77
QR-method lecture 2 SF2524 - Matrix Computations for Large-scale Systems QR-method lecture 2 1 / 23

QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

QR-method lecture 2SF2524 - Matrix Computations for Large-scale Systems

QR-method lecture 2 1 / 23

Page 2: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Agenda QR-method

1 Decompositions (previous lecture)I Jordan formI Schur decompositionI QR-factorization

2 Basic QR-method3 Improvement 1: Two-phase approach

I Hessenberg reduction (previous lecture)I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory

Reading instructions

Point 1: TB Lecture 24Points 2-4: Lecture notes “QR-method” on course web pagePoint 5: TB Chapter 28(Extra reading: TB Chapter 25-26, 28-29)

QR-method lecture 2 2 / 23

Page 3: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Agenda QR-method

1 Decompositions (previous lecture)I Jordan formI Schur decompositionI QR-factorization

2 Basic QR-method3 Improvement 1: Two-phase approach

I Hessenberg reduction (previous lecture)I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory

Reading instructions

Point 1: TB Lecture 24Points 2-4: Lecture notes “QR-method” on course web pagePoint 5: TB Chapter 28(Extra reading: TB Chapter 25-26, 28-29)

QR-method lecture 2 2 / 23

Page 4: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let A0 = A and iterate:

Compute QR-factorization of Ak = QR

Set Ak+1 = RQ.

Disadvantages

Computing a QR-factorization is quite expensive. One iteration of thebasic QR-method

O(m3).

The method often requires many iterations.

QR-method lecture 2 3 / 23

Page 5: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let A0 = A and iterate:

Compute QR-factorization of Ak = QR

Set Ak+1 = RQ.

Disadvantages

Computing a QR-factorization is quite expensive. One iteration of thebasic QR-method

O(m3).

The method often requires many iterations.

QR-method lecture 2 3 / 23

Page 6: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Basic QR-method (previous lecture)

Basic QR-method = basic QR-algorithm

Simple basic idea: Let A0 = A and iterate:

Compute QR-factorization of Ak = QR

Set Ak+1 = RQ.

Disadvantages

Computing a QR-factorization is quite expensive. One iteration of thebasic QR-method

O(m3).

The method often requires many iterations.

QR-method lecture 2 3 / 23

Page 7: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 1: Two-phase approach

We will separate the computation into two phases:

× × × × ×× × × × ×× × × × ×× × × × ×× × × × ×

→Phase 1

× × × × ×× × × × ×

× × × ×× × ×

× ×

→Phase 2

× × × × ×

× × × ×× × ×

× ××

Phases

Phase 1: Reduce the matrix to a Hessenberg with similaritytransformations (Section 2.2.1 in lecture notes)

Phase 2: Specialize the QR-method to Hessenberg matrices (Section2.2.2 in lecture notes)

QR-method lecture 2 4 / 23

Page 8: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 1: Two-phase approach

We will separate the computation into two phases:

× × × × ×× × × × ×× × × × ×× × × × ×× × × × ×

→Phase 1

× × × × ×× × × × ×

× × × ×× × ×

× ×

→Phase 2

× × × × ×

× × × ×× × ×

× ××

Phases

Phase 1: Reduce the matrix to a Hessenberg with similaritytransformations (Section 2.2.1 in lecture notes)

Phase 2: Specialize the QR-method to Hessenberg matrices (Section2.2.2 in lecture notes)

QR-method lecture 2 4 / 23

Page 9: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 1: Two-phase approach

We will separate the computation into two phases:

× × × × ×× × × × ×× × × × ×× × × × ×× × × × ×

→Phase 1

× × × × ×× × × × ×

× × × ×× × ×

× ×

→Phase 2

× × × × ×

× × × ×× × ×

× ××

Phases

Phase 1: Reduce the matrix to a Hessenberg with similaritytransformations (Section 2.2.1 in lecture notes)

Phase 2: Specialize the QR-method to Hessenberg matrices (Section2.2.2 in lecture notes)

QR-method lecture 2 4 / 23

Page 10: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

A = PHP∗

Unlike the Schur factorization, this can be computed with a finite numberof operations.

