9
74 INTRODUCTION Landfill gas, a mix of primarily carbon dioxide (CO 2 ) and methane (CH 4 ), is emitted as a result of anaerobic condition during the decomposition of organic fraction of waste in landfills. Methane is the second largest contributor to global warming among anthropogenic Green House Gases (GHG), after carbon dioxide. The global warming potential of methane (over a 100 year time horizon) is 21 times greater than that of carbon dioxide. Waste sector was contribute 4% of the global methane emissions and will increase as the increasing amount of the waste [UNEP, 2012]. Malang is the second biggest city and well known as educational and tourism city in East Java, Indonesia. Malang which is located in the south of Surabaya, the capital of East Java, has a geographical location of 7.06° – 8.02° S latitude and 112.06° – 112.07° E longitude [SMC, 2012]. Its total area is 110.06 km 2 and it is situated on the upstream of the Brantas River, the biggest and the longest river in East Java. It has population of 0.835 million in 2012 with density of population is about 7,453 peoples per km 2 and the average growth rate of population in the last five years is 0.82% [SMC, 2012]. Population growth and urbanization cause the increasing amount of the waste which becomes a QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL SOLID WASTE RECYCLING AND DISPOSAL IN MALANG CITY INDONESIA Sunarto Sunarto 1, 2 , Purwanto Purwanto 1, 3* , Sudharto P. Hadi 1, 4 1 Doctoral Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia 2 Department of Civil Engineering, Muhammadiyah University Malang, Raya Tlogomas Str. 246, Malang 65144, Indonesia 3 Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia 4 Department of Business Administration, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia * Correspondence author’s e-mail: [email protected] Journal of Ecological Engineering Volume 18, Issue 3, May 2017, pages 74–82 DOI: 10.12911/22998993/70237 Research Article ABSTRACT Increased waste generation due to population growth and increasing consumption pat- terns cause pollution, including pollution in global scale due to the emission of meth- ane (CH 4 ) and carbon dioxide (CO 2 ) from the waste in the landfill. The study purposed to analyze the GHG (Green House Gases) emission generated by solid waste manage- ment in Malang in 2012 and in the next 10 years through the application of waste recycling from upstream to downstream. The production of methane (CH 4 ) in landfill were analyzed using the model equations developed by IPPC (2001) and the reduc- tion of the GHG from recycling were analyzed using GHG emission factors. Dynamic model of the GHG emission was developed to analyze and to predict GHG emission from recycling and dumping activity. The GHG emissions of waste management in 2012 (Scenario 1) is 192,291.19 tCO 2 e and in the next 10 years is 254,548.93 tCO 2 e (>32.19%). Application of Scenario 2 and Scenario 3 in the next 10 years produces GHG emission 134,290.38 tCO 2 e (<30.16%) and 37,741.56 tCO 2 e (<80.37%). Keywords: integrated solid waste management, recycling, GHG emissions Received: 2017.03.04 Accepted: 2017.04.05 Published: 2017.05.01

QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

74

INTRODUCTION

Landfillgas,amixofprimarilycarbondioxide(CO2)andmethane(CH4),isemittedasaresultofanaerobicconditionduringthedecompositionoforganicfractionofwasteinlandfills.Methaneis the second largest contributor to globalwarming among anthropogenic Green HouseGases(GHG),aftercarbondioxide.Theglobalwarmingpotentialofmethane(overa100yeartime horizon) is 21 times greater than that ofcarbon dioxide. Waste sector was contribute4% of the global methane emissions and willincreaseas the increasingamountof thewaste[UNEP,2012].

