71
QTL mapping in animals

QTL mapping in animals

  • Upload
    gaura

  • View
    80

  • Download
    1

Embed Size (px)

DESCRIPTION

QTL mapping in animals. QTL mapping in animals. It works. QTL mapping in animals. It works It’s cheap. QTL mapping in animals. It works It’s cheap It’s relevant to human studies. Genomic resource. Nature December 5 2002. No more crosses?. In silico mapping. Method. Method. - PowerPoint PPT Presentation

Citation preview

Page 1: QTL mapping in animals

QTL mapping in animals

Page 2: QTL mapping in animals

QTL mapping in animals

• It works

Page 3: QTL mapping in animals

QTL mapping in animals

• It works

• It’s cheap

Page 4: QTL mapping in animals

QTL mapping in animals

• It works

• It’s cheap

• It’s relevant to human studies

Page 5: QTL mapping in animals

Genomic resource

Nature December 5 2002

Page 6: QTL mapping in animals

No more crosses?

Page 7: QTL mapping in animals

In silico mapping

Page 8: QTL mapping in animals

Method

We wanted to determine whether chromosomal regions regulating quantitative traits (QTL intervals) could be computationally predicted with the use of the mSNP database and available phenotypic information on inbred strains.

Page 9: QTL mapping in animals

Method

Using the allelic distributions across inbred strains contained in the mSNP database, the computational method calculates genotypic distances between loci for a pair of mouse strains. These genotypic distances are then compared with phenotypic differences between the two mouse strains. The process is repeated for all mouse strain pairs for which phenotypic information is available. Lastly, a correlation value is derived using linear regression on the phenotypic and genotypic distances for each genomic locus.

Page 10: QTL mapping in animals

Recombinant InbredsF0 Parental Generation

F1 Generation

F2 Generation

Interbreeding for approximately 20 generations to produce recombinant inbreds

Page 11: QTL mapping in animals

RI strain phenotypes

Page 12: QTL mapping in animals

RI strain genotypesChr1 D1Byu4 B B D B B D D BChr1 D1Rik100 B B D B B D D BChr1 D1Rik101 B B D . D . B BChr1 D1Rik102 B B D D D B D DChr1 D1Rik103 B B D D B B D BChr1 D1Rik104 B B D B B D D BChr1 D1Rik86 B B D B B . D BChr1 D1Rik87 B B D B B D D BChr1 D1Rik88 B B D . B D D BChr1 D1Rik89 B B D B B D D BChr1 D1Rik90 B B D D B B D BChr1 D1Rik91 B B D D B B D BChr1 D1Rik92 B B D D B B D BChr1 D1Rik94 B B D D B B D BChr1 D1Rik95 B B D D B B D BChr1 D1Rik96 B B D D B B D BChr1 D1Rik97 B B D B B D D BChr1 D1Rik98 B B D B B D D BChr1 D1Rik99 B B D B B D D BChr1 D1Hgu1 B B D D D B B DChr1 Ugt1a1-rs1B B D D D B B ?Chr1 D1Mit294 B B D D D B D DChr1 D1Mit1 . . . D D B D DChr1 D1Mit67 B B B D D B D DChr1 D1Rp2 B B B D D B D DChr1 D1Mit231 D B B D D B D DChr1 Odc-rs10 B B* D D D B D DChr1 D1J2 D B B D D B D DChr1 D1Mit211 D B B D D B D DChr1 D1Nds4 D B B D D B D D

Page 13: QTL mapping in animals

QTL for airway responsiveness

Page 14: QTL mapping in animals
Page 15: QTL mapping in animals

Power

n -2 = (t + t)2/(s2QTL/s2RES)

t and t are values on the t distribution corresponding to the desired value

s2QTL is the phenotypic variance explained by a QTL

s2RES the unexplained variance.

