnnulty F. R. and Bax N. J. (2005) Specific amplification of mt-COI gene of the invasive gastropod Maoriculpus roseus in planktonic samples reveals a free-living larval life-history stage. Marine and Freshwater Research 56: 901–912.

Holmes, K.W., Radford, B., Van Niel, K.P., Kendrick, G.A. and Grove, S.L. (2007) Mapping the Benthos in Victoria’s Marine National Parks, Volume 2: Point Hicks. Parks Victoria Technical Series No. 41. Parks Victoria, Melbourne.

Page 28: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

22

IMCRA (Interim Marine and Coastal Regionalisation for Australia Technical Group) (1998) Interim Marine and Coastal Regionalisation for Australia: an Ecosystem-Based Classification for Marine and Coastal Environments.’Version 3.3. (Environment Australia: Canberra.).

Levings C.D. (1975) Analyses of temporal variation in the structure of a shallow water benthic community in Novia Scotia. Internationale Revue der Gesamten Hydrobiologie 60: 449–493.

Lie U. and Evans R.A. (1973) Long term variability in the structure of subtidal benthic communities in Puget Sound, Washington, USA. Marine Biology 21:122–126.

NIMPIS (2002) Maoricolpus roseus general notes. National Introduced Marine Pest Information System (Eds: Hewitt C.L., Martin R.B., Sliwa C., McEnnulty, F.R., Murphy, N.E., Jones T. & Cooper, S.). Web publication <http://crimp.marine.csiro.au/nimpis>, Date of access: 10/5/2007

O’Hara T. D. (2001) Consistency of faunal and floral assemblages within temperate subtidal rocky reef habitats. Marine and Freshwater Research 52: 853–863.

O’Hara T.D. and Poore G.C.F. (2000) Patterns of distribution for southern Australian marine echinoderms and decpods. Journal of Biogeography 27: 1321–1335.

Parry G. D., Campbell, S.J. and Hobday, D.K. (1989) Marine resources off East Gippsland, southeastern Australia. Marine Science Laboratories, Queenscliff. Technical Report No. 72, 166 pp.

Phillips J.A. (2001) Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora? Biodiversity and Conservation 10: 1555–1577.

Poore G.C.B. and O’Hara T.J. (2007) Marine biogeography and biodiversity of Australia. In: Marine Ecology (Eds, S.D. Connell and B.M. Gillanders), pp.175–198 Oxford University Press, South Melbourne, Victoria.

Poore G.C.F., Rainer, S.F., Spies, R.B. and Ward E. (1975) The zoobenthis program in Port Phillip Bay, 1969-73. Fisheries and Wildlife Paper, Victoria 7:1–78.

Poore, G. C. B. and Rainer, S. F. (1979) A three-year study of benthos of muddy environments in Port Phillip Bay, Victoria, Australia. Estuarine and Coastal Marine Science 9: 477–497.

Rainer S.F. (1981) Soft-bottom benthic communitiesin Otago Harbour and Blueskin Bay, New Zealand. New Zealand Oceanographic Institute Memoir 80: 1–18.

Rex M.A., Crame J.A., Stuart C.T., Clarke A. (2005) Large-scale biogeographic patterns in marine molluscs: A confluence of history and productivity. Ecology 86: 2288–2297.

Rickleffs R.E. and Schluter D. (1997) Species diversity: regional and historical influences. In: Species diversity in ecological communities: Historical and Geographical Perspectives (Eds. R.E. Rickleffs and D. Schluter, pp. 350–363 University of Chicago Press, Chicago.

Roob R., Gunthorpe L. and Turnbull J. (1999) Collection and physical classification of sediments. In: Environmental Inventory of Victoria’s Marine Ecosystems Stage 4 (Part 1) (Ed. L.W. Ferns) pp. 2.1–2.13, maps 2.1a–2.3c. Department of Natural Resources and Environment: East Melbourne.

Stephenson W., Williams W.T. and Cook S.D. (1974) The benthic fauna of soft bottoms, southern Moreton Bay. Memoirs of the Queensland Museum 17: 73–123.

Wass, R. E., Conolly, J. R. and MacIntyre, R. J. (1970) Bryozoan carbonate sand continuous along southern Australia. Marine Geology 9: 63–73.

Page 29: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

23

Watling L. (1975) Analysis of structural variations in a shallow estuarine deposit-feeding community. Journal of Experimental Marine Biology and Ecology 19:275–313.

Wilson, R. S., Heislers, S. and Poore, G. C. B. (1998) Changes in benthic communities of Port Phillip Bay, Australia, between 1969 and 1995. Marine and Freshwater Research 49: 847–861.

Page 30: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A1.1

APPENDIX 1 Victorian Coastal Benthic Survey site/sample locations and sediment characteristics. Adapted from Table 2.1 of Roob et. al. (1999). Latitude and Longitude coordinates are in AGD 66 datum.

Sample Code Transect Depth

(m) Latitute Longitude Comments – Field Comments – Grain Size Testing

Median Grain Size

(mm)

Median Grain Size

Class† %

Gravel%

Sand %

Silt %

Clay%

Carbonate

0A 0 10 38°03'31" 141°02'10" Sand Clean fine sand 0.16 fine 0.00 99.77 0.23 0.00 99.77 0B 0 20 38°04'08" 141°01'50" Reef,craypots everywhere N/A N/A N/A N/A N/A N/A N/A

0C 0 40 38°07'12" 140°35'59" Reef, scraping taken for carbonate analysis N/A N/A N/A N/A N/A N/A N/A

1A 1 10 38°07'19" 141°09'16" Sand Clean fine sand 0.21 fine 0.00 99.86 0.14 0.00 N/A 1B 1 20 38°07'21" 141°09'04" Sand Clean fine sand 0.19 fine 0.09 99.91 0.00 0.00 N/A

1C 1 40 38°08'13" 141°08'13" Reef, scrapings taken for carbonate analysis

Coarse sand, broken shell. Removed larger pieces. 0.52 coarse 0.00 100.00 0.00 0.00 91.38

2A 2 10 38°12'24" 141°14'04" Sand Clean fine sand 0.19 fine 0.12 99.72 0.16 0.00 76.44 2B 2 20 38°12'29" 141°13'23" Sand Clean fine sand 0.18 fine 0.64 99.33 0.03 0.00 75.49 2C 2 40 38°12'34" 141°12'49" Reef, no sample N/A N/A N/A N/A N/A N/A N/A 3A 3 10 38°13'34" 141°16'22" Clean fine sand 0.18 fine 0.00 100.00 0.00 0.00 94.35 3B 3 20 38°14'07" 141°16'16" Clean fine sand 0.17 fine 0.00 100.00 0.00 0.00 87.71 3C 3 40 38°15'00" 141°16'04" Clean fine sand 0.19 fine 9.79 90.21 0.00 0.00 66.62 4A 4 10 38°14'24" 141°21'05" Clean fine sand 0.17 fine 0.07 99.93 0.00 0.00 92.83 4B 4 20 38°14'49" 141°21'21" Clean fine sand 0.16 fine 0.00 100.00 0.00 0.00 87.33 4C 4 40 38°15'35" 141°22'08" Clean fine sand 0.16 fine 0.00 99.90 0.10 0.00 82.03 7A 7 10 Reef – no samples N/A N/A N/A N/A N/A N/A N/A

7B 7 20 38°11'02" 141°34'26" Limited sample, sand taken for carbonate and grain size Coarse sand or shell 0.77 coarse 0.00 100.00 0.00 0.00 92.96

7C 7 40 38°15'40" 141°34'53" Reef, no sample taken N/A N/A N/A N/A N/A N/A N/A 8A 8 10 38°13'33" 142°09'08" Fine sand & broken shell 0.17 fine 0.00 99.80 0.20 0.00 90.23

Page 31: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A1.2

Sample Code Transect Depth

(m) Latitute Longitude Comments – Field Comments – Grain Size Testing

Median Grain Size

(mm)

Median Grain Size

Class† %

Gravel%

Sand %

Silt %

Clay%

Carbonate

8B 8 20 38°13'55" 142°09'36" Fine sand & broken shell 0.16 fine 0.00 100.00 0.00 0.00 90.33 8C 8 40 38°14'36" 142°10'11" Reef – patchy with sand Coarse sand & shell 0.48 medium 0.00 99.74 0.26 0.00 95.68 9A 9 10 38°15'56" 142°18'12" Reef N/A N/A N/A N/A N/A N/A N/A 9B 9 20 38°15'56" 142°18'12" Reef N/A N/A N/A N/A N/A N/A N/A

9C 9 40 38°15'56" 142°18'12"Unable to get grab sample but some sediment taken for whirl packs. Seems to be patchy reef.

Coarse shell & coral 0.62 coarse 0.00 100.00 0.00 0.00 88.47

10A 10 10 38°19'00" 142°25'13" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A 10B 10 20 38°19'07" 142°25'39" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A 10C 10 40 38°20'09" 142°25'11" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A 11A 11 10 38°22'19" 142°32'38" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A 11B 11 20 38°22'24" 142°32'36" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A 11C 11 40 38°23'25" 142°32'31" Reef no sample taken N/A N/A N/A N/A N/A N/A N/A 12A 12 10 38°24'18" 143°03'57" Fine sand Clean fine sand 0.21 fine 0.23 99.65 0.12 0.00 82.78 12B 12 20 38°24'27" 143°03'38" Fine sand Clean fine sand 0.16 fine 0.11 99.63 0.26 0.00 86.42 12C 12 40 38°24'39" 143°03'07" Sand Clean medium sand 0.33 medium 0.18 99.82 0.00 0.00 68.39 14A 14 10 38°27'19" 143°12'33" Clean fine sand 0.19 fine 0.00 100.00 0.00 0.00 78.00 14B 14 20 38°27'40" 143°12'28" Clean fine sand 0.16 fine 0.10 99.90 0.00 0.00 70.85

14C 14 40 38°28'17" 143°12'26" Fine sand, shell pieces. Removed larger pieces. 0.20 fine 0.08 99.80 0.12 0.00 44.73

15A 15 10 38°30'58" 143°19'40" Clean fine sand 0.19 fine 0.00 100.00 0.00 0.00 72.56 15B 15 20 38°31'05" 143°19'38" Coarse sand & shell 0.42 medium 0.00 100.00 0.00 0.00 81.04 15C 15 40 38°31'41" 143°19'45" Coarse sand & shell 0.54 coarse 0.12 99.88 0.00 0.00 17.90 16A 16 10 38°26'37" 143°24'47" Fine sand Fine sand 0.15 fine 0.00 99.38 0.62 0.00 66.59 16B 16 20 38°27'10" 143°25'02" Fine sand Fine sand 0.19 fine 0.00 99.92 0.08 0.00 68.52 16C 16 40 38°28'07" 143°25'36" Fine sand Fine to medium sand 0.28 medium 0.00 100.00 0.00 0.00 18.70 17A 17 10 38°23'00" 143°32'53" Fine sand Fine sand 0.16 fine 0.00 100.00 0.00 0.00 71.45 17B 17 20 38°23'09" 143°32'25" Fine sand 0.18 fine 0.00 100.00 0.00 0.00 73.36 17C 17 40 38°23'34" 143°32'50" Fine sand and shell Fine sand & broken shell 0.15 fine 0.00 98.94 1.06 0.00 78.01

Page 32: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A1.3

Sample Code Transect Depth

(m) Latitute Longitude Comments – Field Comments – Grain Size Testing

Median Grain Size

(mm)

Median Grain Size

Class† %

Gravel%

Sand %

Silt %

Clay%

Carbonate

18A 18 10 38°17'04" 144°02'12" Clean fine sand 0.15 fine 0.00 99.29 0.71 0.00 75.07 18B 18 20 38°17'20" 144°02'24" Shell grit - in depression ? Clean fine sand 0.14 fine 0.09 96.97 2.94 0.00 72.71 18C 18 40 38°30'12" 144°15'02" Coral, broken shell & sand 0.68 coarse 0.00 100.00 0.00 0.00 88.22 19A 19 10 38°13'59" 144°09'29" Clean fine sand 0.15 fine 0.10 99.28 0.62 0.00 74.04 19B 19 20 38°14'08" 144°09'43" Clean fine sand 0.14 fine 0.30 99.37 0.33 0.00 91.13

19C 19 40 38°14'39" 144°10'18" Much cobble - some sediment Some silt, fine sand, coral, broken shell. Removed larger pieces.

0.37 medium 0.38 98.90 0.72 0.00 89.50

20A 20 10 38°10'39" 144°14'45" Clean fine sand 0.14 fine 0.00 99.81 0.19 0.00 53.23

20B 20 20 38°11'03" 144°14'55" Clean, very fine sand. Small amount plant matter, worm tube.

0.14 fine 0.00 99.85 0.15 0.00 41.04

20C 20 40 38°12'06" 144°15'25" Clean medium sand 0.28 medium 0.00 100.00 0.00 0.00 99.38

21A 21 10 38°12'21" 144°25'24" Samples taken at 12 m Clean fine sand, some broken shell

0.18 fine 0.00 99.91 0.09 0.00 68.21

21B 21 20 38°12'35" 144°25'07" Clean fine sand 0.19 fine 0.08 99.92 0.00 0.00 53.04 21C 21 40 38°13'29" 144°24'16" Clean fine sand 0.17 fine 0.00 99.92 0.08 0.00 62.47

22A 22 10 38°16'03" 144°30'21" Fine sand Clean fine sand, some fine shell grit. 0.16 fine 0.00 99.97 0.03 0.00 51.65

22B 22 20 38°16'03" 144°30'05" Reef N/A N/A N/A N/A N/A N/A N/A 22C 22 40 38°16'49" 144°29'21" Reef N/A N/A N/A N/A N/A N/A N/A 23A 23 10 Reef N/A N/A N/A N/A N/A N/A N/A 23B 23 20 38°17'51" 144°34'31" Reef N/A N/A N/A N/A N/A N/A N/A

23C 23 40 38°19'11" 144°34'37" Reef and sand - small sample taken Coarse shell grit & stones. 0.73 coarse 1.47 98.53 0.00 0.00 83.45

24B 24 20 38°18'49" 145°05'26" Reef N/A N/A N/A N/A N/A N/A N/A

24C 24 40 38°19'30" 145°05'20" Fine sand and silt Sediment, fine sand, worm tubes, vegetation. 0.14 fine 0.07 98.53 1.40 0.00 50.11

25 25 No transect exists – due to discontinuity in numbering system N/A N/A N/A N/A N/A N/A N/A

Page 33: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A1.4

Sample Code Transect Depth

(m) Latitute Longitude Comments – Field Comments – Grain Size Testing

Median Grain Size

(mm)

Median Grain Size

Class† %

Gravel%

Sand %

Silt %

Clay%

Carbonate

26A 26 10 No samples taken due to ocean conditions – breaking waves. N/A N/A N/A N/A N/A N/A N/A

26B 26 20 38°19'01" 145°11'11" Reef at 20 m, A and B taken as one at 15 m Coarse sand & shell 0.33 medium 0.00 99.86 0.14 0.00 36.74

26C 26 40 38°19'41" 145°10'48" Fine sand Clean fine sand 0.16 fine 0.09 99.79 0.12 0.00 7.34

26Ci 26 40 38°19'41" 145°10'47"Very coarse sand – close in location to 26C but samples very different.