Malang is the second biggest city andwellknown as educational and tourism city inEastJava, Indonesia. Malang which is located inthesouthofSurabaya,thecapitalofEastJava,has a geographical location of 7.06° – 8.02°S latitude and 112.06° – 112.07° E longitude[SMC,2012].Itstotalareais110.06km2anditissituatedontheupstreamoftheBrantasRiver,the biggest and the longest river in East Java.Ithaspopulationof0.835millionin2012withdensityofpopulationisabout7,453peoplesperkm2 and theaveragegrowth rateofpopulationin the last five years is 0.82% [SMC, 2012].Population growth and urbanization cause theincreasingamountofthewastewhichbecomesa

QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL SOLID WASTE RECYCLING AND DISPOSAL IN MALANG CITY INDONESIA

Sunarto Sunarto1, 2, Purwanto Purwanto1, 3*, Sudharto P. Hadi1, 4

1 Doctoral Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia

2 Department of Civil Engineering, Muhammadiyah University Malang, Raya Tlogomas Str. 246, Malang 65144, Indonesia

3 Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia

4 Department of Business Administration, Diponegoro University, Imam Barjo Str. 5, Semarang 50241, Indonesia

* Correspondence author’s e-mail: [email protected]

Journal of Ecological EngineeringVolume 18, Issue 3, May 2017, pages 74–82DOI: 10.12911/22998993/70237 Research Article

ABSTRACTIncreasedwastegenerationduetopopulationgrowthandincreasingconsumptionpat-ternscausepollution,includingpollutioninglobalscaleduetotheemissionofmeth-ane(CH4)andcarbondioxide(CO2)fromthewasteinthelandfill.ThestudypurposedtoanalyzetheGHG(GreenHouseGases)emissiongeneratedbysolidwastemanage-ment inMalang in2012and in thenext10years through theapplicationofwasterecyclingfromupstreamtodownstream.Theproductionofmethane(CH4)inlandfillwereanalyzedusingthemodelequationsdevelopedbyIPPC(2001)andthereduc-tionoftheGHGfromrecyclingwereanalyzedusingGHGemissionfactors.DynamicmodeloftheGHGemissionwasdevelopedtoanalyzeandtopredictGHGemissionfromrecyclinganddumpingactivity.TheGHGemissionsofwastemanagementin2012(Scenario1)is192,291.19tCO2eandinthenext10yearsis254,548.93tCO2e(>32.19%).ApplicationofScenario2andScenario3inthenext10yearsproducesGHGemission134,290.38tCO2e(<30.16%)and37,741.56tCO2e(<80.37%).

Keywords:integratedsolidwastemanagement,recycling,GHGemissions

Received: 2017.03.04Accepted: 2017.04.05Published: 2017.05.01

Page 2: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

75

Journal of Ecological Engineering Vol. 18(3), 2017

problemfacedbytheGovernmentofIndonesia[Meidina & Gamse, 2010]. Major cities inIndonesia produce nearly 10million tonnes ofwasteannually,andthisamountincreasesby2to4%annually[ME,2008].

Duetorapidgrowthofpopulation,industri-alization,urbanizationandgrowthofeconomic,many cities inAsian developing countries faceseverewastemanagementproblem.Thecommonproblemsare:noseparationatsource,complicatedcollectionprocesses,opendumped landfills, andnocontrolofgasemissionsandleachateinland-fill [Dhokhikah&Trihadiningrum, 2012]. Sincesolidwastemanagement(SWM)isamultidimen-sionalchallengefacedbybigcities[Anschutzet al.,2004],theauthorproposesthreedimensionsinSWM:1)thestakeholdersinvolvedinandaf-fectedbywastemanagement,2)the(practicalandtechnical) elements of thewaste system, and 3)thesustainabilityaspectsofthelocalcontextthatshouldbetakenintoaccountwhenassessingandplanningwastemanagementsystem. Like many cities in developing countries,finaldisposalareaorlandfillisthemainelementofexistingwastesystemappliedbyalotofbigcitiesandmetropolisinIndonesia.About68.6%ofthemunicipalsolidwaste(MSW)isdisposedinthelandfillandmostlyopendumpingandtherest of the wastes is recycled and composted,openburned,anddisposedaroundtheresidentialareas[ME,2008].Thereductionofthevolumeofwastewascarriedoutbythecomunityandbythecitygovernmenttotakeinorganicwasteforrecycling and organic waste to be composted.Thecollectionofwastematerials for recyclingisusuallyalsodonebyscavengers.However,thereductionofwastevolumeby the scavenger isrelativelysmall.InlandfillBasirihBanjarmasinin Kalimantan, for example, a scavenger isonly able to take 3.49% of the total wastevolume [Mahyudin et al., 2015].Therefore, inmany cases most of solid wastes are dumpedinopenairwhereGHGemissionsoccur alongwith odors, public health and environmentaldegradation.Recyclingofwastewillreducethevolume ofwaste disposed to landfill.Directly,this will reduce the pollution from landfill,includingglobalpollutionduetoreducedGHGemissions[Fikriet al.,2015].Whileindirectly,recyclingalsoreducesGHGemissionsbecausetheseactivitieswillreducetheuseofnaturalrawmaterialsandreducesenergyconsumptionfromfossilfuels.