Page 16: QTL mapping in animals

Number Power QTL Effect10 90 6110 50 674 90 884 50 83

Page 17: QTL mapping in animals

Experimentally verified QTL for airway responsiveness

Chromosome LOD %Varexp

9 2.5 5.2

10 3.8 8.3

11 3.65 7.5

17 2.1 4.4

Zhang, Y. et al. A genome-wide screen for asthma-associated quantitative trait loci in a mouse model of allergic asthma. Hum. Mol. Genet. 8, 601-605 (1999).

Page 18: QTL mapping in animals

Inbred Strain Cross

Page 19: QTL mapping in animals

Quantitative Trait Locus Detection

Page 20: QTL mapping in animals

Marker QTL

M

m

Q

q

r

Page 21: QTL mapping in animals

Marker QTL

M

m

Q

q

r

MM QQ Qq qq

Mm QQ Qq qq

mm QQ Qq qq

Page 22: QTL mapping in animals

Marker QTL

MM QQ

Mm QQ

Mm QQ

P (QQ | MM) = (1-r)2

P (Qq | MM) = 2r(1-r)

P (qq | MM) = r2

(1-r)2 + 2r(1-r) + r2

Page 23: QTL mapping in animals

QTL Genotypic values

Alleles at the QTL: q and QAdditive value: aDegree of dominance: d

QQ = + 2aQq = + a(1+d)qq =

Page 24: QTL mapping in animals

Mean values for marker genotypes

Marker alleles: M and m Recombination frequency between QTL and marker: r MM = + 2a(1-r)2 + 2r (1- r)(1+d)a

Page 25: QTL mapping in animals

Mean values for marker genotypes

Marker alleles: M and m Recombination frequency between QTL and marker: r MM = + 2a(1-r)2 + 2r (1- r)(1+d)a Mm = + 2ar(1-r) +(1-2r(1- r))(1+d)a mm = + 2ar2 + 2r (1- r)(1 + d)a

Page 26: QTL mapping in animals

Two things follow

• Contrasts of single marker means can be used to detect QTL

Page 27: QTL mapping in animals

r = 0.1 (1-r)2

+ 2r (1- r)MM = + 2a * 0.81 0.18 (1+d) * a

QTLeffects.xls

Example

Page 28: QTL mapping in animals

r = 0.1 (1-r)2 + 2r (1- r)MM = + 2a * 0.81 0.18 (1+d) * a

r(1-r) + (1-2r(1- r))Mm = + 2a * 0.09 0.82 (1+d) * a

r2 + 2r(1-r)mm = + 2a * 0.01 0.18 (1+d) * a

Page 29: QTL mapping in animals

r = 0.5 (1-r)2 + 2r (1- r)MM = + 2a * 0.25 0.5 (1+d) * a

r(1-r) + (1-2r(1- r))Mm = + 2a * 0.25 0.5 (1+d) * a

r2 + 2r(1-r)mm = + 2a * 0.25 0.5 (1+d) * a

Page 30: QTL mapping in animals

Example

REAL_DATA/Real data.xls

Page 31: QTL mapping in animals

Two things follow

• Contrasts of single marker means can be used to detect QTL

• Estimates of position and effect are confounded

Page 32: QTL mapping in animals

Additive and dominance estimates

Additive effect (MM -mm)/2 = (1-2r) * a Dominance effect Mm – (MM + mm)/2) / ((MM - mm)/2) = d * (1-2r)