Coarse shell & sand, sample taken immediately after 26C. 0.97 coarse 0.18 99.82 0.00 0.00 N/A

27C 27 40 38°23'55" 145°18'26" Coarse shell & sand. 0.61 coarse 0.00 100.00 0.00 0.00 93.56 28A 28 10 38°28'33" 145°31'10" Fine sand Clean fine sand 0.19 fine 0.00 100.00 0.00 0.00 39.82 28B 28 20 38°28'14" 145°31'51" Rock, additional sample taken Clean fine sand N/A N/A N/A N/A N/A N/A 47.30

28C 28 40 38°28'37" 145°29'25" Fine sand Clean fine sand & some broken shell 0.23 fine 0.00 100.00 0.00 0.00 30.60

29A 29 10 38°29'25" 146°02'17" Fine sand Fine sand, shell, calcium. 0.16 fine 0.00 99.66 0.34 0.00 41.40

29B 29 20 38°30'39" 146°02'26" Coarse sand Fine sand, coarse sand, shell & pebbles. Removed large shell & pebbles.

0.52 coarse 0.00 100.00 0.00 0.00 23.18

29C 29 40 38°35'22" 146°02'21" Fine sand Fine sand, broken shell 0.16 fine 0.08 99.86 0.06 0.00 57.87 30A 30 10 38°35'31" 146°09'13" Clean fine sand 0.15 fine 0.05 99.95 0.00 0.00 48.91 30B 30 20 38°35'36" 146°08'48" Clean fine sand 0.17 fine 0.00 100.00 0.00 0.00 53.30 30C 30 40 38°35'32" 146°07'31" Clean fine sand 0.18 fine 0.00 99.91 0.09 0.00 59.92 31A 31 10 39°02'30" 146°11'53" Clean fine sand 0.15 fine 0.05 99.83 0.12 0.00 60.54 31B 31 20 39°02'30" 146°11'36" Clean fine sand 0.15 fine 0.00 100.00 0.00 0.00 51.99 31C 31 40 39°02'31" 146°10'28" Fine sand & broken shell 0.24 fine 0.10 99.69 0.21 0.00 34.04 32A 32 10 39°02'30" 146°15'33" Clean fine white sand 0.22 fine 0.00 100.00 0.00 0.00 1.61

32B 32 20 39°02'35" 146°15'42" Half coarse and half fine sand - mixed together for test

0.48 medium 0.00 99.76 0.24 0.00 2.88

32C 32 40 39°02'59" 146°16'30" Sediment, fine sand, mica 0.13 fine 0.00 87.19 12.81 0.00 57.09 33A 33 10 38°33'55" 146°17'02" Fine sand Silt & fine sand, 1 allionasa. 0.16 fine 0.20 99.64 0.16 0.00 12.64 33B 33 20 38°34'18" 146°19'01" Fine sand Silt & fine sand, mica 0.14 fine 0.10 99.10 0.80 0.00 28.63 33C 33 40 38°34'54" 146°22'58" Fine sand and silt Silt & fine sand, broken shell 0.16 fine 0.00 97.11 2.89 0.00 58.65

Page 34: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A1.5

Sample Code Transect Depth

(m) Latitute Longitude Comments – Field Comments – Grain Size Testing

Median Grain Size

(mm)

Median Grain Size

Class† %

Gravel%

Sand %

Silt %

Clay%

Carbonate

34A 34 10 38°27'50 146°24'51" Clean medium sand 0.24 fine 0.00 100.00 0.00 0.00 3.83 34B 34 20 38°28'46" 146°25'25" Clean medium sand 0.24 fine 0.00 99.79 0.21 0.00 5.29 34Bi 34 20 38°28'46" 146°25'28" Clean medium sand 0.23 fine 0.00 100.00 0.00 0.00 N/A 34C 34 40 38°32'25" 146°29'41" Clean coarse sand & shell 0.49 medium 0.00 99.84 0.16 0.00 69.96 35A 35 10 38°24'00" 146°31'54" Clean fine sand 0.25 fine 0.00 99.93 0.07 0.00 11.67

35B 35 20 38°25'15" 146°33'03" Clean coarse sand & broken shell 0.39 medium 0.00 100.00 0.00 0.00 63.24

35C 35 40 38°29'12" 147°00'14" Coarse sand & broken shell 0.53 coarse 0.00 100.00 0.00 0.00 71.49

36A 36 10 38°18'44" 147°01'16" Silt & fine sand. Dated 8/5/98. 0.17 fine 0.05 99.93 0.02 0.00 13.68

36Ai 36 10 38°18'46" 147°01'16" Silt & fine sand 0.16 fine 0.00 99.77 0.23 0.00 N/A

36B 36 20 38°19'32" 147°03'38" Clean medium sand. Dated 8/5/98. 0.28 medium 0.00 100.00 0.00 0.00 19.31

36Bi 36 20 38°19'32" 147°03'38" Coarse sand & shell 0.25 fine 0.00 100.00 0.00 0.00 N/A 36Bii 36 20 38°19'35" 147°03'40" Clean coarse sand 0.32 medium 0.13 99.85 0.02 0.00 N/A

36Biii 36 20 38°19'35" 147°03'41" Coarse sand & shell, worm tube, veg matter. Dated 10/5/98.

0.27 medium 0.00 100.00 0.00 0.00 N/A

36C 36 40 38°22'05" 147°07'33" Medium-coarse sand, some shell grit. 0.24 fine 0.00 100.00 0.00 0.00 20.54

37A 37 10 38°12'26" 147°08'49" Clean fine sand 0.16 fine 0.04 99.82 0.14 0.00 13.06 37B 37 20 38°13'30" 147°01'55" Clean medium sand 0.20 fine 0.00 100.00 0.00 0.00 10.70 37C 37 40 38°18'04" 147°15'28" Coarse sand & broken shell 0.37 medium 0.13 99.87 0.00 0.00 23.83 38A 38 10 38°07'45" 147°14'46" Coarse sand & shell 0.29 medium 0.05 99.95 0.00 0.00 30.11

38B 38 20 38°09'03" 147°16'52" Rubble Very coarse sand & shell. Removed larger rocks & shell.

0.74 coarse 0.05 99.95 0.00 0.00 32.4

38C 38 40 38°11'13" 147°19'43" Some sediment, coarse sand & shell 0.25 fine 0.05 99.80 0.15 0.00 43.21

39A 39 10 38°02'03" 147°22'27" Clean fine sand 0.21 fine 0.00 100.00 0.00 0.00 16.24

39B 39 20 38°02'32" 147°23'14" Very coarse sand & shell. Removed large shell & rock. 0.74 coarse 0.03 99.97 0.00 0.00 17.93

Page 35: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A1.6

Sample Code Transect Depth

(m) Latitute Longitude Comments – Field Comments – Grain Size Testing

Median Grain Size

(mm)

Median Grain Size

Class† %

Gravel%

Sand %

Silt %

Clay%

Carbonate

39C 39 40 38°04'36" 147°25'18" Silt & fine sand 0.16 fine 0.00 99.33 0.67 0.00 50.73 40A 40 10 37°33'51" 147°30'09" Clean medium sand 0.32 medium 0.00 100.00 0.00 0.00 5.56

40B 40 20 37°34'29" 147°30'07" Coarse sand & shell, larger pieces of shell. 0.36 medium 0.00 100.00 0.00 0.00 7.54

40C 40 40 37°35'25" 147°31'53" Silty fine sand 0.15 fine 0.00 97.50 2.50 0.00 59.48 41A 41 10 37°31'16" 148°02'49" Fine sand 0.18 fine 0.00 100.00 0.00 0.00 10.24

41B 41 20 37°31'47" 148°03'09" Coarse sand & shell. Removed large shells. 0.73 coarse 0.00 100.00 0.00 0.00 8.84

41C 41 40 37°32'55" 148°03'42" Coarse sand & shell. Removed large shell & stones.

0.85 coarse 0.38 99.62 0.00 0.00 6.74

42A 42 10 37°29'16" 148°11'20" Clean medium sand 0.30 medium 0.00 100.00 0.00 0.00 3.02 42B 42 20 37°29'34" 148°11'22" Clean coarse sand 0.52 coarse 0.00 100.00 0.00 0.00 3.70

42C 42 40 37°30'44" 148°11'24" Coarse sand & shell, silt, coral. Removed large shell & stones.

0.69 coarse 0.00 100.00 0.00 0.00 13.68

43A 43 10 37°29'02" 148°24'15" Coarse sand. Sample dated 8/5/98. 0.49 medium 0.00 100.00 0.00 0.00 2.31

43Ai 43 10 37°29'02" 148°24'15" Medium sand. Sample dated 10/598. 0.30 medium 0.00 100.00 0.00 0.00 N/A

43C 43 40 37°30'06" 148°24'02" Sand & shell 0.34 medium 0.00 100.00 0.00 0.00 18.60

44A 44 10 37°28'32" 148°31'04" Clean medium sand & some shell. 0.51 coarse 0.00 100.00 0.00 0.00 5.38

44B 44 20 37°28'45" 148°31'12" Coarse sand & shell, stones & large shell pieces, removed some.

0.96 coarse 0.59 99.41 0.00 0.00 8.38

44C 44 40 37°30'03" 148°31'16" Coarse sand & broken shell. 0.49 medium 0.00 100.00 0.00 0.00 21.40 45A 45 10 37°28'18" 149°02'34" Clean medium sand 0.45 medium 0.00 100.00 0.00 0.00 9.07

45B 45 20 37°28'36" 149°02'36" Clean coarse sand, shell. Removed large shells. 0.70 coarse 0.00 100.00 0.00 0.00 6.38

45C 45 40 37°29'24" 149°02'45" Very coarse sand & shell. 0.89 coarse 0.00 100.00 0.00 0.00 10.33 46A 46 10 37°28'17" 149°08'36" Clean fine sand 0.22 fine 0.00 100.00 0.00 0.00 8.31 46B 46 20 37°28'36" 149°08'42" Clean medium sand 0.47 medium 0.00 100.00 0.00 0.00 12.57

Page 36: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A1.7

Sample Code Transect Depth

(m) Latitute Longitude Comments – Field Comments – Grain Size Testing

Median Grain Size

(mm)

Median Grain Size

Class† %

Gravel%

Sand %

Silt %

Clay%

Carbonate

46C 46 40 37°29'17" 149°08'52" Very coarse sand & shell. Removed pebbles. 0.97 coarse 2.66 97.34 0.00 0.00 N/A

47A 47 10 37°27'56" 149°16'50" Clean fine sand 0.23 fine 0.00 100.00 0.00 0.00 5.18 47B 47 20 37°28'04" 149°16'50" Clean fine sand 0.24 fine 0.00 100.00 0.00 0.00 6.40 47C 47 40 37°28'11" 149°16'48" Sand & broken shell 0.30 medium 0.00 99.93 0.07 0.00 6.68 48A 48 10 37°19'54" 149°29'00" Clean fine sand 0.20 fine 0.00 99.92 0.08 0.00 13.21 48B 48 20 37°20'06" 149°29'02" Clean fine sand 0.21 fine 0.00 100.00 0.00 0.00 9.04 48C 48 40 37°21'26" 149°29'34" Clean coarse sand 0.68 coarse 0.84 99.16 0.00 0.00 7.67 49A 49 10 37°19'11" 149°33'26" Clean fine sand & shell 0.22 fine 0.00 99.86 0.14 0.00 N/A 49B 49 20 37°19'24 149°33'28" Clean fine sand & shell 0.22 fine 0.00 100.00 0.00 0.00 9.47

49C 49 40 37°20'18" 149°33'55" Clean medium sand. Removed worm tubes. 0.48 medium 0.00 100.00 0.00 0.00 5.86

† Grain size classes: fine= 0.125-0.25mm; medium= 0.25-0.5; coarse= 0.5-1mm

Page 37: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A2.1

APPENDIX 2 Faunal characteristics of Victorian coastal benthic samples Numbers of families, species and individuals for benthic infaunal samples analysed as part of the Victorian Coastal Benthic Survey. Diversity and Evenness values are as calculated by Coleman et al. (2007). Sediment (sand) grain size classes are as defined by Roob et al (1999). Samples taken from within MNPs are shaded. Table adapted from Table 3 of Coleman et al. (2007). Sample

code Transect Depth (m)

Replicate no.

Year sorted

Sediment class Families spp n Diversity

(H') Evenness

(J') S02A2 02 10 2 2000 Fine sand 19 23 120 2.06 0.67 S02A3 02 10 3 2000 Fine sand 19 23 113 2.59 0.83 S02B1 02 20 1 2007 Fine sand 26 35 412 N/A N/A S02B2 02 20 2 2007 Fine sand 24 30 688 N/A N/A S03C1 03 40 1 2000 Fine sand 29 34 142 2.54 0.723 S04C3 04 40 3 2000 Fine sand 26 36 85 3.12 0.88 S08A1 08 10 1 2000 Fine sand 17 24 263 2.43 0.78 S08A3 08 10 3 2000 Fine sand 22 29 349 2.6 0.78 S08C1 08 40 1 2000 Medium

sand42 66 193 3.52 0.86

S12A1 12 10 1 2007 Fine sand 15 19 184 N/A N/A S12A2 12 10 2 2007 Fine sand 23 27 403 N/A N/A S12B1 12 20 1 2007 Fine sand 19 25 239 N/A N/A S12B3 12 20 3 2007 Fine sand 18 21 118 N/A N/A S12C1 12 40 1 2007 Medium

sand20 26 121 N/A N/A

S12C2 12 40 2 2007 Medium sand

20 21 93 N/A N/A S14C1 14 40 1 2000 Fine sand 26 34 98 2.86 0.84 S15A2 15 10 2 2000 Fine sand 18 24 208 2.18 0.71 S15A3 15 10 3 2000 Fine sand 17 23 252 2 0.66 S15C3 15 40 3 2000 Coarse sand 7 9 10 1.95 1 S17C1 17 40 1 2000 Fine sand 13 20 63 2.04 0.72 S18A1 18 10 1 2000 Fine sand 27 34 251 2.25 0.64 S18A2 18 10 2 2000 Fine sand 20 24 110 2.36 0.76 S18A3 18 10 3 2000 Fine sand 15 18 114 2.29 0.81 S18B1 18 20 1 2000 Fine sand 38 52 286 3.1 0.79 S18B2 18 20 2 2000 Fine sand 25 44 249 2.28 0.61 S18B3 18 20 3 2000 Fine sand 16 25 141 2.5 0.79 S18C1 18 40 1 2000 Coarse sand 29 41 157 2.97 0.84 S18C2 18 40 2 2000 Coarse sand 55 86 259 3.6 0.83 S18C3 18 40 3 2000 Coarse sand 56 75 189 3.97 0.93 S19A1 19 10 1 2007 Fine sand 18 24 150 N/A N/A S19A2 19 10 2 2007 Fine sand 13 17 121 N/A N/A S19A3 19 10 3 2007 Fine sand 16 22 119 N/A N/A S19B1 19 20 1 2007 Fine sand 25 29 371 N/A N/A S19B2 19 20 2 2007 Fine sand 23 33 305 N/A N/A S19B3 19 20 3 2007 Fine sand 20 27 288 N/A N/A S20A1 20 10 1 2007 Fine sand 24 28 349 N/A N/A S20A2 20 10 2 2007 Fine sand 21 24 301 N/A N/A S20A3 20 10 3 2007 Fine sand 14 15 151 N/A N/A S20B1 20 20 1 2007 Fine sand 31 47 824 N/A N/A S20B2 20 20 2 2007 Fine sand 32 44 501 N/A N/A S20B3 20 20 3 2007 Fine sand 37 53 679 N/A N/A S21C1 21 40 1 2000 Fine sand 14 16 82 2.02 0.73 S22A1 22 10 1 2000 Fine sand 14 17 619 2.51 0.91 S22A3 22 10 3 2000 Fine sand 20 25 251 2.72 0.86 S23C1 23 40 1 2000 Coarse sand 43 56 263 3.24 0.82 S26C1 26 40 1 2000 Fine sand 18 30 212 2.29 0.68 S27C1 27 40 1 2000 Medium

sand40 62 137 3.6 0.9

Page 38: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A2.2

Sample code Transect Depth

(m) Replicate

no. Year

sorted Sediment

class Families spp n Diversity (H')