MATERIAL AND METHODS

Inthisstudyattemptsweremadetoestimatethemethaneemissionandpotentialofelectricitygeneration from disposed MSW in landfillsof Malang city. In addition, reviews on thegeneration,characterizationofMSWandlandfillmanagement and processes is also discussed.Afieldinvestigationwascarriedoutatthetransferstation and final disposal site to observe solidwaste processing practice. Sampling of solidwaste composition in different areas is done inJanuary – February 2011 byMinistry of PublicWorksandKFW[MPW,2012].Thedensityandwatercontentofwasteatthecollectionpointwasalso determined. The secondary data were alsocollected from theGovernment ofMalangCityand reputed journal to achieve the goal of thisstudy.Populationdatahavebeencollectedfrompopulation census by Statistic of Malang City(SoM)[SMC,2012]. Thesystemdynamicsmodelingapproachhasbeen used to quantify the GHG emission frommunicipal solidwaste (MSW) inMalang.GHGemission from recycling were analyzed usingGHG emission factors [Ifeu, 2009]. A simplemethod proposed by the IntergovernmentalPanel onClimateChange (IPCC) [Houghton et al.,1998]hasbeenusedtoestimatethemethaneemissionfromtheMSWinthelandfill. Figure 1 shows the causal loop diagramdevelopedbyincorporatingtheessentialelementsof municipal solid waste management system.Thediagramconsistsofelementsandarrows,andexplainstheexistingfeedbackmechanismamongtheinterrelatedelementsoftheMSWMsystem. Thearrows,calledasthecausallinks,includea sign (either+or−)oneach link, indicate theeffectofoneelementontheother.Thelinkwillbeconsideredpositive(+)ifanincreaseordecreasein one element causes a change in the samedirectionintheotherelement,ornegative(−)ifan increaseordecrease inoneelementcausesachangeintheoppositedirection.Theselinkagescomplete small negative and positive feedbackloops to represent the dynamic structure of thecompletesystem.Thepolarityoftheloopistheproductofsumsofitslinks. To develop a quantitative model, thecausal loop diagram is converted to a stockflow diagram, which explains the physical aswell as the information flows among variouselementsoftheMSWMmodel.Therearethree

Page 3: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

Journal of Ecological Engineering Vol. 18(3), 2017

76

typesofvariables,whicharethemainbuildingblocks of the stock flow diagram: stock, flowand auxiliary. Stock variable, symbolized byrectangles is an accumulation of somethingin the system. The flow variable symbolizedby double lined arrow with valves representsactivities responsible for the rate change inphysicalandinformationflowstoandfromthestocks. The third variable called as auxiliarysymbolizedbythecircle,isfortransformationof the information from stock variable to theflowvariable.This isan intermediatevariableused for miscellaneous calculations. Thediamonds represents constants, which do notvary over the period and are defined with aninitialvalue.Theswitchcontrolistochangetheinitialvaluesofconstants,auxiliariesandstockvariables to select the alternative strategies.Thesinglearrowrepresentsthecauseandeffectlinkswithin themodel structure.ThedetailedstockflowdiagramofMSWMmodel isgiveninFigure2.ThedescriptionofMSWMmodelisgiveninthefollowingsection.TheMSWMsystemisdividedintotwosubsystems:(a)wastegenerationsubsystemdepictingtheinteractionof MSW generation and population, and (b)