Page 33: QTL mapping in animals

Flanking markers

M1

m1

M2

m2

Page 34: QTL mapping in animals

Flanking markersM1

m1

M2

m2

M1M1 M2M2M1M1 M2m2M1M1 m2m2

M1m1 M2M2M1m1 M2m2M1m1 m2m2

m1m1 M2M2m1m1 M2m2m1m1 m2m2

Page 35: QTL mapping in animals

Interval mapping

M1

m1

M2

m2

Q

q

r1 r2

r12

Page 36: QTL mapping in animals

Interval mapping

M1

m1

M2

m2

Q

q

r1 r2

r12

r2 =( r12 – r1)/(1-2r1) No interference

r2 = r12- r1 Complete interference

Page 37: QTL mapping in animals

Interval mapping

M1M1 M2M2

M1

m1

M2

m2

Q

q

r1 r2

r12

p(M1QM2 | M1QM2) = ((1-r1) (1-r2)/2)2

Page 38: QTL mapping in animals

Interval mapping

M1

m1

M2

m2

Q

q

r1 r2

r12

p(QQ|M1M1M2M2) = ((1-r1) 2(1-r2)2)/(1-r12)2

p(Qq|M1M1M2M2) = (2r1r2(1-r1) (1-r2) )/(1-r12)2

p(qq|M1M1M2M2) = (r1 2r22)/(1-r12)2

Page 39: QTL mapping in animals

Significance thresholds

Page 40: QTL mapping in animals

Permutation tests to establish thresholds

Empirical threshold values for quantitative trait mappingGA Churchill and RW Doerge

Genetics, 138, 963-971 1994

An empirical method is described, based on the concept of a permutation test, for estimating threshold values that are tailored to the experimental data at hand.

Page 41: QTL mapping in animals

Permutation tests

Trait values are randomly reassigned to genotypes

10,000 re-samplings for 1% value

Page 42: QTL mapping in animals

Permutation tests

• Robust to departures from normality

• Robust to missing or erroneous data

• Easy to implement

Page 43: QTL mapping in animals

Significance Thresholds

Suggestive Significant Mapping method P LOD P LOD Backcross 3.40E-03 1.9 1.00E-04 3.3 Intercross (2 df) 1.60E-03 2.8 5.20E-05 4.3

Lander, E. Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results Nature Genetics. 11, 241-7, 1995

Page 44: QTL mapping in animals

Maximum likelihood methods

Marker genotype M Phenotypic value z Variance 2 Mean Qk

Page 45: QTL mapping in animals

Maximum likelihood methods

L (z | MM) = (1-r)2 zQQ,2) + 2r ( 1-r) zQq,2) + r2 zqq,2) L (z | Mm) = r(1-r) zQQ,2) + (( 1-r)2+ r2)zQq,2) + r(1-r) zqq,2) L (z | mm) = r2 zQQ,2) + 2r ( 1-r) zQq,2) + (1-r)2 zqq,2)

Page 46: QTL mapping in animals

Maximum likelihood methods

L (z | MM) = (1-r)2 zQQ,2) + 2r ( 1-r) zQq,2) + r2 zqq,2) L (z | Mm) = r(1-r) zQQ,2) + (( 1-r)2+ r2)zQq,2) + r(1-r) zqq,2) L (z | mm) = r2 zQQ,2) + 2r ( 1-r) zQq,2) + (1-r)2 zqq,2)

Page 47: QTL mapping in animals

Interval mapping

M1

M1

M2

M2

Q

q

r1 r2

r12

Page 48: QTL mapping in animals

Interval mapping

M1

M1

M2

M2

Q

q

r1 r2

r12

L (z | M1M1M2M2) = ((1-r1)2 (1-r2)

2 )/(1-r12)2zQQ,2) +

2r1r2 ( 1-r1) (1-r2)/(1-r12)

2 zQq,2) + (r1

2r22)/(1-r12)

2 zqq,2)

Page 49: QTL mapping in animals

Maximum likelihoodTest statistic

LR = -2 ln (max Lr(z)/max L(z)) Lr(z) is maximum of the likelihood function under the null hypothesis of no segregating QTL (i.e. that the phenotypic distribution is a single normal)