Evenness (J')

S28A2 28 10 2 2000 Fine sand 17 19 61 2.58 0.88 S28A3 28 10 3 2000 Fine sand 19 23 71 2.63 0.85 S30A2 30 10 2 2000 Fine sand 21 28 97 2.88 0.87 S30A3 30 10 3 2000 Fine sand 18 22 66 2.66 0.87 S30B1 30 20 1 2007 Fine sand 24 26 132 N/A N/A S30C1 30 40 1 2000 Fine sand 34 52 194 3.39 0.87 S31A1 31 10 1 2007 Fine sand 27 34 179 N/A N/A S31A2 31 10 2 2007 Fine sand 20 27 80 N/A N/A S31B1 31 20 1 2007 Fine sand 37 44 181 N/A N/A S31B2 31 20 2 2007 Fine sand 29 46 334 N/A N/A S31C1 31 40 1 2000 Fine sand 46 71 370 3.48 0.82 S31C3 31 40 3 2007 Fine sand 35 53 388 N/A N/A S32A1 32 10 1 2007 Fine sand 33 39 440 N/A N/A S32A2 32 10 2 2007 Fine sand 25 32 394 N/A N/A S32B1 32 20 1 2007 Medium

sand31 39 299 N/A N/A

S32B2 32 20 2 2007 Medium sand

40 61 734 N/A N/A S32C1 32 40 1 2007 Fine sand 14 16 39 N/A N/A S32C3 32 40 3 2007 Fine sand 26 38 191 N/A N/A S33A2 33 10 2 2007 Fine sand 38 54 559 N/A N/A S33B2 33 20 2 2007 Fine sand 52 66 537 N/A N/A S33C1 33 40 1 2000 Fine sand 45 70 406 3.17 0.76 S34A1 34 10 1 2000 Fine sand 15 16 51 2.04 0.74 S34A2 34 10 2 2000 Fine sand 12 13 13 2.48 1 S34A3 34 10 3 2000 Fine sand 21 23 52 2.75 0.89 S34C1 34 40 1 2000 Medium

sand50 78 455 3.01 0.7

S37A2 37 10 2 2000 Fine sand 30 36 353 2.48 0.69 S37A3 37 10 3 2000 Fine sand 34 43 430 2.58 0.69 S37C1 37 40 1 2000 Medium

sand52 78 303 3.89 0.91

S38A1 38 10 1 2000 Medium sand

20 29 117 2.83 0.85 S39C1 39 40 1 2000 Fine sand 35 52 275 3.35 0.85 S40A1 40 10 1 2000 Medium

sand14 21 51 2.66 0.87

S40C1 40 40 1 2000 Fine sand 34 53 311 3.24 0.83 S41A1 41 10 1 2000 Fine sand 21 25 389 2.4 0.76 S41A2 41 10 2 2000 Fine sand 22 23 214 2.16 0.7 S41A3 41 10 3 2000 Fine sand 29 33 153 2.84 0.82 S41B1 41 20 1 2000 Coarse sand 31 42 273 3.04 0.82 S41B2 41 20 2 2000 Coarse sand 40 60 544 3 0.79 S41B3 41 20 3 2000 Coarse sand 22 33 228 2.67 0.76 S41C1 41 40 1 2000 Coarse sand 37 56 228 3.36 0.85 S41C2 41 40 2 2000 Coarse sand 44 60 247 3.31 0.82 S41C3 41 40 3 2000 Coarse sand 32 54 208 3.45 0.88 S45A1 45 10 1 2000 Medium

sand8 12 167 0.4 0.17

S46A1 46 10 1 2007 Fine sand 27 35 137 N/A N/A S46A2 46 10 2 2007 Fine sand 14 16 100 N/A N/A S46B1 46 20 1 2007 Medium

sand20 26 323 N/A N/A

S46B3 46 20 3 2007 Medium sand

19 23 504 N/A N/A S46C1 46 40 1 2007 Coarse sand 50 62 877 N/A N/A S46C2 46 40 2 2007 Coarse sand 32 37 212 N/A N/A S46C3 46 40 3 2007 Coarse sand 52 71 1130 N/A N/A S48A2 48 10 2 2000 Fine sand 21 26 760 1.04 0.32 S48A3 48 10 3 2000 Fine sand 17 24 135 2.45 0.77 S48B1 48 20 1 2007 Fine sand 28 35 243 N/A N/A S48C1 48 40 1 2000 Coarse sand 27 39 253 3.14 0.88 S49A1 49 10 1 2007 Fine sand 21 26 103 N/A N/A S49A2 49 10 2 2007 Fine sand 20 24 149 N/A N/A S49B1 49 20 1 2007 Fine sand 16 17 68 N/A N/A S49B2 49 20 2 2007 Fine sand 26 32 207 N/A N/A

Page 39: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.1

APPENDIX 3A. Mean number of species in each family identified from theVictorian Coastal Benthic Survey sites collected from 10 m depth.

Transect numberPhylum Family 2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49

Crustacea Phoxocephalidae 3 4 2 3 2 2 1 2 2 1 4 4 3 2 3 . 1 1 2 2 4 3 Polychaeta Spionidae 2 3 2 3 3 3 2 2 1 2 2 2 5 1 2 3 1 2 1 2 . 2 Crustacea Caprellidae . . . . . . . . . . 2 . . . . . . . . . . . Crustacea Urohaustoriidae 1 2 1 2 3 1 1 1 3 3 1 1 1 2 3 4 4 3 1 1 3 1 Polychaeta Paraonidae . 2 1 1 2 1 2 2 . 3 2 1 2 . 2 . 2 . . 1 . 1 Polychaeta Syllidae 1 2 2 1 1 3 2 1 . 1 3 3 1 . 1 1 1 1 2 3 1 3 Crustacea Bodotriidae 1 1 2 . 2 2 1 2 1 1 1 . . 1 3 2 2 1 . 2 . . Mollusca Gastropoda . . . . . . . . 2 2 . . . . . . . . . 1 1 . Crustacea Lysianassidae 1 1 2 2 1 2 1 2 2 1 2 1 2 . 1 . . 1 . 1 2 1 Polychaeta Nephtyidae . . . . . 1 . . . . . . 2 . . . . 1 . . . . Crustacea Gynodiastylidae 1 . . . . 1 1 . . . 1 1 3 . 1 2 2 1 . 1 1 1 Crustacea Platyischnopidae 2 1 2 1 1 1 1 1 1 1 1 2 . 1 1 1 2 1 . . 1 2 Polychaeta Capitellidae . 1 . . . . . . . 1 . 1 1 . 2 2 . . . 1 . . Crustacea Leptanthuridae . . . . . 1 1 . . . . 1 2 . . . . . . . . 1 Mollusca Thraciidae . . . . . . . . 1 . . . 1 . . 1 . 1 . 2 . . Crustacea Diastylidae . 1 1 1 1 1 1 1 1 . 1 . 3 . 1 . . . . . . . Crustacea Corophiidae . 1 1 . 1 1 1 2 1 . 1 1 1 . 1 . . . 3 1 . 1 Crustacea Oedicerotidae . 1 1 . 1 . 1 2 1 2 1 1 . . 1 1 . 2 . . 2 1 Mollusca Bivalvia . . . 1 1 . . . . . . 2 1 . 1 . . 1 . 1 . . Polychaeta Orbiniidae . . . . 1 . . . . . 1 1 2 . 1 . 1 . . 1 1 1 Crustacea Ampeliscidae 1 . 1 1 1 1 1 1 . . . 1 2 . 1 . . . . . . . Crustacea Paracalliopiidae 2 . . . . 1 1 1 . . . 1 1 . 1 . . . . 1 2 1 Crustacea Sarsiellidae . . . . 1 . . . . 1 1 . . 1 1 2 . 1 . 1 1 1 Crustacea Paranthuridae 1 1 . 2 1 . . 1 1 1 . . . 1 2 . 1 1 . 1 . . Echinodermata Amphiuridae . . . . 1 . . . . 1 . . 1 1 2 . . . . . 1 . Crustacea Cirolanidae . 1 1 1 1 1 1 . 1 2 1 1 1 1 1 . . 1 . 1 . 1 Crustacea Cylindroleberidida 1 . 1 . 1 . 1 . . 1 . 1 1 1 . . . 1 . 2 1 1 Crustacea Philomedidae 1 1 1 . 1 1 1 1 1 1 1 . . 1 1 1 . 1 . 1 . . Cf Nemertea Cf Nemertea . 1 . . . . . . . 1 . . . . 1 1 1 1 . . 1 . Cnidaria Edwardsiidae . . . . . . . . . . . . . . 1 . . . . . . . Crustacea Amphipoda- . . . . . . . . . . . . . 1 . . . . . . . . Crustacea Ampithoidae . . . . . . . . . . 1 . . . . . . . . . . . Crustacea Anthuridae 1 1 . 1 1 1 1 1 . 1 1 1 . 1 1 . . . . . . 1 Crustacea Arcturidae . . . . . . . . . . 1 . . . . . . . . . . . Crustacea Callianassidae . . . . 1 1 . . . . . . 1 . 1 . . 1 . . . . Crustacea Caprellidea . . . . . . . . . . 1 . . . . . . . . . . . Crustacea Chaetiliidae . . . . . . . . . . . 1 1 . . . . . . . . . Crustacea Cypridinidae . . . . . 1 . . . . 1 . . . . . . . 1 . . 1 Crustacea Dexaminidae . . . . . . 1 . 1 . 1 . . . . . . . . . . . Crustacea Euphausidae . . . . . 1 . . . . . . . . . . . . . . . . Crustacea Eusiridae . . . . . . . . . . 1 1 . . . . . . . . . . Crustacea Exoedicerotidae . . . . . . . . . . . 1 . . . . . . . . . . Crustacea Goneplacidae . . . . . . . . . . . . . . . . . 1 . . . . Crustacea Idoteidae . 1 . . . . . . . . . . . 1 . . . . . . . . Crustacea Joeropsidae . . . . . . . . . . . 1 . . . . . . . . . . Crustacea Kalliapseudidae . . . . . . . . . . . 1 1 . . . . . . 1 . . Crustacea Leptognathiidae . . . . . . 1 . . . . . . . . . . . . . . 1 Crustacea Leucosiidae . . . . . . . . . . . 1 . . . . . . . . . . Crustacea Liljeborgiidae . . . . 1 . . . . . . 1 1 . 1 . . . . . . . Crustacea Mysida . . 1 . . 1 . . . . . . . . . . . . . . . . Crustacea Mysidae 1 1 . . 1 . 1 . . 1 . . . . . 1 . 1 . . 1 . Crustacea Nebaliidae . . . 1 1 . . 1 1 . . . 1 . 1 . . . . . . . Crustacea Ogyrididae . . 1 . 1 1 . 1 . . . . . . . . . . . . 1 . Crustacea Pasiphaeidae . . . . . 1 1 1 . . 1 . 1 . . . . . . . . . Crustacea Podoceridae . . . . . . . . . . 1 . . . . . . . . . . .

Page 40: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.2

Transect numberPhylum Family 2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49

Crustacea Podocopida . . . . . . . . . . . . . . 1 . . . . . . . Crustacea Portunidae 1 . . . . . . . . . . . . . . . . . . . . . Crustacea Rutidermatidae . . . . 1 . . . . . . . . . . . . . . . . . Crustacea Serolidae . . . . . . 1 1 . . 1 . . . . . . . . . . . Crustacea Synopiidae . . . . . . . . 1 1 . . . . . . . . . . . . Crustacea Tanaidacea . . . . 1 . . . . . . . . 1 . . . . . . . . Crustacea Urothoidae . . . . . . . . . . . . 1 . . . . . . . . . Echinodermata Chiridotidae . . . 1 1 . . . . . . . . . . . . . . . . . Echinodermata Holothuroidea . . . . . . . . . . . . . . . . . . . . . 1 Echinodermata Loveniidae . . . . . . . . . . . . . . . . . 1 . . . . Echinodermata Ophiuridae . . . . . . . . . . . . . 1 . . . 1 . . . . Hemichordata Enteropneusta . . . . . . . . . . 1 . . . . . . . . . . . Mollusca Cyamiidae . . . 1 1 . . . . . . . . . . . . 1 . . . . Mollusca Dentaliidae . . . . . . . . . . . . . . 1 . . . . . . . Mollusca Donacidae 1 . . . . . . . . . . . . . . . . . . . . . Mollusca Galeommatidae . . . . . . . . 1 1 . . . 1 1 . . 1 . . 1 . Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 1 Mollusca Marginellidae . . . . 1 . . . . . . . . . . . . . . . 1 . Mollusca Mytilidae . . 1 . . . . . . . . . . . . . . . . . . . Mollusca Naticidae . . . . . . . . . . . . . . . 1 . 1 . . 1 . Mollusca Nuculanidae . . . . . . . . . . . . 1 . 1 . . 1 . . . . Mollusca Olividae . . . . 1 . . . . . 1 . . . 1 1 . . . 1 1 . Mollusca Philinidae . . . . . . . . . . . 1 . . . . . . . . . . Mollusca Psammobiidae . . . . . . . . . . . . 1 . . 1 . . . 1 . . Mollusca Pyramidellidae . . . . . . 1 . . . . . . . 1 . . . . 1 . . Mollusca Rissoidea . . . . . . . . . . . . . . . . . . . . . 1 Mollusca Scaphopoda . . . . . . . . . . . 1 . . . . . . . . . . Mollusca Siphonodentaliida . . . . 1 . . . . . 1 1 1 . . . . . . . . . Mollusca Solenidae . . . . . . . . . . . 1 . . . . . . . . . . Mollusca Tellinidae . . . . . . . . . . . . . . 1 . . . . . . . Mollusca Trochidae . . . . . . . . . . . 1 . 1 . . . . . . 1 . Nematoda Nematoda . . 1 . . 1 1 . . . 1 1 1 . . . . . . 1 . 1 Nemertea Nemertea 1 1 1 1 . . 1 1 1 1 . 1 1 1 1 1 1 1 . 1 1 . Platyhelminthe Turbellaria . . . . . . 1 . . . . . . . . . . 1 . . . 1 Polychaeta Cf Polygordiidae . . 1 . . . 1 . . . 1 1 . . . . . . . 1 . 1 Polychaeta Cirratulidae 1 1 1 1 . . . . 1 1 . 1 . 1 1 . . 1 . 1 1 . Polychaeta Dorvilleidae . . . . . . . . . . . . . . . 1 1 . . 1 . . Polychaeta Flabelligeridae . . . . . . . . . . . . . . . . . . 1 . . . Polychaeta Glyceridae 1 . . . . . . . . . . . . 1 . . . . . . . . Polychaeta Lumbrineridae 1 1 . 1 1 . 1 . 1 1 . 1 1 1 . 1 . 1 . 1 1 1 Polychaeta Magelonidae 1 . 1 1 . . . . 1 1 . . . 1 . . . . . . . . Polychaeta Maldanidae . . . 1 . . . . . . 1 . . . . . 1 . . . . . Polychaeta Nereididae 1 . . . . . . 1 . . . 1 1 1 . . . . . . . 1 Polychaeta Onuphidae 1 . . . . . . . . . . . . . . . . . . 1 . . Polychaeta Opheliidae 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 . 1 1 1 . 1 Polychaeta Oweniidae . . . . . 1 . . . . . . 1 . 1 . . 1 . . . . Polychaeta Phyllodocidae . . . 1 . . . . . . 1 1 1 . . . . . . . . 1 Polychaeta Polynoidae . . . . . . . . . . . . . . . . . 1 . . . . Polychaeta Sabellidae . . . . . . . . . . . 1 1 . . . . . . . . . Polychaeta Sigalionidae 1 1 . . 1 . 1 . 1 . . . . 1 1 . . 1 . . . . Polychaeta Terebellidae . . . . 1 . . . . . . . . . . . . . . . . . Pycnogonida Pycnogonida . . 1 . . . . . . . . . . . . . . . . . . . Sipuncula Sipunculida . . . . . . . . . . . . 1 1 1 . . 1 . . . . TOTAL 31 32 31 30 44 34 35 30 28 35 44 48 54 28 52 29 21 40 12 39 32 35