Figure 1.Causalloopdiagramofmunicipalsolidwastemanagement

:

waste collection and recycling subsystem athouseholdsandwastebank(Figure2). In the present study,MSW is defined as thewaste generated by households, shops, offices,restaurants,hotels,marketsandstreetsweepings,collectedandprocessedbytheMCD.TheamountofMSWgenerated(MSWG)isconsideredtobetheproductof twovariables: thepopulation(P) and the per capitawaste generation (MSWPC).The population is taken as the stock variable,which depends on the variation of populationgrowth rate and population growth multiplier.The other variable per capita waste generationhasbeentakenastheauxiliaryvariableincreasingwithstepfunction.ItisassumedthatthepercapitaMSWgenerationwill risewithagrowth factor,depending on economic growth, urbanizationrateandthelivingstandardoftheresidents.TheannualMSWgeneration,populationgenerationiscomputedusingthefollowingequations:

MSWG = P × MSWPC×365 (1)P = Pin +dt × Growth rate (2)

The MSW collected (MSWC) dependson efficiency of collection system (EffC)and the recycling, which affects the quantity

Page 4: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

77

Journal of Ecological Engineering Vol. 18(3), 2017

of MSW left for collection. The amount ofMSW Recycled (MSWR) is calculated by thefraction of recyclables (Fr), which reflects theeconomic growth of society.The recycling rate(Rr) depending on recycling efficiency (EffR)wouldinfluencetheamountofMSWunrecycled(MSWunr), which is disposed in landfills. Thefractionleftafterrecycling,i.e.recyclingresidueandunrecycledfractionwillalsocontributetotheamountofMSWforfinaldisposalinlandfilling.TheGHGemissionfromMSWrecyclingdependsonthequantityofrecycledwasteandtheemissionfactor(Ef).

GHGr=M×EFemission–M×EFavoidedemission (3)

where:M=massofwastereccycler(tonne), EFemission = GHGemissionfactorsforre-

cycling(emission)(kgCO2-eq/twaste), EFavoided emission = GHGemissionfactorsfor

recycling (avoided emission) (kg CO2-eq/twaste)

TheGHGemission from landfill is obtainedby multiplying methane emissions with globalwarmingpotentialof21.Methaneemissionfromthe various organic compounds of waste hasbeenestimatedbythemethodproposedbyIPCC[Houghtonet al.,1998]:

Methane(CH4)emissions= MSWT×MSWF×MCF×DOC×

×DOCF×F×16/12(tons)(4)

where:MSWT=TotalMSWgeneration(tones) MSWF=FractionsofMSWdisposedof

tolandfills MCF=Methanecorrectionfactor DOC = Fraction of degradable organic

carbon DOCF=FractionoftotalDOCthatactu-

allydegrades, F =FractionofmethaneinLFG.

The default values (0.4 to 1.0) forMCF aredependentonthetypesofMSWlandfillpractices.If most of the landfills under consideration areunmanaged, a value of about 0.6 can be used[Tsai, 2007]. According to IPCC, DOC rangesfrom0.08to0.21,consideringthecharacteristicsofwasteDOCvalueistakenas0.17.Furthermore,the DOCF should be considered because thebiodegradation of DOC does not occur totallyovera longperiod; therefore,adefaultvalueof0.77canbeused.Thefractionofmethanegasinlandfillgas that iscaptured,either forflaringorpowergeneration,alsoassumesas0.5.Oxidationfactortakesintoaccountoftheoxidationpotentialfrom the landfill cover. The IPCC guidelines