Page 50: QTL mapping in animals

Example

---------------------------------------| D2MIT21-D2MIT22 37.0 cM 0.0 0.294 -0.071 4.6% 5.069 | ************* 2.0 0.317 -0.074 5.3% 5.455 | ************** 4.0 0.341 -0.077 6.2% 5.861 | **************** 6.0 0.365 -0.077 7.0% 6.279 | ****************** 8.0 0.389 -0.076 8.0% 6.701 | ******************* 10.0 0.410 -0.073 8.9% 7.114 | ********************* 12.0 0.431 -0.068 9.7% 7.505 | *********************** 14.0 0.447 -0.061 10.5% 7.861 | ************************ 16.0 0.460 -0.054 11.0% 8.169 | ************************* 18.0 0.468 -0.046 11.4% 8.417 | ************************** 20.0 0.473 -0.039 11.7% 8.595 | *************************** 22.0 0.473 -0.033 11.6% 8.699 | *************************** 24.0 0.469 -0.026 11.4% 8.728 | *************************** 26.0 0.460 -0.020 11.0% 8.684 | *************************** 28.0 0.447 -0.015 10.4% 8.574 | *************************** 30.0 0.432 -0.009 9.6% 8.409 | ************************** 32.0 0.414 -0.004 8.8% 8.199 | ************************* 34.0 0.394 0.000 8.0% 7.956 | ************************ 36.0 0.373 0.004 7.1% 7.694 | *********************** ---------------------------------------| D2MIT22-D2MIT23 32.9 cM 0.0 0.363 0.006 6.7% 7.563 | *********************** 2.0 0.381 0.010 7.4% 7.705 | *********************** 4.0 0.399 0.013 8.2% 7.811 | ************************ 6.0 0.414 0.016 8.8% 7.867 | ************************ 8.0 0.425 0.019 9.3% 7.862 | ************************ 10.0 0.433 0.021 9.7% 7.786 | ************************ 12.0 0.438 0.021 9.9% 7.631 | *********************** 14.0 0.437 0.022 9.8% 7.394 | ********************** 16.0 0.431 0.023 9.6% 7.077 | ********************* 18.0 0.421 0.022 9.1% 6.684 | ******************* 20.0 0.405 0.019 8.4% 6.229 | ***************** 22.0 0.385 0.015 7.6% 5.726 | *************** 24.0 0.360 0.008 6.6% 5.196 | ************* 26.0 0.333 -0.002 5.6% 4.662 | *********** 28.0 0.303 -0.013 4.6% 4.146 | ********* 30.0 0.274 -0.026 3.8% 3.669 | ******* 32.0 0.246 -0.037 3.1% 3.244 | ***** ---------------------------------------| D2MIT23-D2MIT24 43.5 cM 0.0 0.235 -0.041 2.8% 3.080 | ***** 2.0 0.241 -0.052 3.0% 3.028 | ***** 4.0 0.247 -0.066 3.2% 2.966 | **** 6.0 0.251 -0.081 3.4% 2.894 | **** 8.0 0.255 -0.100 3.6% 2.812 | **** 10.0 0.256 -0.122 3.7% 2.721 | *** 12.0 0.255 -0.146 3.9% 2.620 | *** 14.0 0.251 -0.170 3.9% 2.511 | *** 16.0 0.245 -0.197 4.0% 2.396 | ** 18.0 0.236 -0.224 4.1% 2.275 | ** 20.0 0.225 -0.249 4.1% 2.149 | * 22.0 0.212 -0.267 4.1% 2.016 | * 24.0 0.197 -0.279 3.9% 1.876 | 26.0 0.181 -0.284 3.7% 1.728 | 28.0 0.163 -0.280 3.3% 1.574 | 30.0 0.145 -0.271 2.9% 1.416 | 32.0 0.127 -0.255 2.4% 1.261 | 34.0 0.109 -0.235 2.0% 1.113 | 36.0 0.091 -0.213 1.6% 0.978 | 38.0 0.074 -0.192 1.2% 0.860 | 40.0 0.059 -0.172 0.9% 0.759 | 42.0 0.046 -0.153 0.7% 0.676 | ---------------------------------------|