Page 41: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.3

APPENDIX 3B. Mean number of species in each family identified from the Victorian Coastal Benthic Survey sites collected from 20 m depth

Transect numberPhylum Family 2 12 18 19 20 30 31 32 33 41 46 48 49

Crustacea Phoxocephalidae 3 3 3 3 4 2 4 2 4 3 2 4 3 Polychaeta Syllidae 2 1 3 2 1 1 3 4 2 5 3 1 2 Polychaeta Spionidae 3 2 2 2 3 2 2 3 4 2 2 1 1 Crustacea Ischyroceridae . . 2 . . . . . . . . . . Crustacea Bodotriidae 2 2 1 3 2 . 1 . . . 2 2 . Crustacea Corophiidae . . 2 1 2 1 2 2 2 1 . 3 2 Crustacea Melitidae . . 4 . . . 1 1 . 1 . . . Crustacea Tanaidacea . . . 2 . . . . . 2 . . . Polychaeta Phyllodocidae . . 3 . 1 . . 1 2 1 . . . Crustacea Arcturidae . . . . . . 2 . . . . . . Crustacea Caprellidea . . . . 1 . 2 . . . . . . Polychaeta Nephtyidae . . 1 . . . . 2 2 . . . . Polychaeta Paraonidae 1 . 1 1 1 1 2 3 1 4 . 1 1 Crustacea Gynodiastylidae . . 2 1 3 1 2 1 1 . . 1 2 Crustacea Lysianassidae 2 2 1 1 2 1 2 . 2 . . 1 1 Crustacea Diastylidae . . 1 1 3 1 2 . 1 . 1 . . Crustacea Eusiridae . . 2 . . . . 1 . 1 . . . Crustacea Leptanthuridae 1 1 . . . . 1 2 2 . . . 1 Crustacea Liljeborgiidae . . . 1 1 . . . . 2 . . . Platyhelminthes Turbellaria . . . . . . . . 2 . 1 1 . Crustacea Urohaustoriidae 1 1 5 1 1 1 1 2 1 . 1 1 1 Polychaeta Cirratulidae 2 1 1 . 1 . 1 2 1 1 . 2 . Crustacea Cypridinidae . . 1 . 2 1 . 2 1 2 1 1 1 Polychaeta Capitellidae 1 . 2 1 1 . 1 2 1 2 1 1 . Crustacea Cylindroleberididae 1 1 1 1 2 . 2 2 1 . . 1 1 Polychaeta Terebellidae . . . . . . . 1 1 1 2 . . Polychaeta Orbiniidae 1 . 1 1 1 . 1 2 1 1 2 . . Crustacea Kalliapseudidae . . . . . . . 2 1 1 1 . . Crustacea Philomedidae 1 1 2 2 1 1 1 1 1 2 1 . . Crustacea Platyischnopidae 1 1 1 1 1 1 1 . . 2 1 1 2 Mollusca Bivalvia . . . . 1 . 1 1 2 . . 1 1 Crustacea Sarsiellidae 1 . . . 1 . . 1 . 2 1 . 1 Echinodermata Amphiuridae . . 1 . . . . . . 1 . . . Crustacea Oedicerotidae 2 1 1 1 . . 1 1 1 . . . 1 Polychaeta Dorvilleidae . . 1 . . . . 1 1 2 1 . . Polychaeta Sabellidae . . . . . . . 2 1 1 1 . . Crustacea Ampeliscidae 1 1 2 . 1 1 1 1 1 . . . 1 Polychaeta Lumbrineridae 1 . . 1 . . . 2 1 1 . . 1 Nemertea Nemertea 2 . 1 1 1 1 1 1 1 1 1 1 . Crustacea Cirolanidae 1 . . 1 1 1 2 1 1 . . . . Crustacea Anthuridae 1 1 1 1 2 1 1 . . 1 . . 1 Crustacea Dexaminidae 1 . 1 . 1 . 1 . . 1 . 1 . Mollusca Psammobiidae . . . 1 1 . . 1 . 1 1 . 1 Cnidaria Actiniaria . . . . . . . 1 1 . . . . Pycnogonida Ammotheidae 1 . . . . . . . . . . . . Polychaeta Amphinomidae . . . . . . . . . 1 . . . Crustacea Ampithoidae . . . . . . 1 . . . . . . Crustacea Aoridae . . 1 . . . . . . . . . . Crustacea Apseudidae . . 1 . . . . 1 . . . . . Echinodermata Asterinidae . . . . . . . . . 1 . . . Pycnogonida Austrodecidae . 1 . . . . . . . . . . . Crustacea Bairdiidae . . 1 . . . . 1 . . . . .

Page 42: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.4

Transect numberPhylum Family 2 12 18 19 20 30 31 32 33 41 46 48 49

Crustacea Callianassidae . . . . 1 . 1 . . . . . . Pycnogonida Callipallenidae . . . . . . . . 1 . . . . Mollusca Calyptraeidae . . . . . . . . . 1 . . . Crustacea Caprellidae . . . . . . 1 . . . . . . Cf Nemertea Cf Nemertea . . 1 . . . . . . 1 . . . Polychaeta Cf Polygordiidae . 1 . 1 1 1 1 1 1 . 1 1 1 Crustacea Chaetiliidae 1 . . . . . . . . . . . . Chaetognatha Chaetognatha . . . . . . . . . . . 1 . Polychaeta Chaetopteridae . . . . . . . 1 . . . . . Mollusca Cylichnidae . . . . . . . . 1 . . . . Mollusca Dentaliidae . . . . . . 1 . . . . . . Cnidaria Edwardsiidae . . 1 . . . . . 1 . . . . Hemichordata Enteropneusta . . . . . . . . 1 . . . . Crustacea Expanthuridae 1 . . . . . . . . . . . . Crustacea Galatheidae . . 1 . . . . . . . . . . Mollusca Galeommatidae . . . . . . . . 1 . . . . Mollusca Gastropoda . . . . 1 . . . . . . . . Polychaeta Glyceridae . . 1 . . . . . . . . . . Mollusca Glycymerididae . . . . . . . . . 1 . . . Crustacea Gnathiidae . . . . . . . . . 1 . . . Crustacea Goneplacidae . . 1 . . . . . . . . . . Polychaeta Goniadidae . . . . . . . 1 . 1 . . . Polychaeta Hesionidae . . 1 . . . . . . 1 . . . Ascidacea Holozoidae . . . . . . . . 1 . 1 . . Cnidaria Hydroida . . . . . . . . 1 . . . . Crustacea Iphimediidae . . 1 . . . . . . . . . . Mollusca Ischnochitonidae . . . . . . . . . 1 . . . Crustacea Janiridae . . . . . . . 1 . 1 . . . Crustacea Joeropsidae . . 1 . . . . . . . . . . Mollusca Lepidopleuridae . . . . . . . . . 1 . . . Crustacea Leptognathiidae . 1 . 1 . . . . . . . 1 . Crustacea Leucosiidae . . . . . 1 . . . . . . . Crustacea Leucothoidae . . . . . . . . . 1 . . . Mollusca Limidae . . . . . . . . . 1 . . . Mollusca Limopsidae . . . . . . 1 . . . . . 1 Polychaeta Magelonidae 1 1 . 1 . . . . . . . . . Polychaeta Maldanidae . . . . 1 . 1 . 1 . . . . Mollusca Marginellidae . . . . . . . . 1 . . . . Crustacea Melphidippidae . . 1 . . . . . . . . . . Crustacea Microparasellidae . . . . . . . . . . 1 . . Crustacea Munnidae . . . . 1 . . . . . . . . Crustacea Mysida 1 . . . . . 1 . . . . . . Crustacea Mysidae . . . . . . . . . . . . 1 Mollusca Mytilidae . . 1 . . . . . . . . . . Crustacea Nannastacidae . . . . 1 . . . . . . . . Mollusca Nassariidae . . . . . . . 1 . . . . . Mollusca Naticidae . . . . 1 . . . . . . . . Crustacea Nebaliidae 1 1 . 1 1 . 1 1 1 . . . 1 Nematoda Nematoda 1 1 . 1 1 1 1 1 1 . 1 1 1 Polychaeta Nereididae 1 . 1 . . . . . . 1 . . 1 Mollusca Nuculanidae . . 1 . 1 . . 1 1 . . . . Polychaeta Oenonidae . . . . . . . . . 1 . . . Oligochaeta Oligochaeta . . 1 . . . . . . 1 . . . Polychaeta Onuphidae . . . . . . . 1 . . 1 . . Polychaeta Opheliidae 1 1 1 1 1 . 1 1 1 1 1 1 1 Echinodermata Ophiuroidae . . . . 1 . . . . . . 1 1 Echinodermata Ophiuroidea . . . 1 1 . 1 . . . 1 . 1 Crustacea Ostracoda . . . 1 1 . . . . . . . . Polychaeta Oweniidae . 1 . . 1 . . . . . . . . Crustacea Paracalliopiidae . 1 . . 1 . . . 1 . . . 1

Page 43: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.5

Transect numberPhylum Family 2 12 18 19 20 30 31 32 33 41 46 48 49

Polychaeta Paralacydonidae . . . . . . . 1 1 . . . . Crustacea Paranthuridae . . 1 . . . . . 1 . . . . Crustacea Paratanaidae . . . . . . . 1 . . . . . Crustacea Pasiphaeidae . . . . . 1 1 . . . . . . Polychaeta Pectinariidae . . 1 . . . . . . . . . . Mollusca Philinidae . . . . . . . 1 1 . . . . Crustacea Phtisicidae . . . . . . . 1 . . . . . Polychaeta Pisionidae . . . . . . . . . 1 . . . Crustacea Plakarthriidae . . . . . 1 . . . . . 1 1 Crustacea Podoceridae . . . . . . . . 1 . . . . Polychaeta Poecilochaetidae . . . 1 . . . . . . . . . Polychaeta Polychaeta . . . . . . . . . 1 . . . Polychaeta Polynoidae . . . . . . . . . 1 . . . Polychaeta Scalibregmatidae . . . . . . . . . 1 . . . Crustacea Sebidae . . 1 . . . . . . . . . . Crustacea Serolidae 1 . . 1 1 1 . . . . . 1 . Polychaeta Serpulidae . . 1 . . . . . . . . . . Polychaeta Sigalionidae . 1 . . 1 1 1 . 1 . . 1 . Mollusca Siphonodentaliidae . . . 1 . 1 1 . . . . . . Sipuncula Sipunculida 1 . 1 . . . . . . . . . . Crustacea Sphaeromatidae . . 1 . . . 1 1 . 1 . . . Echinodermata Strongylocentrotidae . . 1 . . . . . . . . . . Crustacea Synopiidae . . . . 1 . . . . . . . . Mollusca Thraciidae . . . . . . . 1 1 . . . . Mollusca Trochidae . . . . . . . 1 . 1 . . . Mollusca Turbinidae . . . . . . . 1 . . . . . Crustacea Urothoidae . . . . . . . 1 1 . . . . Mollusca Veneridae 1 . . . . . . . . . . . . Mollusca Volutidae . . . . . . . . . . . 1 . Crustacea Whiteleggiidae . . . . . . . 1 . . . . . TOTAL 44 29 74 42 62 26 58 73 66 68 33 35 36

Page 44: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.6

APPENDIX 3C. Mean number of species in each family identified from the Victorian Coastal Benthic Survey sites collected from 40 m depth.