Idea

Householder reflector:

P = I − 2uu∗ where u ∈ Cm and ‖u‖ = 1,

Apply one Householder reflector at a time to eliminate the column bycolumn.

QR-method lecture 2 5 / 23

Page 11: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

A = PHP∗

Unlike the Schur factorization, this can be computed with a finite numberof operations.

Idea

Householder reflector:

P = I − 2uu∗ where u ∈ Cm and ‖u‖ = 1,

Apply one Householder reflector at a time to eliminate the column bycolumn.

QR-method lecture 2 5 / 23

Page 12: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Phase 1: Hessenberg reduction (previous lecture)

Phase 1: Hessenberg reduction

Compute unitary P and Hessenberg matrix H such that

A = PHP∗

Unlike the Schur factorization, this can be computed with a finite numberof operations.

Idea

Householder reflector:

P = I − 2uu∗ where u ∈ Cm and ‖u‖ = 1,

Apply one Householder reflector at a time to eliminate the column bycolumn.

QR-method lecture 2 5 / 23

Page 13: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg is hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iteratesAk are Hessenberg matrices.

Recall: basic QR-step is O(m3).

Hessenberg structure can be exploited such that we can carry out aQR-step with less operations.

QR-method lecture 2 6 / 23

Page 14: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg is hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iteratesAk are Hessenberg matrices.

Recall: basic QR-step is O(m3).

Hessenberg structure can be exploited such that we can carry out aQR-step with less operations.

QR-method lecture 2 6 / 23

Page 15: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg is hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iteratesAk are Hessenberg matrices.

Recall: basic QR-step is O(m3).

Hessenberg structure can be exploited such that we can carry out aQR-step with less operations.

QR-method lecture 2 6 / 23

Page 16: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg is hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iteratesAk are Hessenberg matrices.

Recall: basic QR-step is O(m3).

Hessenberg structure can be exploited such that we can carry out aQR-step with less operations.

QR-method lecture 2 6 / 23

Page 17: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n corresponding to a Givens rotation isdefined by

G (i , j , c , s) :=

I

c −sI

s cI

,which deviates from identity at row and column i and j .

ej

ei

x

Gxθ

Properties

G ∗ = G−1

Gz can be computed withO(1) operations

· · ·

QR-method lecture 2 7 / 23

Page 18: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n corresponding to a Givens rotation isdefined by

G (i , j , c , s) :=

I

c −sI

s cI

,which deviates from identity at row and column i and j .

ej

ei

x

Gxθ

Properties

G ∗ = G−1

Gz can be computed withO(1) operations

· · ·

QR-method lecture 2 7 / 23

Page 19: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n corresponding to a Givens rotation isdefined by

G (i , j , c , s) :=

I

c −sI

s cI

,which deviates from identity at row and column i and j .

ej

ei

x

Gxθ

Properties

G ∗ = G−1

Gz can be computed withO(1) operations

· · ·

QR-method lecture 2 7 / 23

Page 20: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n corresponding to a Givens rotation isdefined by

G (i , j , c , s) :=

I

c −sI

s cI

,which deviates from identity at row and column i and j .

ej

ei

x

Gxθ

Properties

G ∗ = G−1

Gz can be computed withO(1) operations

· · ·

QR-method lecture 2 7 / 23

Page 21: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n corresponding to a Givens rotation isdefined by

G (i , j , c , s) :=

I

c −sI

s cI

,which deviates from identity at row and column i and j .

ej

ei

x

Gxθ

Properties

G ∗ = G−1

Gz can be computed withO(1) operations

· · ·

QR-method lecture 2 7 / 23

Page 22: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

The Q-matrix in the QR-factorization of a Hessenberg matrix can befactorized as a product of m − 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A ∈ Cm×m is a Hessenberg matrix. Let Hi be generated asfollows H1 = A