SIMULATED_DATA

WinQTL

Page 51: QTL mapping in animals

Linear modelszik = + bi + eik

kth individual of marker genotype i

Page 52: QTL mapping in animals

Linear models

QQ = + a Qq = + d qq = - a

Page 53: QTL mapping in animals

Linear models

QQ = + a Qq = + d qq = - a

zj = + a . x (Mj) + d . y (Mj) + ej

Page 54: QTL mapping in animals

Linear models

QQ = + a Qq = + d qq = - a

zj = + a . x (Mj) + d . y (Mj) + ej

x (Mj) = p(QQ | Mj) – p (qq| Mj)

y (Mj) = p(Qq | Mj)

Page 55: QTL mapping in animals

Linear modelsx (Mj) = p(QQ | Mj) – p (qq| Mj)

x(M1M1M2M2)(1-r1) 2(1-r2)2 -(r1

2r22)

(1-r12)2=

Page 56: QTL mapping in animals

Linear modelsx (Mj) = p(QQ | Mj) – p (qq| Mj)

x(M1M1M2M2)(1-r1) 2(1-r2)2 -(r1

2r22)

(1-r12)2=

2r1r2(1-r1) (1-r2)y(M1M1M2M2) (1-r12)2=

y (Mj) = p(Qq | Mj)

Page 57: QTL mapping in animals

Significance test

LR = n ln (SST/SSE) = -n ln (1-r2)

Degrees of freedom are the number of estimated QTL parameters, plus one for the map position

Page 58: QTL mapping in animals

Matrix statement of Haley Knott regression

r1 = (XTr1 Xr1) -1 XT

r1 z

ith row of matrix Xr1: (1,x(Mi,r1), y(Mi,r1))

Page 59: QTL mapping in animals

Example

Regression example.xls

0 0 0.15 0.15 0.3 0.3Marker Genotypes Phenotypes x y x y x yM1M1M2M2 5.6 1 0 0.91 0.9 1 0M1M1M2M2 5.4 1 0 0.91 0.9 1 0M1M1M2m2 5.3 1 0 0.56 0.4 0 1M1m1M2m2 3.9 0 1 0 0.85 0 1M1m1M2m2 3.3 0 1 0 0.85 0 1M1m1M2M2 3.6 0 1 0.35 0.6 1 0M1m1M2M2 3.7 0 1 0.35 0.6 1 0m1m1M2m2 3.9 -1 0 -0.56 0.4 0 1m1m1M2m2 3.5 -1 0 -0.56 0.4 0 1m1m1m2m2 1.1 -1 0 -0.91 0.9 -1 0m1m1m2m2 0.8 -1 0 -0.91 0.9 -1 0

Page 60: QTL mapping in animals

Problems of QTL detection

• Linked QTLs corrupt the position estimates

• Unlinked QTLs decreases the power of QTL detection

Page 61: QTL mapping in animals

Extensions to linear regression

• Composite interval mapping

• Multiple interval mapping

Page 62: QTL mapping in animals

Composite interval mapping

ZB Zeng Precision mapping of quantitative trait lociGenetics, Vol 136, 1457-1468, 1994

http://statgen.ncsu.edu/qtlcart/cartographer.html

Page 63: QTL mapping in animals

Composite interval mapping

Page 64: QTL mapping in animals

Composite interval mapping

M1 M2

M1 M2QQ Q

Page 65: QTL mapping in animals

Composite interval mapping

M-1 M1 M2 M3

M-1 M1 M2 M3QQ Q

Page 66: QTL mapping in animals

Composite interval mapping

M-1 M1 M2 M3

M-1 M1 M2 M3QQ Q

zj = + a . x (Mj) + d . y (Mj)

+ k=i, i+1

bk . xkj + ej

Page 67: QTL mapping in animals

Example

SIMULATED_DATA

WinQTL

Page 68: QTL mapping in animals

Multiple Interval Mapping

Page 69: QTL mapping in animals

Multiple Interval Mapping

Page 70: QTL mapping in animals

Multiple Interval Mapping

Page 71: QTL mapping in animals

Example?