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48

Polychaeta Paraonidae . 1 . 1 . . 4 3 . . . 1 4 4 3 3 6 3 4 7 5 2 5 Crustacea Phoxocephalidae 2 5 5 3 4 3 4 3 . . 4 7 6 5 . 2 1 5 2 2 2 3 1 Polychaeta Syllidae 1 1 8 1 . . 1 6 . 1 1 3 1 3 1 4 3 6 4 4 4 4 4 Polychaeta Spionidae 1 1 3 2 2 . 1 3 2 1 5 2 4 4 5 5 2 5 1 3 3 3 4 Crustacea Melitidae . . 1 . . . . 4 . 2 . 1 . 2 . . 2 4 . . 3 3 . Crustacea Corophiidae 1 2 8 1 3 . . 2 1 5 1 3 1 3 1 3 4 3 1 2 2 1 . Crustacea Diastylidae 1 . . . . . . 3 . . . . . . . . . . . . . . . Crustacea Rutidermatidae . . . . . . . . . . . . . . . . 2 2 . . . . . Crustacea Tanaidacea . 1 . . . 1 . 2 . 1 . 4 1 1 . 2 2 3 3 3 2 . 2 Crustacea Urohaustoriidae 4 3 1 1 1 . 1 . 1 . 4 . 3 1 . . . 2 . . . . 1 Crustacea Janiridae . . . . . . . 2 . 2 . 2 . . . . 2 . . . 3 2 1 Polychaeta Terebellidae . . 2 . . . . 2 . 1 . 2 . 3 1 3 3 1 1 1 2 1 . Crustacea Paranthuridae 1 . 1 . 1 . . 1 . 1 2 1 3 3 . 2 3 2 2 2 1 . . Crustacea Kalliapseudidae . . . . . . . 1 . 2 . . 1 2 . 2 2 2 2 1 . 1 . Polychaeta Onuphidae . . 1 . 2 . 1 1 . 1 . 4 2 2 . . 2 1 1 . 1 1 2 Polychaeta Nereididae . . 1 . . . . 2 . 1 . 1 . 2 2 1 1 . 2 1 2 2 . Polychaeta Dorvilleidae . . . . . . . 1 . 2 . . . 1 . 1 2 1 . . 2 1 . Crustacea Gynodiastylidae 1 1 2 1 1 . 1 2 1 1 1 2 2 2 . 1 . . 3 . . 1 . Crustacea Joeropsidae . . . . . . . 1 . 2 . . . . . . 2 1 . . 1 . . Polychaeta Orbiniidae . 1 . . . 1 2 1 . . 1 . 1 1 2 1 . 1 3 3 1 1 . Crustacea Aoridae 1 1 . . . . . 1 . 2 . . 1 3 . . 1 . . . 1 . . Polychaeta Lumbrineridae . . . . . . . 2 . . . . . 1 1 1 . . 2 2 1 2 . Polychaeta Capitellidae . . . . . . 1 2 . . . 2 1 2 2 2 1 1 . 1 1 1 1 Crustacea Cylindroleberididae 1 1 . . . . . . . . . 1 . . . 3 . 1 1 . . . . Crustacea Oedicerotidae . . . 2 . . . . . 1 . . . 1 . . . . . . . . . Mollusca Marginellidae . 2 . . 1 . . . . . . . . . . 1 . . . . . . . Crustacea Lysianassidae 2 1 1 1 1 . . 1 2 2 2 . 1 . . 1 2 . 1 . 1 1 1 Polychaeta Hesionidae . . 1 . . . . 2 . . . . . . . . . . . . 2 1 1 Polychaeta Maldanidae . . 1 . . . . . . 1 . . 2 2 1 2 . . . 1 1 1 1 Crustacea Bodotriidae 1 . 2 1 2 . 1 2 1 . . . 1 1 . . . . . . . . . Crustacea Philomedidae 1 3 1 1 1 . . 1 . . 1 2 . . . . 1 1 . . 1 1 . Polychaeta Sabellidae . . . . . . . 2 . 1 . 1 1 2 . 2 1 1 . 1 1 . 1 Crustacea Ischyroceridae 1 . 1 . 1 1 . 1 . 3 . 1 . . . . 1 . . . 1 1 . Polychaeta Eunicidae . . 2 . . . . 2 . . . . . 1 1 1 1 . . . 1 1 1 Crustacea Ampeliscidae 1 . . 1 . . . 1 . . 1 . 1 1 1 3 . 1 1 1 . . . Polychaeta Nephtyidae . . . . . . . 1 . . . . 1 2 1 2 . 1 1 1 1 . . Crustacea Apseudidae . . . . . . . 1 . 1 . 1 . 1 1 . 2 1 . . 1 . . Crustacea Melphidippidae . . . . . . . 2 . . . 1 . . . . . 1 . . 1 . . Polychaeta Oenonidae . . . . . . 1 . . . . . . . . 1 . . . 1 2 . . Crustacea Cypridinidae 1 1 1 . . . . . . . . 1 1 1 . . 2 1 . . . . 1 Crustacea Urothoidae . . 1 . 1 . . 1 . . . . 1 1 . . 2 1 1 . 1 . 1 Echinodermata Amphiuridae 1 . 1 . 1 . . 1 . 1 . 1 . 1 . . . . . 1 2 1 . Crustacea Nebaliidae 1 1 . . . . . 1 . 1 1 . 1 1 . 1 2 1 1 . . . . Mollusca Ischnochitonidae . . . . . . . 1 . . . . . 1 . . 1 1 . . 2 1 . Crustacea Bairdiidae . . . . . . . 1 . . . 1 . . . . 1 1 . . 1 2 1 Polychaeta Cirratulidae 1 1 1 1 . . . 1 . 1 . . 1 2 2 1 1 1 1 . 1 1 1 Polychaeta Poecilochaetidae . . . . . . . 2 . . . 1 . 1 . . . 1 . 1 1 1 1 Polychaeta Opheliidae 1 . . . 1 . . 1 . 1 1 . 1 1 1 1 . 1 1 1 1 1 . Ascidacea Holozoidae . . . . . . . . . . . . . . 1 . . . . . . . . Cf Nemertea Cf Nemertea 1 1 . . 1 . 1 1 1 . 1 . 1 . . . 1 1 1 . 1 . 1 Chelicerata Acarina . . . . . . . . . . . . . . . . . . . . . 1 . Chordata Ascidiacea . . . . . . . 1 . . . . . . . . . . . . . . . Cnidaria Actiniaria . . . . . . . . . . . . . . . . . . . . . 1 .

Page 45: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.7

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48

Cnidaria Edwardsiidae 1 . 1 . . . . . . . . 1 . . . . 1 . . . . 1 . Crustacea Actaeciidae 1 . . . . . . 1 . . . . . 1 . . . . . . . . 1 Crustacea Alpheidae . . . . . . . 1 . . . . . . . . . . . . 1 1 . Crustacea Amphilochidae . . . . . . . . . . . . . . . . 1 . . . . . . Crustacea Ampithoidae . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Anthuridae 1 1 . 1 . . . 1 . . 1 1 . . 1 1 . 1 1 1 . 1 1 Crustacea Brachyura . . . . . . . . . . . . . 1 . 1 . . 1 . . . . Crustacea Callianassidae . . . . . . . . . . . . . . 1 1 . . . 1 . . . Crustacea Caprellidea . . . . . . . . . 1 . . . 1 . 1 . . . . . . . Crustacea Caridea . . . . . . . 1 . . . . . . . . . . . . . . . Crustacea Chaetiliidae 1 1 . . . . . . . . . . . . . . . . . . . . . Crustacea Cirolanidae . . . 1 . . . . . . . . . . . . . . . . . . . Crustacea Colomastigidae . . 1 . . . . . . . . . . 1 . . . . . . . . . Crustacea Cyproideidae . . 1 . . . . 1 . 1 . . . . . . . . . . . . . Crustacea Cytheridae . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Dexaminidae . . . . 1 . . . . . . . . 1 . . 1 . . . . 1 . Crustacea Diogenidae . . . . . . . . . 1 . . 1 1 . . . 1 . . 1 . . Crustacea Eusiridae . . 1 . . . . . . . . . . . . . . . . . . . . Crustacea Exoedicerotidae . . . . . . . . . 1 . . . . . . . . . . . . . Crustacea Galatheidae . . 1 . . . . 1 . . . . . . . . . . . . 1 1 . Crustacea Gnathiidae . . . . 1 . . 1 . 1 . 1 . . . . . . . . 1 1 1 Crustacea Goneplacidae . . . . . . . . . . . . . . . . . . 1 1 1 . . Crustacea Hymenosomatidae . . 1 . . . . 1 . . . . . . . . . . . . . . . Crustacea Hyssuridae . . . . . . . 1 . . . 1 . . . . . . . . 1 . . Crustacea Idoteidae . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Iphimediidae . . . . . . . 1 . . . . . . . . . . . . . 1 . Crustacea Leptanthuridae . . . . . . . . . . . . . 1 1 . . . . . . 1 . Crustacea Leptognathiidae . . 1 . . . . . . . . . . . . . 1 . 1 1 . . . Crustacea Leuconidae . . . . . . . . . . . . . . . . . . 1 . . . . Crustacea Leucosiidae . . . . . . . . . . . . 1 1 . 1 . . . . . . . Crustacea Leucothoidae . . . . . . . . . . . . . 1 . . . . . . 1 . . Crustacea Liljeborgiidae . . . . 1 . . 1 . . . . . . . . 1 . . . . . . Crustacea Luciferidae . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Majiidae . . . . . . . 1 . . . . . 1 . . . . . . . . . Crustacea Microparasellidae . . . . . . . 1 . . . . . . . . . . . . . . . Crustacea Munnidae . . . . . . . 1 . 1 . 1 . . 1 . . . . . . . . Crustacea Mysida . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Mysidae . . 1 . . . . . . . . . . . . . . . . . . . . Crustacea Nannastacidae . . 1 1 . . . 1 . 1 . 1 . . . . . 1 . . . . 1 Crustacea Nebaliacaea . . . 1 . . . . . . . . . . . . . . . . . . . Crustacea Pagurapseudidae . . . . . . . . . . . 1 . . . . . . . . . 1 . Crustacea Paguridae . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Palaemonidae . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Paracalliopiidae . . . . . . . . . . . . . . . . . . 1 . . . . Crustacea Paramunnidae . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Paratanaidae . . . . . . . 1 . 1 . . . 1 1 1 1 . 1 . 1 . . Crustacea Pariambidae . . 1 . . . . . . . . . . . . 1 . . . . . . . Crustacea Pasiphaeidae . . . 1 . . . . . . . . . . . . . . . . . . . Crustacea Phtisicidae . . . . 1 . . . . 1 . 1 . . . . . . . . . . . Crustacea Plakarthriidae . . . . . . . . . 1 . . . . . . . . . . . . . Crustacea Platyischnopidae . 1 . 1 1 . . 1 1 . . . 1 . . . . . . . . . . Crustacea Podoceridae . . 1 . . . . . . 1 . 1 . . . . . . . . . . . Crustacea Santiidae . . . . . . . . . 1 . . . . . . . . . . . . . Crustacea Sarsiellidae . . 1 1 . . . 1 . . . . . . . . . 1 . . . . . Crustacea Sebidae . . 1 . . . . 1 . . . . . . . . . . 1 . 1 1 . Crustacea Serolidae . . . . . . . . . . . 1 . . . . 1 . . . . . . Crustacea Sphaeromatidae 1 . 1 . . . . 1 . 1 . . . . . . . 1 . . 1 1 . Crustacea Stegocephalidae . . 1 . . . . . . . . . . . . . . . . . . . . Crustacea Stenetriidae . . 1 . . . . 1 . 1 . . . 1 . . . . . . . 1 . Crustacea Synopiidae . . . . . . . . . 1 . 1 1 1 . . . 1 . . . . . Crustacea Whiteleggiidae . . . . . . . . . . . . . . . . . . . . . 1 .

Page 46: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.8

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48

Echinodermata Asterinidae . . . . . . . . . . . . . . . . . . . . 1 . . Echinodermata Echinoidea . . . . . . . . . . . . . . . . . . . . 1 . . Echinodermata Holothuroidea . . . 1 . . . . 1 . . . . . . . . . . . . . . Echinodermata Loveniidae . . . . . . . . . . . . . . . . . . . . 1 . . Echinodermata Ophiactidae . . . 1 . . . 1 . . . . . . . . . . . . . . . Echinodermata Ophiotrichidae . . . . . . . . . . . . . . . . . . . . 1 . . Echinodermata Ophiuridae . . 1 . 1 . . . 1 . . . . . . . . 1 . . 1 . . Echinodermata Ophiuroidea . . . . . . . . . . . . . 1 . . . . . . . 1 . Echinodermata Strongylocentrotidae . . . . . . . 1 . . . . . . . . . . . . . . . Echiura Thalassematidae . . . . . . . . . . . . . . 1 . . . . . . . . Hemichordata Enteropneusta . . . . . 1 . . . . . 1 . . . . 1 . . . 1 1 . Mollusca Arcidae . . . . . . . . . . 1 . . . . . . . . . . . . Mollusca Calyptraeidae . . . . . . . . . . . . . . . . 1 . . . . . . Mollusca Carditidae . . . . . . . . . . . . . . . . 1 . . . . 1 . Mollusca Corbulidae . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Cylichnidae . . . . . . . . . . . . . . . . . . . 1 . . . Mollusca Dendrodorididae . . . . . . . . . 1 . . . . . . . . . . . . . Mollusca Fissurellidae . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Galeommatidae . . . . . . . . . . . . . . . . . . . 1 . . . Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Hiatellidae . . 1 . . . . . . . . . . . . . . . . . . . . Mollusca Lepidopleuridae . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Leptonidae . . . . . . . . . . . . . . . . . 1 . . . . . Mollusca Limidae . . . . . . . 1 . . . . . . . . . . . . . 1 . Mollusca Lucinidae . . . . . . . . . . . . . . . . . . . 1 . . . Mollusca Mytilidae . . . . . . . . . . . . . . 1 . 1 1 1 . . . . Mollusca Nuculanidae . . . 1 . . . . 1 . . . . . . . . 1 . . . . . Mollusca Nuculidae . . . . . . . . . . . . . . 1 . . . . 1 . . . Mollusca Opistobranchia . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Philinidae . . . . . 1 . . . . . . 1 . . . . . . 1 . 1 . Mollusca Philobryidae . . . . . . . . . . . . . 1 . . . . . . . . . Mollusca Propeamussiidae . . . . . . . 1 . . . . . . . . . . . . . . 1 Mollusca Psammobiidae . 1 . . . . . . . . . . . . . . . . . . . 1 . Mollusca Pseudococculinidae . . . . . . . . . . . . . . . . . . . . 1 . . Mollusca Pyramidellidae 1 . . . . . . . . . . . . . . . . . . . . . . Mollusca Tellinidae . . . . . . . . 1 . . . 1 . . . . . . . . . . Mollusca Trochidae . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Turbinidae . 1 . . 1 . . . . . . 1 . . . . . . . . . . . Mollusca Turritellidae . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Ungulinidae . . . . . . . . . 1 . . . . . . . . . . . . . Mollusca Veneridae . . . . . . . . . . . . . 1 . . . 1 . . . . . Nematoda Nematoda . . . 1 . . . . . . . . . 1 1 . . . . . . 1 . Nemertea Nemertea . 1 . 1 1 . 1 1 . . 1 1 1 1 1 1 1 1 1 1 1 1 1 Oligochaeta Oligochaeta . . . . . . . 1 . . . 1 . 1 . 1 1 1 1 . . 1 . Phoronida Phoronida . . . . . . . . . . . . 1 . . . . 1 . . . . . Platyhelminthes Turbellaria . . . . . . . . . . . . . . . . . 1 . . . 1 . Polychaeta Ampharetidae . . 1 . . . . . . . . . . . . 1 . . . . . . . Polychaeta Amphinomidae . . . . . . . 1 . 1 . . . . . . 1 . . . 1 . . Polychaeta Cf Polygordiidae . . . 1 . . . . . . . . . . . . . . . . . 1 . Polychaeta Chaetopteridae . . . . . . . . . . . . . . . . 1 . . 1 1 . . Polychaeta Chrysopetalidae . . . . . . . . . . . . . . 1 . . . . . . 1 . Polychaeta Flabelligeridae . . . . . . . 1 . . . . . . 1 1 . . . . 1 1 . Polychaeta Glyceridae . . . . . . . . . . . . . . . 1 . . . . . . . Polychaeta Goniadidae . . . . . . . . . . . . . 1 1 1 . . . . . . . Polychaeta Lacydonidae . . . . . . . . . . . . . . . . . . . . . 1 . Polychaeta Magelonidae . . . . . . . . . . . . . . . . 1 . . . . . . Polychaeta Oweniidae . . . 1 1 . . . 1 . . . . . . . . . . . 1 . . Polychaeta Pectinariidae . . . . . . . . . . . . . 1 . . . 1 . . 1 . . Polychaeta Phyllodocidae . . . . . . . 1 . . . . . 1 . 1 1 . . . 1 1 . Polychaeta Pisionidae . . . . . . . 1 . . . . . . . . . . . . . 1 . Polychaeta Polynoidae . . 1 . . . . 1 . . . . . . . 1 . . . . . . .