Hi+1 = GTi Hi , i = 1, . . . ,m − 1

where Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri ) and ri =√

(Hi )2i ,i + (Hi )2i+1,i

and we assume ri 6= 0. Then, Hn is upper triangular and

A = (G1G2 · · ·Gm−1)Hn = QR

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenbergmatrix to a triangular. * Matlab: Explicit QR-factorization of Hessenberg qrg ivens.m ∗

QR-method lecture 2 8 / 23

Page 23: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

The Q-matrix in the QR-factorization of a Hessenberg matrix can befactorized as a product of m − 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A ∈ Cm×m is a Hessenberg matrix. Let Hi be generated asfollows H1 = A

Hi+1 = GTi Hi , i = 1, . . . ,m − 1

where Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri ) and ri =√

(Hi )2i ,i + (Hi )2i+1,i

and we assume ri 6= 0. Then, Hn is upper triangular and

A = (G1G2 · · ·Gm−1)Hn = QR

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenbergmatrix to a triangular. * Matlab: Explicit QR-factorization of Hessenberg qrg ivens.m ∗

QR-method lecture 2 8 / 23

Page 24: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

The Q-matrix in the QR-factorization of a Hessenberg matrix can befactorized as a product of m − 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A ∈ Cm×m is a Hessenberg matrix. Let Hi be generated asfollows H1 = A

Hi+1 = GTi Hi , i = 1, . . . ,m − 1

where Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri ) and ri =√

(Hi )2i ,i + (Hi )2i+1,i

and we assume ri 6= 0. Then, Hn is upper triangular and

A = (G1G2 · · ·Gm−1)Hn = QR

is a QR-factorization of A.

Proof idea: Only one rotator required to bring one column of a Hessenbergmatrix to a triangular. * Matlab: Explicit QR-factorization of Hessenberg qrg ivens.m ∗

QR-method lecture 2 8 / 23

Page 25: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrixbut only implicitly apply the Givens rotators

: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

andAk = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)operations.

One givens rotator applied to matrix can be computed in O(m)operations.

⇒the complexity of one Hessenberg QR step = O(m2)

QR-method lecture 2 9 / 23

Page 26: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrixbut only implicitly apply the Givens rotators: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

andAk = Rm(G1G2 · · ·Gm−1) =

(· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)operations.

One givens rotator applied to matrix can be computed in O(m)operations.

⇒the complexity of one Hessenberg QR step = O(m2)

QR-method lecture 2 9 / 23

Page 27: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrixbut only implicitly apply the Givens rotators: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

andAk = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)operations.

One givens rotator applied to matrix can be computed in O(m)operations.

⇒the complexity of one Hessenberg QR step = O(m2)

QR-method lecture 2 9 / 23

Page 28: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrixbut only implicitly apply the Givens rotators: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

andAk = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)operations.

One givens rotator applied to matrix can be computed in O(m)operations.

⇒the complexity of one Hessenberg QR step = O(m2)

QR-method lecture 2 9 / 23

Page 29: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrixbut only implicitly apply the Givens rotators: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

andAk = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)operations.

One givens rotator applied to matrix can be computed in O(m)operations.

⇒the complexity of one Hessenberg QR step = O(m2)

QR-method lecture 2 9 / 23

Page 30: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrixbut only implicitly apply the Givens rotators: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

andAk = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)operations.

One givens rotator applied to matrix can be computed in O(m)operations.

⇒the complexity of one Hessenberg QR step = O(m2)

QR-method lecture 2 9 / 23

Page 31: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrixbut only implicitly apply the Givens rotators: Let

Ak−1 = (G1G2 · · ·Gm−1)Rm

andAk = Rm(G1G2 · · ·Gm−1) = (· · · ((RmG1)G2) · · · )Gm

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(m − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)operations.

One givens rotator applied to matrix can be computed in O(m)operations.