Figure 2.StockflowdiagramofmunicipalsolidwastemanagementmodelSubsystemdiagrams:a–municipalsolidwasteMSWgenerationsubsystem,b–MSWandrecyclingsubsystem

Page 5: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

Journal of Ecological Engineering Vol. 18(3), 2017

78

enhancedthemethaneestimationbyconsideringwastesthathasbeendepositedovertheyears.Itassumesthedecompositionofthewasteaccordingtofirstorderdecayreaction.Scenariodescription TheGHGemission is estimated forMSWMsystemofMalangincludingtheproposedpolicyoptionsfor10yearsstartingfromtheyear2012.ThescenariosdevelopedareScenario0,Scenario1,Scenario2,andScenario3thatdependontherecyclingrate(Table1).1) Scenario 0; i.e the MSWM in the city of

MalangjustrelyontheelementSupitUranglandfillasfinaldisposalandthereisnowasterecyclingactivities.

2) Scenario1;i.etheMSWMinthecityofMalangin 2012 (existing) where waste recyclinghas been carried out both by residents in 66neighborhoods and in the 206 unit of wastebankandbymanagersat11transferstationsofthe62transferstationsandatlandfillSupitUrang with recycling capacity is relativelysmall.

3) Scenario 2; i.e waste recycling has beenincreasedby residents in 360neighborhoodsand in the 1,076 unit of waste bank and bymanagersat10transferstationsthathavearea>150m2andatlandfillSupitUrang.

4) Scenario3,i.ewasterecyclingrateincreasedtwice than of scenario 2 by residents in 544neighborhoodsandinthe2,146unitofwastebankandbymanagersat21transferstationsthatandatlandfillSupitUrang.

RESULTS AND DISCUSSION

Thequantities of solidwaste generation andcollectedareveryimportantindeterminingSWMoptions by local government including disposalfacilities[Tchobanoglouset al.,1993].Ingeneral,theamountofwastegenerationinthedevelopingcountriesisdeterminedonthebasisofpercapita

wastegenerationfactors.Wastegenerationratesarealsorelatedtoeconomicstatusofthecountryas well as population. Economic development,urbanization and improving living standardin cities of developing countries have led toan increase in the quantity of municipal solidwaste. Developed nations are characterizedby higher rates of waste generation per capita;while developing nations generate less wasteand practice informal recycling that reduce thewastepercapitatobecollectedatthemunicipallevel.Urbanization,GrossDomesticProductpercapita(GDPpercapita),illiteracy/levelofpublicawareness,andsanitaryservicesare responsibleforwastegeneration[Khajuriaet al.,2010]. In Indonesia, urban population has beenincreasingandthehumanactivitiesofgrowingpopulation produce the waste generation. Thetotal population of Indonesia is around 232.6million [ME, 2008].About 17.2% of the totalpopulation who lived in 26 urban centresproduce nearly 38,630 tons per day and 14.1milliontonsofwasteannuallyattherateof0.47kg/capita/day [ME, 2008].The totalmunicipalsolidwastegenerationinMalangwasestimatedbymultiplying the solid waste generation ratebythepopulation.AccordingtoSoM2012data,total population of Malang city in 2012 was835,082 peoples [SMC, 2012] and taking intoaccount per capita waste generation 0.45 kg/day [METI, 2012], totalMSWgenerationwas469.73 tons/day. The total waste generationin Malang city according to per capita wastegeneration is presented in Table 1. It is alsoassumedthatfactortakingtheimpactofstudentsandtouristsintoconsiderationinadditiontotheregisteredpopulationis25%.ThetotalofMSWrecycled/compostedandtotalofMSWdisposedin the landfillare60tons/dayand336.65tons/dayrespectively[METI,2012].The2012censuspopulationfigureswereusedand theprojectedpopulation was estimated using a populationgrowthrateof0.82%[SMC,2012].