Page 47: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A3.9

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48

Polychaeta Saccocirridae . . . . . . . . . . . . . . . . . . . . . 1 . Polychaeta Scalibregmatidae . . . . . . . 1 . . . . . 1 . . 1 . . 1 1 . . Polychaeta Serpulidae . . . . . . . 1 . . . . . . . . . . . . 1 1 . Polychaeta Sigalionidae 1 1 . 1 1 . . 1 1 . . . . . . 1 . . 1 . . 1 . Polychaeta Sphaerodoridae . . . . . . . 1 . . . . . . . . 1 . . . . . . Polychaeta Spirorbidae . . . . . . . . . . . . . . . . . . . . 1 . . Polychaeta Trichobranchidae . . . . . . . 1 . . . . . 1 . 1 . 1 . . . . . Porifera Porifera . . . . . . . 1 . . . . . . . . . . . . . . . Pycnogonida Ammotheidae . . . . . . . 1 . . 1 . . . . 1 . 1 . . . . . Pycnogonida Austrodecidae . . . . . . . . . . . . . . . . . . . . . 1 . Pycnogonida Callipallenidae 1 . . . . . . 1 . . . . . . . . . . . . . . . Sipuncula Sipunculida . 1 . . . . . 1 . . . 1 . . . . . . . 1 1 . 1 TOTAL 34 36 66 32 34 8 20 113 16 56 30 62 52 89 40 70 78 77 52 53 92 88 39

Page 48: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.1

APPENDIX 4A. Mean number of individuals in each family identified from theVictorian Coastal Benthic Survey sites collected from 10 m depth.

Transect numberPhylum Family 2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49

Polychaeta Spionidae 3 8 6 95 8 20 51 379 6 16 10 6 32 1 35 21 1 29 1 11 . 4 Crustacea Urohaustoriidae 8 41 56 2 15 36 57 4 16 12 4 21 18 15 50 31 5 77 2 19 29 10Crustacea Platyischnopidae 6 42 18 31 4 16 71 6 1 3 5 5 . 2 122 7 13 39 . . 79 8 Polychaeta Syllidae 2 60 6 2 5 10 20 1 . 8 9 64 2 . 5 3 2 1 136 13 2 37Polychaeta Cirratulidae 35 5 150 2 . . . . 9 9 . 60 . 1 2 . . 3 . 6 12 . Mollusca Trochidae . . . . . . . . . . . 1 . 1 . . . . . . 285 . Crustacea Phoxocephalidae 14 38 4 8 3 4 3 6 2 2 14 62 21 3 18 . 1 4 2 7 15 10Nematoda Nematoda . . 21 . . 7 26 . . . 16 44 29 . . . . . . 34 . 19Crustacea Gynodiastylidae 1 . . . . 7 5 . . . 3 1 158 . 1 4 2 2 . 1 1 1 Crustacea Diastylidae . 2 2 3 9 4 2 1 1 . 1 . 158 . 2 . . . . . . . Mollusca Bivalvia . . . 1 117 . . . . . . 3 2 . 1 . . 2 . 1 . . Crustacea Corophiidae . 27 4 . 28 1 2 2 3 . 8 11 3 . 1 . . . 3 6 . 5 Crustacea Philomedidae 9 8 2 . 23 5 10 3 3 3 1 . . 3 13 10 . 6 . 3 . . Polychaeta Lumbrineridae 3 1 . 1 1 . 1 . 11 7 . 40 1 2 . 2 . 1 . 11 3 13Polychaeta Opheliidae 1 37 4 16 2 1 3 1 . 1 1 5 . . 5 1 . 16 1 1 . 2 Cf Nemertea Cf Nemertea . 11 . . . . . . . 2 . . . . 55 10 2 4 . . 4 . Crustacea Paranthuridae 1 1 . 60 3 . . 2 1 2 . . . 1 12 . 1 1 . 2 . . Crustacea Callianassidae . . . . 7 1 . . . . . . 18 . 1 . . 43 . . . . Crustacea Leptanthuridae . . . . . 15 6 . . . . 40 3 . . . . . . . . 5 Nemertea Nemertea 10 2 3 2 . . 2 6 2 5 . 2 5 1 1 8 3 3 . 3 6 . Crustacea Lysianassidae 1 2 2 9 4 3 1 5 3 1 3 3 8 . 3 . . 6 . 3 4 1 Polychaeta Paraonidae . 11 5 1 2 3 5 4 . 6 2 2 2 . 7 . 5 . . 1 . 2 Crustacea Ampeliscidae 1 . 5 1 8 5 4 11 . . . 13 8 . 1 . . . . . . . Crustacea Cirolanidae . 2 2 1 16 1 2 . 2 3 1 1 9 1 1 . . 4 . 1 . 3 Crustacea Ampithoidae . . . . . . . . . . 46 . . . . . . . . . . . Crustacea Anthuridae 2 14 . 2 3 1 2 4 . 2 3 11 . 1 2 . . . . . . 1 Crustacea Bodotriidae 2 1 3 . 4 3 2 3 4 2 1 . . 1 8 3 3 4 . 2 . . Mollusca Galeommatidae . . . . . . . . 1 2 . . . 2 23 . . 9 . . 2 . Crustacea Sarsiellidae . . . . 8 . . . . 2 1 . . 2 1 2 . 3 . 12 1 5 Crustacea Paracalliopiidae 3 . . . . 4 7 1 . . . 1 8 . 1 . . . . 2 3 1 Polychaeta Magelonidae 17 . 9 1 . . . . 1 1 . . . 1 . . . . . . . . Crustacea Oedicerotidae . 1 1 . 2 . 2 3 1 3 2 1 . . 4 2 . 2 . . 2 2 Crustacea Cylindroleberididae 1 . 1 . 4 . 1 . . 1 . 1 2 5 . . . 3 . 3 1 2 Mollusca Thraciidae . . . . . . . . 1 . . . 14 . . 1 . 4 . 2 . . Polychaeta Cf Polygordiidae . . 2 . . . 2 . . . 5 9 . . . . . . . 2 . 1 Mollusca Nuculanidae . . . . . . . . . . . . 12 . 2 . . 6 . . . . Polychaeta Capitellidae . 1 . . . . . . . 1 . 4 5 . 3 4 . . . 1 . . Polychaeta Oweniidae . . . . . 4 . . . . . . 1 . 7 . . 6 . . . . Crustacea Podoceridae . . . . . . . . . . 17 . . . . . . . . . . . Echinodermata Loveniidae . . . . . . . . . . . . . . . . . 16 . . . . Crustacea Kalliapseudidae . . . . . . . . . . . 9 4 . . . . . . 2 . . Crustacea Liljeborgiidae . . . . 5 . . . . . . 1 6 . 1 . . . . . . . Crustacea Caprellidea . . . . . . . . . . 12 . . . . . . . . . . . Crustacea Mysidae 1 3 . . 2 . 2 . . 2 . . . . . 1 . 1 . . 1 . Polychaeta Nereididae 3 . . . . . . 1 . . . 3 1 3 . . . . . . . 1 Polychaeta Maldanidae . . . 10 . . . . . . 1 . . . . . 1 . . . . . Polychaeta Orbiniidae . . . . 1 . . . . . 1 1 2 . 1 . 1 . . 2 2 1 Sipuncula Sipunculida . . . . . . . . . . . . 1 1 7 . . 3 . . . . Polychaeta Sigalionidae 1 1 . . 1 . 1 . 2 . . . . 1 2 . . 2 . . . . Crustacea Nebaliidae . . . 1 2 . . 1 1 . . . 4 . 1 . . . . . . . Crustacea Ogyrididae . . 4 . 1 1 . 3 . . . . . . . . . . . . 1 . Polychaeta Sabellidae . . . . . . . . . . . 2 7 . . . . . . . . .

Page 49: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.2

Transect numberPhylum Family 2 8 12 15 18 19 20 22 28 30 31 32 33 34 37 38 40 41 45 46 48 49

Mollusca Olividae . . . . 1 . . . . . 2 . . . 2 1 . . . 1 1 . Polychaeta Phyllodocidae . . . 1 . . . . . . 1 2 3 . . . . . . . . 1 Echinodermata Amphiuridae . . . . 1 . . . . 1 . . 1 2 2 . . . . . 1 . Crustacea Dexaminidae . . . . . . 1 . 1 . 5 . . . . . . . . . . . Crustacea Tanaidacea . . . . 3 . . . . . . . . 4 . . . . . . . . Crustacea Serolidae . . . . . . 1 4 . . 1 . . . . . . . . . . . Polychaeta Nephtyidae . . . . . 1 . . . . . . 4 . . . . 1 . . . . Mollusca Gastropoda . . . . . . . . 2 2 . . . . . . . . . 1 1 . Crustacea Cypridinidae . . . . . 2 . . . . 1 . . . . . . . 1 . . 1 Crustacea Goneplacidae . . . . . . . . . . . . . . . . . 5 . . . . Crustacea Pasiphaeidae . . . . . 1 1 1 . . 1 . 1 . . . . . . . . . Mollusca Cyamiidae . . . 1 3 . . . . . . . . . . . . 1 . . . . Mollusca Philinidae . . . . . . . . . . . 5 . . . . . . . . . . Mollusca Tellinidae . . . . . . . . . . . . . . 5 . . . . . . . Polychaeta Dorvilleidae . . . . . . . . . . . . . . . 1 3 . . 1 . . Crustacea Caprellidae . . . . . . . . . . 4 . . . . . . . . . . . Crustacea Leptognathiidae . . . . . . 3 . . . . . . . . . . . . . . 1 Crustacea Mysida . . 2 . . 2 . . . . . . . . . . . . . . . . Echinodermata Chiridotidae . . . 2 2 . . . . . . . . . . . . . . . . . Mollusca Psammobiidae . . . . . . . . . . . . 2 . . 1 . . . 1 . . Mollusca Siphonodentaliidae . . . . 1 . . . . . 1 1 1 . . . . . . . . . Platyhelminthes Turbellaria . . . . . . 1 . . . . . . . . . . 2 . . . 1 Mollusca Naticidae . . . . . . . . . . . . . . . 1 . 2 . . 1 . Crustacea Euphausidae . . . . . 3 . . . . . . . . . . . . . . . . Crustacea Eusiridae . . . . . . . . . . 1 2 . . . . . . . . . . Crustacea Idoteidae . 2 . . . . . . . . . . . 1 . . . . . . . . Mollusca Pyramidellidae . . . . . . 1 . . . . . . . 1 . . . . 1 . . Polychaeta Glyceridae 2 . . . . . . . . . . . . 1 . . . . . . . . Polychaeta Onuphidae 1 . . . . . . . . . . . . . . . . . . 2 . . Crustacea Amphipoda- a . . . . . . . . . . . . 2 . . . . . . . . Crustacea Chaetiliidae . . . . . . . . . . . 1 1 . . . . . . . . . Crustacea Exoedicerotidae . . . . . . . . . . . 2 . . . . . . . . . . Crustacea Rutidermatidae . . . . 2 . . . . . . . . . . . . . . . . . Crustacea Synopiidae . . . . . . . . 1 1 . . . . . . . . . . . . Crustacea Urothoidae . . . . . . . . . . . . 2 . . . . . . . . . Echinodermata Ophiuridae . . . . . . . . . . . . . 1 . . . 1 . . . . Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 2 Mollusca Marginellidae . . . . 1 . . . . . . . . . . . . . . . 1 . Cnidaria Edwardsiidae . . . . . . . . . . . . . . 1 . . . . . . . Crustacea Arcturidae . . . . . . . . . . 1 . . . . . . . . . . . Crustacea Joeropsidae . . . . . . . . . . . 1 . . . . . . . . . . Crustacea Leucosiidae . . . . . . . . . . . 1 . . . . . . . . . . Crustacea Podocopida . . . . . . . . . . . . . . 1 . . . . . . . Crustacea Portunidae 1 . . . . . . . . . . . . . . . . . . . . . Echinodermata Holothuroidea . . . . . . . . . . . . . . . . . . . . . 1 Hemichordata Enteropneusta . . . . . . . . . . 1 . . . . . . . . . . . Mollusca Dentaliidae . . . . . . . . . . . . . . 1 . . . . . . . Mollusca Donacidae 1 . . . . . . . . . . . . . . . . . . . . . Mollusca Mytilidae . . 1 . . . . . . . . . . . . . . . . . . . Mollusca Rissoidea . . . . . . . . . . . . . . . . . . . . . 1 Mollusca Scaphopoda . . . . . . . . . . . 1 . . . . . . . . . . Mollusca Solenidae . . . . . . . . . . . 1 . . . . . . . . . . Polychaeta Flabelligeridae . . . . . . . . . . . . . . . . . . 1 . . . Polychaeta Polynoidae . . . . . . . . . . . . . . . . . 1 . . . . Polychaeta Terebellidae . . . . 1 . . . . . . . . . . . . . . . . . Pycnogonida Pycnogonida . . 1 . . . . . . . . . . . . . . . . . . . TOTAL 130 321 314 253 303 161 298 452 75 100 186 444 559 59 412 114 43 313 147 158 458 142

Page 50: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.3

APPENDIX 4B. Mean number of individuals in each family identified from the Victorian Coastal Benthic Survey sites collected from 20 m depth.

