14
QED calculation of the ground-state energy and the ionization potential of Be-like ions A. V. Malyshev , A. V. Volotka, D. A. Glazov, I. I. Tupitsyn, V. M. Shabaev, G. Plunien, and N. A. Zubova Department of Physics Saint-Petersburg State University August 25, 2015 Outline: Introduction and Motivation Theoretical Description and Numerical Procedure Field shift in Boron-like ions Summary and Outlook

QED calculation of the ground-state energy and the ionization

Embed Size (px)

Citation preview

Page 1: QED calculation of the ground-state energy and the ionization

QED calculation of the ground-state energy

and the ionization potential of Be-like ions

A. V. Malyshev, A. V. Volotka, D. A. Glazov,

I. I. Tupitsyn, V. M. Shabaev, G. Plunien, and N. A. Zubova

Department of Physics

Saint-Petersburg State University

August 25, 2015

Outline:

Introduction and Motivation

Theoretical Description and

Numerical Procedure

Field shift in Boron-like ions

Summary and Outlook

Page 2: QED calculation of the ground-state energy and the ionization

Motivation

Experiments:

H-like: T. Stohlker et al., PRL, 2000;A. Gumberidze et al., PRL, 2005.

He-like: A. Gumberidze et al., PRL, 2004.

Li-like: J. Schweppe et al., PRL, 1991;C. Brandau et al., PRL, 2003;P. Beiersdorfer et al., PRL, 2005.

Be-like: P. Beiersdorfer et al., PRA, 1998;I. Draganic et al., PRL, 2003;D. Bernhardt et al., JPB, 2015.

B-like: I. Draganic et al., PRL, 2003;V. Mackel et al., PRL, 2011.

The ground-state energies of highly-charged ions are of thegreat importance for mass spectrometry

J. Repp et al., Appl. Phys. B, 2012;K. Blaum et al., Phys. Scr., 2013;E. G. Myers, Int. J. Mass Spectrom., 2013.

2

Page 3: QED calculation of the ground-state energy and the ionization

QED in the Furry picture

Highly-charged few-electron ions:

Ne ≪ Z

Ne is the number of electrons,Z is the nuclear charge number

To zeroth-order approximation:

[−iα · ∇+ βm+ Vnuc(r)]ψn(r) = εnψn(r)

Interelectronic interaction and QED effects:

Interelectronic interaction

Binding energy∼

1

Z

QED

Binding energy∼ α(αZ)2

In uranium: Z = 92, αZ ≈ 0.73

Page 4: QED calculation of the ground-state energy and the ionization

The extended Furry picture

Vscr describes approximately the electron-electron interaction effects

Vnuc(r) −→ Veff(r) = Vnuc(r) + Vscr(r)

To zeroth-order approximation:

[−iα · ∇+ βm+ Veff(r)]ψn(r) = εnψn(r)

The extended Furry picture is used to accelerate the convergence ofthe perturbation series

4

Page 5: QED calculation of the ground-state energy and the ionization

Contributions

The interelectronicinteraction diagrams

First- and second-orderQED diagrams

Third- and higher-order electron-correlation contributionswithin the Breit approx.(the large-scale configuration-interaction Dirac-Fock-Sturm method)

One-electron two-loop diagrams

5

Page 6: QED calculation of the ground-state energy and the ionization

Contributions

Beyond external field approximation:

Nuclear recoil(

finite nuclear mass, ∼m

M

)

Breit approx. (all orders in 1/Z)

QED recoil effect in zeroth order

Nuclear polarization (internal degrees of freedom)

−→excitednucl. state

−→ground state

←− boundelectron

6

Page 7: QED calculation of the ground-state energy and the ionization

Uranium (Z = 92): individual contributions, in eV

Contribution LDF KS PZ

E(0)Dirac −320572.56 −320871.02 −321276.02

E(1)int −6637.37 −6338.62 −5933.84

E(2)int,Breit −20.87 −20.45 −23.97

E(2)int,QED 2.04 1.96 2.05

E(>3)int,Breit 3.03 2.39 6.05

Eint,total −327225.74 −327225.74 −327225.74

E(1)QED 618.61 620.18 618.97

E(2)ScrQED 0.73 −0.86 0.36

E(2l)QED −2.92 −2.92 −2.92

EQED,total 616.41 616.40 616.41

ERec,Breit 0.60 0.60 0.60

ERec,QED 0.56 0.56 0.56

ENucl.Pol. −0.45 −0.45 −0.45

Etotal −326608.62 −326608.63 −326608.63

Individual contributions to the binding energy of Be-like U (in eV)