⇒the complexity of one Hessenberg QR step = O(m2)

QR-method lecture 2 9 / 23

Page 32: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Givens rotators only modify very few elements.Several optimizations possible. ⇒

QR-method lecture 2 10 / 23

Page 33: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc

Acceleration still remains

QR-method lecture 2 11 / 23

Page 34: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Show animation again:

http://www.youtube.com/watch?v=qmgxzsWWsNc

Acceleration still remains

QR-method lecture 2 11 / 23

Page 35: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Outline:

Basic QR-method

Improvement 1: Two-phase approachI Hessenberg reductionI Hessenberg QR-method

Improvement 2: Acceleration with shifts

Convergence theory

QR-method lecture 2 12 / 23

Page 36: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let Hk = H

H − µI = QR

H̄ = RQ + µI

and Hk+1 := H̄.

Note:

Hk+1 = H̄ = RQ + µI = QT (H − µI ))Q + µI = QTHkQ

⇒ One step of shifted QR-method is a similarity transformation, with adifferent Q matrix.

QR-method lecture 2 13 / 23

Page 37: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let Hk = H

H − µI = QR

H̄ = RQ + µI

and Hk+1 := H̄.

Note:

Hk+1 = H̄ = RQ + µI = QT (H − µI ))Q + µI = QTHkQ

⇒ One step of shifted QR-method is a similarity transformation, with adifferent Q matrix.

QR-method lecture 2 13 / 23

Page 38: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let Hk = H

H − µI = QR

H̄ = RQ + µI

and Hk+1 := H̄.

Note:

Hk+1 = H̄ = RQ + µI =

QT (H − µI ))Q + µI = QTHkQ

⇒ One step of shifted QR-method is a similarity transformation, with adifferent Q matrix.

QR-method lecture 2 13 / 23

Page 39: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let Hk = H

H − µI = QR

H̄ = RQ + µI

and Hk+1 := H̄.

Note:

Hk+1 = H̄ = RQ + µI = QT (H − µI ))Q + µI

= QTHkQ

⇒ One step of shifted QR-method is a similarity transformation, with adifferent Q matrix.

QR-method lecture 2 13 / 23

Page 40: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let Hk = H

H − µI = QR

H̄ = RQ + µI

and Hk+1 := H̄.

Note:

Hk+1 = H̄ = RQ + µI = QT (H − µI ))Q + µI = QTHkQ

⇒ One step of shifted QR-method is a similarity transformation, with adifferent Q matrix.

QR-method lecture 2 13 / 23

Page 41: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Improvement 2: Acceleration with shifts (Section 2.3)

Shifted QR-method

One step of shifted QR-method: Let Hk = H

H − µI = QR

H̄ = RQ + µI

and Hk+1 := H̄.

Note:

Hk+1 = H̄ = RQ + µI = QT (H − µI ))Q + µI = QTHkQ

⇒ One step of shifted QR-method is a similarity transformation, with adifferent Q matrix.

QR-method lecture 2 13 / 23

Page 42: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idealized situation: Let µ = λ(H)

Suppose µ is an eigenvalue:⇒ H − µI is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreducedHessenberg matrix has the structure

R =

× × × × ×× × × ×× × ×× ×

0

.

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *

QR-method lecture 2 14 / 23

Page 43: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idealized situation: Let µ = λ(H)

Suppose µ is an eigenvalue:⇒ H − µI is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreducedHessenberg matrix has the structure

R =

× × × × ×× × × ×× × ×× ×

0

.

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *

QR-method lecture 2 14 / 23

Page 44: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Idealized situation: Let µ = λ(H)

Suppose µ is an eigenvalue:⇒ H − µI is a singular Hessenberg matrix.

QR-factorization of singular Hessenberg matrices (Lemma 2.3.1)

The R-matrix in the QR-decomposition of a singular unreducedHessenberg matrix has the structure

R =

× × × × ×× × × ×× × ×× ×

0

.