Transect numberPhylum Family 2 12 18 19 20 30 31 32 33 41 46 48 49

Polychaeta Syllidae 90 2 24 11 1 1 12 116 13 91 292 1 21 Polychaeta Spionidae 9 16 57 128 197 21 53 51 16 3 3 1 1 Polychaeta Cirratulidae 318 8 1 . 1 . 1 3 4 3 . 9 . Nematoda Nematoda 4 3 . 19 18 9 11 125 43 . 52 31 14 Crustacea Urohaustoriidae 8 16 33 48 57 8 13 22 1 . 3 41 13 Crustacea Platyischnopidae 2 58 1 27 88 1 27 . . 3 3 31 9 Crustacea Phoxocephalidae 50 8 6 8 23 4 17 12 30 7 6 14 18 Crustacea Corophiidae . . 6 1 27 55 26 16 17 1 . 8 4 Polychaeta Cf Polygordiidae . 1 . 9 25 4 20 9 2 . 2 67 22 Crustacea Ampeliscidae 18 80 4 . 2 1 14 3 36 . . . 1 Crustacea Gynodiastylidae . . 5 11 88 3 13 8 5 . . 10 3 Crustacea Cylindroleberididae 10 1 1 1 29 . 2 3 68 . . 4 3 Polychaeta Dorvilleidae . . 3 . . . . 22 1 22 29 . . Polychaeta Paraonidae 2 . 2 1 2 1 3 16 18 19 . 4 9 Cf Nemertea Cf Nemertea . . 3 . . . . . . 62 . . . Crustacea Philomedidae 4 6 5 25 16 2 1 1 2 2 1 . . Crustacea Apseudidae . . 1 . . . . 58 . . . . . Nemertea Nemertea 4 . 6 1 3 2 3 9 10 15 3 3 . Polychaeta Orbiniidae 1 . 1 4 5 . 1 16 19 3 6 . . Polychaeta Hesionidae . . 47 . . . . . . 3 . . . Crustacea Diastylidae . . 2 4 34 1 4 . 1 . 1 . . Crustacea Lysianassidae 6 4 1 6 4 3 9 . 11 . . 1 1 Polychaeta Nereididae 4 . 9 . . . . . . 30 . . 1 Crustacea Leptanthuridae 5 2 . . . . 2 12 16 . . . 8 Mollusca Cylichnidae . . . . . . . . 43 . . . . Crustacea Bodotriidae 6 8 4 8 7 . 2 . . . 2 2 . Hemichordata Enteropneusta . . . . . . . . 34 . . . . Crustacea Urothoidae . . . . . . . 7 25 . . . . Polychaeta Nephtyidae . . 5 . . . . 10 17 . . . . Crustacea Cypridinidae . . 4 . 2 1 . 2 3 9 2 1 4 Crustacea Kalliapseudidae . . . . . . . 9 4 13 1 . . Polychaeta Capitellidae 1 . 4 1 2 . 2 8 1 3 4 2 . Polychaeta Sabellidae . . . . . . . 9 11 2 5 . . Polychaeta Opheliidae 1 4 2 3 4 . 1 1 1 2 1 1 1 Polychaeta Phyllodocidae . . 5 . 1 . . 4 7 3 . . . Crustacea Sebidae . . 20 . . . . . . . . . . Crustacea Anthuridae 3 1 1 3 2 1 4 . . 2 . . 3 Mollusca Philinidae . . . . . . . 9 10 . . . . Mollusca Nuculanidae . . 1 . 11 . . 1 6 . . . . Crustacea Oedicerotidae 3 1 2 2 . . 3 1 1 . . . 4 Crustacea Nebaliidae 2 3 . 1 1 . 2 1 5 . . . 1 Crustacea Sarsiellidae 2 . . . 1 . . 1 . 10 1 . 1 Crustacea Paranthuridae . . 3 . . . . . 12 . . . . Polychaeta Polychaeta . . . . . . . . . 15 . . . Crustacea Melitidae . . 11 . . . 1 1 . 1 . . . Echinodermata Ophiuroidea . . . 1 8 . 2 . . . 1 . 2 Oligochaeta Oligochaeta . . 8 . . . . . . 6 . . . Polychaeta Lumbrineridae 1 . . 1 . . . 3 1 3 . . 5 Crustacea Ampithoidae . . . . . . 13 . . . . . . Crustacea Plakarthriidae . . . . . 8 . . . . . 2 3 Mollusca Thraciidae . . . . . . . 1 11 . . . . Polychaeta Terebellidae . . . . . . . 1 7 1 3 . .

Page 51: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.4

Transect numberPhylum Family 2 12 18 19 20 30 31 32 33 41 46 48 49

Echinodermata Ophiuroidae . . . . 10 . . . . . . 1 1 Mollusca Psammobiidae . . . 1 2 . . 5 . 1 1 . 1 Mollusca Bivalvia . . . . 1 . 1 4 2 . . 1 1 Crustacea Cirolanidae 1 . . 2 2 1 2 1 1 . . . . Polychaeta Pisionidae . . . . . . . . . 8 . . . Crustacea Paracalliopiidae . 1 . . 2 . . . 1 . . . 4 Crustacea Dexaminidae 1 . 1 . 1 . 2 . . 1 . 1 . Crustacea Sphaeromatidae . . 1 . . . 1 4 . 1 . . . Crustacea Serolidae 2 . . 1 2 1 . . . . . 1 . Crustacea Microparasellidae . . . . . . . . . . 6 . . Crustacea Tanaidacea . . . 3 . . . . . 3 . . . Platyhelminthes Turbellaria . . . . . . . . 2 . 2 2 . Polychaeta Sigalionidae . 1 . . 1 1 1 . 1 . . 1 . Crustacea Bairdiidae . . 3 . . . . 2 . . . . . Crustacea Eusiridae . . 2 . . . . 1 . 2 . . . Crustacea Janiridae . . . . . . . 2 . 3 . . . Crustacea Leptognathiidae . 2 . 2 . . . . . . . 1 . Crustacea Nannastacidae . . . . 5 . . . . . . . . Polychaeta Oweniidae . 1 . . 4 . . . . . . . . Cnidaria Hydroida . . . . . . . . 4 . . . . Crustacea Expanthuridae 4 . . . . . . . . . . . . Crustacea Ischyroceridae . . 4 . . . . . . . . . . Crustacea Liljeborgiidae . . . 1 1 . . . . 2 . . . Crustacea Mysida 3 . . . . . 1 . . . . . . Crustacea Phtisicidae . . . . . . . 4 . . . . . Crustacea Whiteleggiidae . . . . . . . 4 . . . . . Mollusca Glycymerididae . . . . . . . . . 4 . . . Polychaeta Goniadidae . . . . . . . 3 . 1 . . . Polychaeta Maldanidae . . . . 1 . 1 . 2 . . . . Polychaeta Magelonidae 1 1 . 2 . . . . . . . . . Crustacea Aoridae . . 3 . . . . . . . . . . Crustacea Caprellidea . . . . 1 . 2 . . . . . . Crustacea Chaetiliidae 3 . . . . . . . . . . . . Crustacea Paratanaidae . . . . . . . 3 . . . . . Echinodermata Amphiuridae . . 1 . . . . . . 2 . . . Mollusca Galeommatidae . . . . . . . . 3 . . . . Mollusca Ischnochitonidae . . . . . . . . . 3 . . . Mollusca Marginellidae . . . . . . . . 3 . . . . Mollusca Siphonodentaliidae . . . 1 . 1 1 . . . . . . Mollusca Trochidae . . . . . . . 1 . 2 . . . Crustacea Callianassidae . . . . 1 . 1 . . . . . . Ascidacea Holozoidae . . . . . . . . 1 . 1 . . Cnidaria Actiniaria . . . . . . . 1 1 . . . . Cnidaria Edwardsiidae . . 1 . . . . . 1 . . . . Crustacea Munnidae . . . . 2 . . . . . . . . Crustacea Mysidae . . . . . . . . . . . . 2 Crustacea Ostracoda . . . 1 1 . . . . . . . . Crustacea Pasiphaeidae . . . . . 1 1 . . . . . . Mollusca Lepidopleuridae . . . . . . . . . 2 . . . Mollusca Limopsidae . . . . . . 1 . . . . . 1 Mollusca Nassariidae . . . . . . . 2 . . . . . Polychaeta Onuphidae . . . . . . . 1 . . 1 . . Polychaeta Paralacydonidae . . . . . . . 1 1 . . . . Pycnogonida Austrodecidae . 2 . . . . . . . . . . . Sipuncula Sipunculida 1 . 1 . . . . . . . . . . Crustacea Arcturidae . . . . . . 2 . . . . . . Mollusca Calyptraeidae . . . . . . . . . 2 . . . Mollusca Gastropoda . . . . 2 . . . . . . . . Pycnogonida Ammotheidae 2 . . . . . . . . . . . . Chaetognatha Chaetognatha . . . . . . . . . . . 1 .

Page 52: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.5

Transect numberPhylum Family 2 12 18 19 20 30 31 32 33 41 46 48 49

Crustacea Caprellidae . . . . . . 1 . . . . . . Crustacea Galatheidae . . 1 . . . . . . . . . . Crustacea Gnathiidae . . . . . . . . . 1 . . . Crustacea Goneplacidae . . 1 . . . . . . . . . . Crustacea Iphimediidae . . 1 . . . . . . . . . . Crustacea Joeropsidae . . 1 . . . . . . . . . . Crustacea Leucosiidae . . . . . 1 . . . . . . . Crustacea Leucothoidae . . . . . . . . . 1 . . . Crustacea Melphidippidae . . 1 . . . . . . . . . . Crustacea Podoceridae . . . . . . . . 1 . . . . Crustacea Synopiidae . . . . 1 . . . . . . . . Echinodermata Asterinidae . . . . . . . . . 1 . . . Echinodermata Strongylocentrotidae . . 1 . . . . . . . . . . Mollusca Dentaliidae . . . . . . 1 . . . . . . Mollusca Limidae . . . . . . . . . 1 . . . Mollusca Mytilidae . . 1 . . . . . . . . . . Mollusca Naticidae . . . . 1 . . . . . . . . Mollusca Turbinidae . . . . . . . 1 . . . . . Mollusca Veneridae 1 . . . . . . . . . . . . Mollusca Volutidae . . . . . . . . . . . 1 . Polychaeta Amphinomidae . . . . . . . . . 1 . . . Polychaeta Chaetopteridae . . . . . . . 1 . . . . . Polychaeta Glyceridae . . 1 . . . . . . . . . . Polychaeta Oenonidae . . . . . . . . . 1 . . . Polychaeta Pectinariidae . . 1 . . . . . . . . . . Polychaeta Poecilochaetidae . . . 1 . . . . . . . . . Polychaeta Polynoidae . . . . . . . . . 1 . . . Polychaeta Scalibregmatidae . . . . . . . . . 1 . . . Polychaeta Serpulidae . . 1 . . . . . . . . . . Pycnogonida Callipallenidae . . . . . . . . 1 . . . . TOTAL 573 230 315 339 700 132 281 612 537 379 432 243 162

Page 53: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.6

APPENDIX 4C. Mean number of individuals in each family identified from the Victorian Coastal Benthic Survey sites collected from 40 m depth.

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Polychaeta Spionidae 1 1 5 10 20 . 27 5 34 1 107 14 38 53 11 34 113 22 16 11 6 70 17Polychaeta Paraonidae . 1 . 1 . . 6 10 . . . 7 22 66 18 146 51 10 11 45 51 18 34Polychaeta Syllidae 1 1 25 2 . . 2 28 . 1 2 14 9 41 1 38 31 44 12 21 34 94 45Crustacea Tanaidacea . 1 . . . 1 . 5 . 11 . 6 1 21 . 7 10 13 48 24 3 . 4 Crustacea Kalliapseudidae . . . . . . . 3 . 5 . . 3 10 . 4 78 7 25 14 . 5 . Crustacea Phoxocephalidae 2 8 8 9 9 3 9 6 . . 10 11 16 13 . 2 1 18 8 7 4 6 1 Crustacea Corophiidae 1 3 40 1 6 . . 3 4 13 6 4 1 21 1 7 11 8 5 3 2 5 . Mollusca Turritellidae . . . . . . . . . . . . . . . . . . . . . 140 . Nematoda Nematoda . . . 1 . . . . . . . . . 24 42 . . . . . . 64 . Crustacea Pagurapseudidae . . . . . . . . . . . 1 . . . . . . . . . 126 . Cf Nemertea Cf Nemertea 16 3 . . 17 . 4 2 17 . 21 . 17 . . . 1 7 3 . 5 . 8 Crustacea Paranthuridae 1 . 1 . 1 . . 4 . 10 10 2 6 6 . 26 7 6 17 20 4 . . Crustacea Ischyroceridae 3 . 24 . 1 1 . 2 . 86 . 1 . . . . 1 . . . 1 1 . Crustacea Urohaustoriidae 9 19 1 17 14 . 3 . 1 . 23 . 16 1 . . . 3 . . . . 2 Nemertea Nemertea . 1 . 1 2 . 1 3 . . 1 4 1 8 1 14 5 3 8 8 9 16 8 Polychaeta Orbiniidae . 1 . . . 1 3 1 . . 2 . 1 1 3 5 . 1 30 40 1 1 . Crustacea Aoridae 50 2 . . . . . 2 . 12 . . 1 6 . . 1 . . . 3 . . Crustacea Janiridae . . . . . . . 5 . 5 . 6 . . . . 8 . . . 4 42 1 Polychaeta Capitellidae . . . . . . 1 3 . . . 3 2 18 7 7 1 1 . 3 9 9 6 Crustacea Ampeliscidae 1 . . 35 . . . 1 . . 1 . 6 7 1 3 . 1 8 1 . . . Crustacea Bairdiidae . . . . . . . 1 . . . 1 . . . . 1 7 . . 6 41 6 Crustacea Apseudidae . . . . . . . 32 . 6 . 1 . 1 1 . 3 15 . . 1 . . Crustacea Gynodiastylidae 14 10 2 1 1 . 4 2 2 1 6 2 6 3 . 2 . . 3 . . 1 . Polychaeta Sabellidae . . . . . . . 2 . 1 . 1 2 23 . 11 1 2 . 2 1 . 14Crustacea Melitidae . . 1 . . . . 5 . 2 . 1 . 2 . . 8 7 . . 15 15 . Polychaeta Terebellidae . . 2 . . . . 4 . 7 . 2 . 6 1 10 6 3 2 3 4 3 . Polychaeta Onuphidae . . 1 . 2 . 1 1 . 1 . 4 3 6 . . 4 1 1 . 1 2 19Crustacea Lysianassidae 3 1 1 3 1 . . 2 9 3 8 . 1 . . 1 4 . 2 . 2 1 2 Crustacea Philomedidae 2 9 1 12 4 . . 1 . . 2 4 . . . . 1 6 . . 1 1 . Polychaeta Cirratulidae 2 3 1 3 . . . 3 . 1 . . 3 4 10 2 4 2 1 . 1 2 2 Polychaeta Nereididae . . 1 . . . . 4 . 1 . 1 . 3 4 4 1 . 6 1 6 9 . Oligochaeta Oligochaeta . . . . . . . 5 . . . 1 . 10 . 6 1 11 4 . . 3 . Crustacea Anthuridae 1 1 . 3 . . . 1 . . 4 1 . . 3 1 . 2 2 10 . 3 6 Polychaeta Dorvilleidae . . . . . . . 3 . 2 . . . 2 . 1 3 2 . . 9 13 . Polychaeta Nephtyidae . . . . . . . 1 . . . . 1 4 4 7 . 1 3 8 4 . . Polychaeta Cf Polygordiidae . . . 20 . . . . . . . . . . . . . . . . . 12 . Polychaeta Opheliidae 1 . . . 3 . . 1 . 1 2 . 2 4 1 1 . 2 1 1 1 9 . Crustacea Nebaliidae 4 3 . . . . . 4 . 3 1 . 1 1 . 1 9 1 1 . . . . Crustacea Paratanaidae . . . . . . . 2 . 9 . . . 7 1 1 3 . 1 . 5 . . Polychaeta Poecilochaetidae . . . . . . . 2 . . . 10 . 3 . . . 6 . 1 4 2 1 Crustacea Sphaeromatidae 8 . 1 . . . . 2 . 2 . . . . . . . 3 . . 3 9 . Crustacea Rutidermatidae . . . . . . . . . . . . . . . . 3 23 . . . . . Polychaeta Lumbrineridae . . . . . . . 2 . . . . . 2 4 4 . . 2 4 1 4 . Mollusca Ischnochitonidae . . . . . . . 4 . . . . . 1 . . 2 3 . . 8 2 . Polychaeta Hesionidae . . 2 . . . . 3 . . . . . . . . . . . . 2 3 9 Echinoderma Amphiuridae 1 . 1 . 1 . . 1 . 1 . 1 . 2 . . . . . 1 2 7 . Polychaeta Maldanidae . . 1 . . . . . . 2 . . 4 2 1 2 . . . 1 3 1 1 Crustacea Sebidae . . 1 . . . . 7 . . . . . . . . . . 1 . 4 5 . Crustacea Galatheidae . . 2 . . . . 6 . . . . . . . . . . . . 5 4 . Polychaeta Flabelligeridae . . . . . . . 1 . . . . . . 3 1 . . . . 1 11 . Crustacea Bodotriidae 2 . 3 1 2 . 1 2 2 . . . 1 3 . . . . . . . . . Crustacea Synopiidae . . . . . . . . . 1 . 8 5 1 . . . 1 . . . . . Crustacea Cypridinidae 1 1 1 . . . . . . . . 3 1 3 . . 2 2 . . . . 2 Crustacea Urothoidae . . 1 . 1 . . 1 . . . . 1 1 . . 3 3 1 . 1 . 1