7

Page 8: QED calculation of the ground-state energy and the ionization

Binding energies of Be-like ions, in eV

Nucl. This work Other theory NIST

5626Fe −22102.960(45) −22103.37a −22102.1(1.8)

−22103.299b

−22102.98(8)c

13254 Xe −100972.921(85) −100973.7a −100963(4)

−100973.75b

18474 W −198983.71(32) −198984.71b −198987(3)

23892 U −326608.6(1.2) −326608.5b −326600(300)

This work: A. V. Malyshev et al., PRA, 2014.

a M. F. Gu, At. Data Nucl. Data Tables, 2005.b M. H. Chen and K. T. Cheng, PRA, 1997.c V. A. Yerokhin, A. Surzhykov, and S. Fritzsche, PRA, 2014.

8

Page 9: QED calculation of the ground-state energy and the ionization

Ionization potentials for Be-like ions, in eV

Nucl. This work Other theory

5626Fe −1951.307(21) −1950.4(1.8)a

−1951.4b

13254 Xe −9590.935(37) −9581(4)c

−9591.4b

23892 U −32386.14(20) −32374(300)c

This work: A. V. Malyshev et al., PRA, 2015.

a E. Biemont, Y. Fremat, and P. Quinet, At. Data Nucl. Data Tables, 1999.b M. F. Gu, At. Data Nucl. Data Tables, 2005.c G. C. Rodrigues et al., At. Data Nucl. Data Tables, 2004. (uncertaintyprescribed by NIST)

9

Page 10: QED calculation of the ground-state energy and the ionization

Isotope shifts

Field-shift factor:

δEFS = Fδ〈r2〉 ⇔ F =dE(R)

d〈r2〉

R = 〈r2〉 is the root-mean-square nuclear radius.

C. Brandau et al., PRL, 2008:

Isotope shifts in Li-like 150,142Nd57+ (in meV)

2s− 2p1/2 2s− 2p3/2

FS (th.) −42.57 −44.05

QED FS (th.) 0.22 0.24 ∼ 0.5%

· · · · · · · · ·

IS (exp.) −40.2(3)(6) −42.3(12)(20)

10

Page 11: QED calculation of the ground-state energy and the ionization

Field-shift factor for the 2p3/2 − 2p1/2 transition

in B-like ions (in GHz/fm2)

Preliminary results

CH(1s2) CH(1s22s2) LDF

FSE 259 253 256

FScrSE −54 −48 −51

FVP −267 −260 −261

FScrVP 42 36 37

F(1)int,QED 42 39 43

Ftot,QED 22(6) 20(6) 24(6) ∼ 0.1%

FCI −20570 −20570 −20570

Two-electron ScrSE and ScrVP diagrams ∼1

Z

11

Page 12: QED calculation of the ground-state energy and the ionization

Summary

The calculations of the ground-state binding energies ofBe-like ions are performed in the range: 18 6 Z 6 96

The accuracy was significantly improved and the most precisetheoretical predictions for the ground-state binding energiesand ionization potentials in Be-like ions have been obtained

Achieved accuracy allows tests of bound-state QED withBe-like ions on the level ∼ 0.2%, provided the correspondingexperiments are performed to the required precision

12

Page 13: QED calculation of the ground-state energy and the ionization

Outlook

High-precision QED calculations of

Ionization potentials for the valence electrons in the1s22s22p1/2 and 1s22s22p3/2 states of B-like ions

Binding energies of excited states in Be-like ions

More comprehensive analysis of the QED filed shiftin B-like ions

Page 14: QED calculation of the ground-state energy and the ionization

Outlook

High-precision QED calculations of

Ionization potentials for the valence electrons in the1s22s22p1/2 and 1s22s22p3/2 states of B-like ions

Binding energies of excited states in Be-like ions

More comprehensive analysis of the QED filed shiftin B-like ions

Thank You for Your attention!