* Matlab demo: Show QR-factorization of singular Hessenberg matrix in matlab *

QR-method lecture 2 14 / 23

Page 45: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Shifted QR for exact shift: µ = λ

If µ = λ is an eigenvalue of H, then H − µI is singular. Suppose Q, R aQR-factorization of a Hessenberg matrix and

R =

× × × × ×× × × ×

× × ×× ×

0

.Then, * Prove on blackboard *

RQ =

× × × × ×× × × × ×

× × × ×× × ×

0

and

H̄ = RQ + λI =

× × × × ×× × × × ×

× × × ×× × ×

λ

.⇒ λ is an eigenvalue of H̄.

QR-method lecture 2 15 / 23

Page 46: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Shifted QR for exact shift: µ = λ

If µ = λ is an eigenvalue of H, then H − µI is singular. Suppose Q, R aQR-factorization of a Hessenberg matrix and

R =

× × × × ×× × × ×

× × ×× ×

0

.Then, * Prove on blackboard *

RQ =

× × × × ×× × × × ×

× × × ×× × ×

0

and

H̄ = RQ + λI =

× × × × ×× × × × ×

× × × ×× × ×

λ

.⇒ λ is an eigenvalue of H̄.

QR-method lecture 2 15 / 23

Page 47: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Shifted QR for exact shift: µ = λ

If µ = λ is an eigenvalue of H, then H − µI is singular. Suppose Q, R aQR-factorization of a Hessenberg matrix and

R =

× × × × ×× × × ×

× × ×× ×

0

.Then, * Prove on blackboard *

RQ =

× × × × ×× × × × ×

× × × ×× × ×

0

and

H̄ = RQ + λI =

× × × × ×× × × × ×

× × × ×× × ×

λ

.

⇒ λ is an eigenvalue of H̄.

QR-method lecture 2 15 / 23

Page 48: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Shifted QR for exact shift: µ = λ

If µ = λ is an eigenvalue of H, then H − µI is singular. Suppose Q, R aQR-factorization of a Hessenberg matrix and

R =

× × × × ×× × × ×

× × ×× ×

0

.Then, * Prove on blackboard *

RQ =

× × × × ×× × × × ×

× × × ×× × ×

0

and

H̄ = RQ + λI =

× × × × ×× × × × ×

× × × ×× × ×

λ

.⇒ λ is an eigenvalue of H̄.

QR-method lecture 2 15 / 23

Page 49: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

More precisely:

Lemma (Lemma 2.3.2)

Suppose λ is an eigenvalue of the Hessenberg matrix H. Let H̄ be theresult of one shifted QR-step. Then,

h̄n,n−1 = 0

h̄n,n = λ.

QR-method lecture 2 16 / 23

Page 50: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximateeigenvalue. Rayleigh shifts:

µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A. (Will be shown later)

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A−1. (Proof sketched in TB Chapter 29) ⇒Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

QR-method lecture 2 17 / 23

Page 51: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximateeigenvalue. Rayleigh shifts:

µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A. (Will be shown later)

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A−1. (Proof sketched in TB Chapter 29) ⇒Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

QR-method lecture 2 17 / 23

Page 52: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximateeigenvalue.

Rayleigh shifts:µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A. (Will be shown later)

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A−1. (Proof sketched in TB Chapter 29) ⇒Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

QR-method lecture 2 17 / 23

Page 53: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximateeigenvalue. Rayleigh shifts:

µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A. (Will be shown later)

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A−1. (Proof sketched in TB Chapter 29) ⇒Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

QR-method lecture 2 17 / 23

Page 54: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximateeigenvalue. Rayleigh shifts:

µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A. (Will be shown later)

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A−1. (Proof sketched in TB Chapter 29) ⇒Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

QR-method lecture 2 17 / 23

Page 55: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Select the shift

How to select the shifts?

Shifted QR-method with µ = λ computes an eigenvalue in one step.

The exact eigenvalue not available. How to select the shift?

Rayleigh shifts

If we are close to convergence the diagonal element will be an approximateeigenvalue. Rayleigh shifts:

µ := rm,m.