Page 54: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.7

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Crustacea Joeropsidae . . . . . . . 1 . 7 . . . . . . 3 1 . . 1 . . Polychaeta Eunicidae . . 2 . . . . 2 . . . . . 2 1 1 2 . . . 1 1 1 Crustacea Leptanthuridae . . . . . . . . . . . . . 7 3 . . . . . . 3 . Polychaeta Amphinomidae . . . . . . . 2 . 6 . . . . . . 1 . . . 3 . . Polychaeta Chrysopetalidae . . . . . . . . . . . . . . 1 . . . . . . 11 . Crustacea Cylindroleberidid e 3 . . . . . . . . . 1 . . . 4 . 1 1 . . . . Crustacea Gnathiidae . . . . 1 . . 1 . 1 . 2 . . . . . . . . 2 3 1 Polychaeta Serpulidae . . . . . . . 5 . . . . . . . . . . . . 2 4 . Crustacea Diogenidae . . . . . . . . . 1 . . 2 1 . . . 3 . . 3 . . Crustacea Podoceridae . . 1 . . . . . . 8 . 1 . . . . . . . . . . . Crustacea Stenetriidae . . 1 . . . . 1 . 5 . . . 1 . . . . . . . 2 . Polychaeta Sigalionidae 1 1 . 1 2 . . 1 1 . . . . . . 1 . . 1 . . 1 . Crustacea Hyssuridae . . . . . . . 3 . . . 1 . . . . . . . . 5 . . Crustacea Leptognathiidae . . 4 . . . . . . . . . . . . . 3 . 1 1 . . . Crustacea Nannastacidae . . 2 1 . . . 1 . 1 . 2 . . . . . 1 . . . . 1 Crustacea Platyischnopidae . 1 . 3 2 . . 1 1 . . . 1 . . . . . . . . . . Pycnogonida Callipallenidae 4 . . . . . . 5 . . . . . . . . . . . . . . . Polychaeta Phyllodocidae . . . . . . . 2 . . . . . 1 . 2 1 . . . 2 2 . Polychaeta Trichobranchidae . . . . . . . 4 . . . . . 1 . 1 . 2 . . . . . Polychaeta Oweniidae . . . 2 1 . . . 4 . . . . . . . . . . . 1 . . Crustacea Sarsiellidae . . 1 1 . . . 2 . . . . . . . . . 3 . . . . . Platyhelminth Turbellaria . . . . . . . . . . . . . . . . . 1 . . . 6 . Polychaeta Chaetopteridae . . . . . . . . . . . . . . . . 1 . . 4 2 . . Polychaeta Pisionidae . . . . . . . 2 . . . . . . . . . . . . . 5 . Polychaeta Scalibregmatidae . . . . . . . 1 . . . . . 2 . . 1 . . 1 2 . . Sipuncula Sipunculida . 1 . . . . . 2 . . . 1 . . . . . . . 1 1 . 1 Crustacea Callianassidae . . . . . . . . . . . . . . 4 1 . . . 1 . . . Crustacea Exoedicerotidae . . . . . . . . . 6 . . . . . . . . . . . . . Crustacea Goneplacidae . . . . . . . . . . . . . . . . . . 2 3 1 . . Crustacea Pariambidae . . 1 . . . . . . . . . . . . 5 . . . . . . . Echinoderma Ophiuridae . . 1 . 1 . . . 2 . . . . . . . . 1 . . 1 . . Mollusca Lepidopleuridae . . . . . . . . . . . . . . . . . . . . . 6 . Mollusca Nuculanidae . . . 2 . . . . 3 . . . . . . . . 1 . . . . . Mollusca Fissurellidae . . . . . . . . . . . . . . . . . . . . . 6 . Cnidaria Edwardsiidae 1 . 1 . . . . . . . . 1 . . . . 1 . . . . 1 . Crustacea Actaeciidae 1 . . . . . . 1 . . . . . 1 . . . . . . . . 2 Crustacea Colomastigidae . . 3 . . . . . . . . . . 2 . . . . . . . . . Crustacea Cyproideidae . . 1 . . . . 1 . 3 . . . . . . . . . . . . . Crustacea Diastylidae 2 . . . . . . 3 . . . . . . . . . . . . . . . Crustacea Munnidae . . . . . . . 1 . 2 . 1 . . 1 . . . . . . . . Hemichordat Enteropneusta . . . . . 1 . . . . . 1 . . . . 1 . . . 1 1 . Mollusca Marginellidae . 3 . . 1 . . . . . . . . . . 1 . . . . . . . Mollusca Mytilidae . . . . . . . . . . . . . . 1 . 2 1 1 . . . . Polychaeta Oenonidae . . . . . . 1 . . . . . . . . 1 . . . 1 2 . . Polychaeta Pectinariidae . . . . . . . . . . . . . 1 . . . 3 . . 1 . . Pycnogonida Ammotheidae . . . . . . . 2 . . 1 . . . . 1 . 1 . . . . . Crustacea Melphidippidae . . . . . . . 2 . . . 1 . . . . . 1 . . 1 . . Crustacea Alpheidae . . . . . . . 1 . . . . . . . . . . . . 2 1 . Crustacea Caprellidea . . . . . . . . . 2 . . . 1 . 1 . . . . . . . Crustacea Chaetiliidae 3 1 . . . . . . . . . . . . . . . . . . . . . Crustacea Dexaminidae . . . . 1 . . . . . . . . 1 . . 1 . . . . 1 . Crustacea Liljeborgiidae . . . . 2 . . 1 . . . . . . . . 1 . . . . . . Crustacea Oedicerotidae . . . 2 . . . . . 1 . . . 1 . . . . . . . . . Crustacea Whiteleggiidae . . . . . . . . . . . . . . . . . . . . . 4 . Echinoderma Ophiuroidea . . . . . . . . . . . . . 1 . . . . . . . 3 . Mollusca Philinidae . . . . . 1 . . . . . . 1 . . . . . . 1 . 1 . Mollusca Pseudococculinid . . . . . . . . . . . . . . . . . . . . 4 . . Mollusca Veneridae . . . . . . . . . . . . . 2 . . . 2 . . . . . Polychaeta Goniadidae . . . . . . . . . . . . . 1 1 2 . . . . . . . Polychaeta Polynoidae . . 1 . . . . 2 . . . . . . . 1 . . . . . . . Crustacea Brachyura . . . . . . . . . . . . . 1 . 1 . . 1 . . . . Crustacea Eusiridae . . 3 . . . . . . . . . . . . . . . . . . . . Crustacea Iphimediidae . . . . . . . 2 . . . . . . . . . . . . . 1 . Crustacea Leucosiidae . . . . . . . . . . . . 1 1 . 1 . . . . . . .

Page 55: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.8

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Crustacea Paguridae . . . . . . . . . . . . . . . . . . . . . 3 . Crustacea Phtisicidae . . . . 1 . . . . 1 . 1 . . . . . . . . . . . Crustacea Stegocephalidae . . 3 . . . . . . . . . . . . . . . . . . . . Mollusca Carditidae . . . . . . . . . . . . . . . . 1 . . . . 2 . Mollusca Limidae . . . . . . . 1 . . . . . . . . . . . . . 2 . Mollusca Philobryidae . . . . . . . . . . . . . 3 . . . . . . . . . Mollusca Tellinidae . . . . . . . . 1 . . . 2 . . . . . . . . . . Mollusca Turbinidae . 1 . . 1 . . . . . . 1 . . . . . . . . . . . Crustacea Cirolanidae . . . 2 . . . . . . . . . . . . . . . . . . . Crustacea Hymenosomatida . . 1 . . . . 1 . . . . . . . . . . . . . . . Crustacea Leucothoidae . . . . . . . . . . . . . 1 . . . . . . 1 . . Crustacea Majiidae . . . . . . . 1 . . . . . 1 . . . . . . . . . Crustacea Serolidae . . . . . . . . . . . 1 . . . . 1 . . . . . . Echinoderma Holothuroidea . . . 1 . . . . 1 . . . . . . . . . . . . . . Echinoderma Ophiactidae . . . 1 . . . 1 . . . . . . . . . . . . . . . Mollusca Dendrodorididae . . . . . . . . . 2 . . . . . . . . . . . . . Mollusca Glycymerididae . . . . . . . . . . . . . . . . . . . . . 2 . Mollusca Hiatellidae . . 2 . . . . . . . . . . . . . . . . . . . . Mollusca Lucinidae . . . . . . . . . . . . . . . . . . . 2 . . . Mollusca Nuculidae . . . . . . . . . . . . . . 1 . . . . 1 . . . Mollusca Propeamussiidae . . . . . . . 1 . . . . . . . . . . . . . . 1 Mollusca Psammobiidae . 1 . . . . . . . . . . . . . . . . . . . 1 . Mollusca Trochidae . . . . . . . . . . . . . . . . . . . . . 2 . Phoronida Phoronida . . . . . . . . . . . . 1 . . . . 1 . . . . . Polychaeta Ampharetidae . . 1 . . . . . . . . . . . . 1 . . . . . . . Polychaeta Sphaerodoridae . . . . . . . 1 . . . . . . . . 1 . . . . . . Chordata Ascidiacea . . . . . . . 2 . . . . . . . . . . . . . . . Polychaeta Saccocirridae . . . . . . . . . . . . . . . . . . . . . 2 . Polychaeta Lacydonidae . . . . . . . . . . . . . . . . . . . . . 1 . Ascidacea Holozoidae . . . . . . . . . . . . . . 1 . . . . . . . . Chelicerata Acarina . . . . . . . . . . . . . . . . . . . . . 1 . Cnidaria Actiniaria . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Amphilochidae . . . . . . . . . . . . . . . . 1 . . . . . . Crustacea Ampithoidae . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Caridea . . . . . . . 1 . . . . . . . . . . . . . . . Crustacea Cytheridae . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Idoteidae . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Leuconidae . . . . . . . . . . . . . . . . . . 1 . . . . Crustacea Luciferidae . . . . . . . . . . . . . . . . . . . . . 1 . Crustacea Microparasellidae . . . . . . . 1 . . . . . . . . . . . . . . . Crustacea Mysida . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Mysidae . . 1 . . . . . . . . . . . . . . . . . . . . Crustacea Nebaliacaea . . . 1 . . . . . . . . . . . . . . . . . . . Crustacea Palaemonidae . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Paracalliopiidae . . . . . . . . . . . . . . . . . . 1 . . . . Crustacea Paramunnidae . . . . . . . . . . . . . . . . . . . . 1 . . Crustacea Pasiphaeidae . . . 1 . . . . . . . . . . . . . . . . . . . Crustacea Plakarthriidae . . . . . . . . . 1 . . . . . . . . . . . . . Crustacea Santiidae . . . . . . . . . 1 . . . . . . . . . . . . . Echinoderma Asterinidae . . . . . . . . . . . . . . . . . . . . 1 . . Echinoderma Echinoidea . . . . . . . . . . . . . . . . . . . . 1 . . Echinoderma Loveniidae . . . . . . . . . . . . . . . . . . . . 1 . . Echinoderma Ophiotrichidae . . . . . . . . . . . . . . . . . . . . 1 . . Echinoderma Strongylocentroti . . . . . . . 1 . . . . . . . . . . . . . . . Echiura Thalassematidae . . . . . . . . . . . . . . 1 . . . . . . . . Mollusca Arcidae . . . . . . . . . . 1 . . . . . . . . . . . . Mollusca Calyptraeidae . . . . . . . . . . . . . . . . 1 . . . . . . Mollusca Corbulidae . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Cylichnidae . . . . . . . . . . . . . . . . . . . 1 . . . Mollusca Galeommatidae . . . . . . . . . . . . . . . . . . . 1 . . . Mollusca Leptonidae . . . . . . . . . . . . . . . . . 1 . . . . . Mollusca Opistobranchia . . . . . . . . . . . . . . . . . . . . . 1 . Mollusca Pyramidellidae 1 . . . . . . . . . . . . . . . . . . . . . . Mollusca Ungulinidae . . . . . . . . . 1 . . . . . . . . . . . . .

Page 56: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

A4.9

Transect numberPhylum Family 3 4 8 12 14 15 17 18 21 23 26 27 30 31 32 33 34 37 39 40 41 46 48Polychaeta Glyceridae . . . . . . . . . . . . . . . 1 . . . . . . . Polychaeta Magelonidae . . . . . . . . . . . . . . . . 1 . . . . . . Polychaeta Spirorbidae . . . . . . . . . . . . . . . . . . . . 1 . . Porifera Porifera . . . . . . . 1 . . . . . . . . . . . . . . . Pycnogonida Austrodecidae . . . . . . . . . . . . . . . . . . . . . 1 . TOTAL 137 81 157 138 98 8 63 252 82 237 208 129 179 423 133 374 402 271 231 247 275 846 196

Page 57: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria Technical Series No. 53 Victorian MNP coastal benthos

APPENDIX 5. Maoricolpus roseus sampled off Point Hicks at 40 m depth Photographs showing all infauna identified from replicate samples 1-3 (top to bottom) collected from 40 m depth on Transect 46 during the VCBS showing the high abundance and biomass of the M. roseus (upper right in each photo). Each family is contained in a separate recess or container. Recesses with green discs contain no animals. Scale bars = 10 cm.

Page 58: PV Technical Series No.53 - Soft sediment benthos

Parks Victoria is responsible for managing the Victorian protected

area network, which ranges from wilderness areas to metropolitan

parks and includes both marine and terrestrial components.

Our role is to protect the natural and cultural values of the parks

and other assets we manage, while providing a great range of

outdoor opportunities for all Victorians and visitors.

A broad range of environmental research and monitoring activities

supported by Parks Victoria provides information to enhance park

management decisions. This Technical Series highlights some of

the environmental research and monitoring activities done within

Victoria’s protected area network.

Healthy Parks Healthy People

For more information contact the Parks Victoria Information Centre

on 13 1963, or visit www.parkweb.vic.gov.au