Explanation

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A. (Will be shown later)

The QR-method can be interpreted as equivalent to variant of PowerMethod applied to A−1. (Proof sketched in TB Chapter 29) ⇒Rayleigh shifts can be interpreted as Rayleigh quotient iteration.

QR-method lecture 2 17 / 23

Page 56: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Deflation

QR-step on reduced Hessenberg matrix

Suppose

H =

(H0 H1

0 H3

),

where H3 is upper triangular and let

H̄ =

(H̄0 H̄1

H̄2 H̄3

),

be the result of one (shifted) QR-step.

Then, H̄2 = 0, H̄3 = H3 and H̄0 isthe result of one (shifted) QR-step applied to H0. * show proof *

⇒ We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

QR-method lecture 2 18 / 23

Page 57: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Deflation

QR-step on reduced Hessenberg matrix

Suppose

H =

(H0 H1

0 H3

),

where H3 is upper triangular and let

H̄ =

(H̄0 H̄1

H̄2 H̄3

),

be the result of one (shifted) QR-step. Then, H̄2 = 0, H̄3 = H3 and H̄0 isthe result of one (shifted) QR-step applied to H0.

* show proof *

⇒ We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

QR-method lecture 2 18 / 23

Page 58: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Deflation

QR-step on reduced Hessenberg matrix

Suppose

H =

(H0 H1

0 H3

),

where H3 is upper triangular and let

H̄ =

(H̄0 H̄1

H̄2 H̄3

),

be the result of one (shifted) QR-step. Then, H̄2 = 0, H̄3 = H3 and H̄0 isthe result of one (shifted) QR-step applied to H0. * show proof *

⇒ We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

QR-method lecture 2 18 / 23

Page 59: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Deflation

QR-step on reduced Hessenberg matrix

Suppose

H =

(H0 H1

0 H3

),

where H3 is upper triangular and let

H̄ =

(H̄0 H̄1

H̄2 H̄3

),

be the result of one (shifted) QR-step. Then, H̄2 = 0, H̄3 = H3 and H̄0 isthe result of one (shifted) QR-step applied to H0. * show proof *

⇒ We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

QR-method lecture 2 18 / 23

Page 60: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Deflation

QR-step on reduced Hessenberg matrix

Suppose

H =

(H0 H1

0 H3

),

where H3 is upper triangular and let

H̄ =

(H̄0 H̄1

H̄2 H̄3

),

be the result of one (shifted) QR-step. Then, H̄2 = 0, H̄3 = H3 and H̄0 isthe result of one (shifted) QR-step applied to H0. * show proof *

⇒ We can reduce the active matrix when an eigenvalue is converged.

This is called deflation.

QR-method lecture 2 18 / 23

Page 61: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Rayleigh shifts can be combined with deflation ⇒

* show Hessenberg qr with shifts in matlab ** http://www.youtube.com/watch?v=qmgxzsWWsNc *

QR-method lecture 2 19 / 23

Page 62: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Outline:

Basic QR-method

Improvement 1: Two-phase approachI Hessenberg reductionI Hessenberg QR-method

Improvement 2: Acceleration with shifts

Convergence theory

QR-method lecture 2 20 / 23

Page 63: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A = AT .

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

(2) Show convergence properties of USI

(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration

(4) Show: USI ⇔ NSI ⇔ QR-method

QR-method lecture 2 21 / 23

Page 64: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A = AT .

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

(2) Show convergence properties of USI

(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration

(4) Show: USI ⇔ NSI ⇔ QR-method

QR-method lecture 2 21 / 23

Page 65: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A = AT .

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

(2) Show convergence properties of USI

(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration

(4) Show: USI ⇔ NSI ⇔ QR-method

QR-method lecture 2 21 / 23

Page 66: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A = AT .

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

(2) Show convergence properties of USI

(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration

(4) Show: USI ⇔ NSI ⇔ QR-method

QR-method lecture 2 21 / 23

Page 67: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence theory - TB Chapter 28

Didactic simplification for convergence of QR-method: Assume A = AT .

Convergence characterization

(1) Artificial algorithm: USI - Unnormalized Simultaneous Iteration

(2) Show convergence properties of USI

(3) Artificial algorithm: NSI - Normalized Simultaneous Iteration

(4) Show: USI ⇔ NSI ⇔ QR-method

QR-method lecture 2 21 / 23

Page 68: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”

V (0) = [v(0)1 , . . . , v

(0)n ] ∈ Rm×n.

DefineV (k) := AkV (0).

A QR-factorization generalizes the normalization step:

Q̂(k)R̂(k) = V (k).

QR-method lecture 2 22 / 23

Page 69: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”

V (0) = [v(0)1 , . . . , v

(0)n ] ∈ Rm×n.

DefineV (k) := AkV (0).

A QR-factorization generalizes the normalization step:

Q̂(k)R̂(k) = V (k).

QR-method lecture 2 22 / 23

Page 70: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”

V (0) = [v(0)1 , . . . , v

(0)n ] ∈ Rm×n.

DefineV (k) := AkV (0).

A QR-factorization generalizes the normalization step:

Q̂(k)R̂(k) = V (k).

QR-method lecture 2 22 / 23

Page 71: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Definition: Unnormalized simultaneous iteration (USI)

A generalization of power method with n vectors “simultaneously”

V (0) = [v(0)1 , . . . , v

(0)n ] ∈ Rm×n.

DefineV (k) := AkV (0).

A QR-factorization generalizes the normalization step:

Q̂(k)R̂(k) = V (k).

QR-method lecture 2 22 / 23

Page 72: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence of USI

Assumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,where Q̂ = (q1, . . . , qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions aboveare satisfied. Let qj , j = 1, . . . , n be the first n eigenvectors of A. Then, as

k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.

* Show matlab demo on USI (video) *

QR-method lecture 2 23 / 23

Page 73: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence of USIAssumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,where Q̂ = (q1, . . . , qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions aboveare satisfied. Let qj , j = 1, . . . , n be the first n eigenvectors of A. Then, as

k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.

* Show matlab demo on USI (video) *

QR-method lecture 2 23 / 23

Page 74: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence of USIAssumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,where Q̂ = (q1, . . . , qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions aboveare satisfied. Let qj , j = 1, . . . , n be the first n eigenvectors of A. Then, as

k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.

* Show matlab demo on USI (video) *

QR-method lecture 2 23 / 23

Page 75: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence of USIAssumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,where Q̂ = (q1, . . . , qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions aboveare satisfied. Let qj , j = 1, . . . , n be the first n eigenvectors of A. Then, as

k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.

* Show matlab demo on USI (video) *

QR-method lecture 2 23 / 23

Page 76: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence of USIAssumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,where Q̂ = (q1, . . . , qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions aboveare satisfied. Let qj , j = 1, . . . , n be the first n eigenvectors of A. Then, as

k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.

* Show matlab demo on USI (video) *

QR-method lecture 2 23 / 23

Page 77: QR-method lecture 2 · Point 5: TB Chapter 28 (Extra reading: TB Chapter 25-26, 28-29) QR-method lecture 2 2 / 23. Agenda QR-method 1 Decompositions (previous lecture) I Jordan form

Convergence of USIAssumptions:

Let eigenvalues ordered and assume:

|λ1| > |λ2| > · · · > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|.

Assume leading principal submatrices of Q̂TV (0) are nonsingular,where Q̂ = (q1, . . . , qn) are the eigenvectors.

Theorem (TB Theorem 28.1)

Suppose simultaneous iteration is started with V (0) and assumptions aboveare satisfied. Let qj , j = 1, . . . , n be the first n eigenvectors of A. Then, as

k →∞, the columns of the matrices Q̂(k) convergence linearly to qj

‖q(k)j −±qj‖ = O(C k), j = 1, . . . , n,

where C = max1≤k≤n |λk+1|/|λk |.

* Show matlab demo on USI (video) *

QR-method lecture 2 23 / 23