Table 1.Scenarioofcarbonfootprintcontrolbasedonwasteprocessing

LocationPercent Processing (%)

Scenario 0 Scenario 1 Scenario 2 Scenario 3O I O I O I O I

Waste bank - - - 2.40 - 12.50 - 25.00Resident - - 0.50 1.80 7.50 15.00 15.00 30.00Transfer station - - 3.89 8.06 15.00 20.00 30.00 40.00Landfill Supit Urang - - 0.35 1.54 35.00 20.00 70.00 40.00

O=OrganicWaste;I=InorganicWaste

Page 6: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

79

Journal of Ecological Engineering Vol. 18(3), 2017

MunicipalSWMsystemsneedtocharacterizethetypesandquantitiesofmaterialdisposedforchoosing the management option of waste. Aslocalgovernmentsrelymoreonsourcereduction,recycling, composting, and waste-to-energy(WTE) technologies, reliabledataaboutwhat isinthewastestreamisveryessentialtothewastemanagement program’s success [Cheremisinoff,2003].The characteristics ofMSW are directlyinfluenced by the socio-economic conditions,cultural activities, seasonal and geographicalconditions as well. The physical compositionof householdwaste inMalang city is presentedin Figure 3 [MPW, 2012]. Like many cities indeveloping countries, it is observed that theorganic matter or biodegradable fraction isusuallythemajorcomponentinthewastestreaminIndonesiaduetothetypeandhabitofvegetableconsumption. It’s socio-economic condition isalso very much responsible for the very highpercentage of organic component. The rapidlybiodegradable portion is normally very high,comparedtootherportions,essentiallyduetotheuse of fresh vegetables and fruits. The organiccontentofMSWinMalangis64.9andthemoisturecontentvariedfrom60.6to66.8%[MPW,2012].High moisture content causes biodegradablewastefractionstodecomposemorerapidlythanin dry conditions.Base on the heating value ofsolid waste components [Brunner, 2002], thecalorificvalueofsolidwasteinMalangisaround1,800kJ/kg.WasteofMalangcitywithhighshareoforganicmattersandalsohighmoisturecontentwouldbenotwellsuitedforincinerationoranyother kind of thermal treatment. Some studies

reportedthatcalorificvalueforincineratedwasteshouldnot fall lower than6,000kJ/kg [Randet al.,2000]otherwise,additionalfuelisnecessarytomaintaincombustion. Solidwastemustbesustainablymanagedwithcomprehensiveapproach[McDougallet al.,2001].InotherhandpurposedthatsustainableintegratedSWM related to three important dimensions inwastemanagement:(1)thestakeholdersinvolvedin and affected by waste management, (2) the(practical and technical) elements of the wastesystem and (3) the sustainability aspects of thelocal context that should be taken into accountwhenassessingandplanningawastemanagementsystem[Anschutzet al.,2004].Ingeneral,SWMinMalangcityiswellorganizedandsustainableintegratedsolidwastemanagementpracticehavebeenappliedrelatedtocomprehensiveapproachand three important dimension of integratedSWM[Anschutzet al.,2004;McDougallet al.,2001]. There is a separate department directlyresponsible to the mayor of Malang city formanagingtheMSW.Someactivitiesinthewastesystem elements arewaste reduction activity atsource,compostingactivityintemporarydisposalarea, andmethanegas capturing forflaring andcookinginthelandfillofSupitUrang.However,SWM inMalang is still dependent on disposalareaasfinalelementofwastesystemsincemostoftheMSWgeneratedinMalangstilldisposedtothelandfill. Around 0.84 million people live in Malangcity area (110.06 km2). They produce about469.73 metric ton wastes/day [METI, 2012].Wastes, which are, dropped into the primary

Figure 3.PhysicalcompositionofMSWinMalangCity

Page 7: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

Journal of Ecological Engineering Vol. 18(3), 2017

80

disposalbinsinfrontofthehouse,arecarriedtothesecondarycollectionpointsbycarts.Forthesecondarycollectionsystem,about1,883carsareemployedtocarrythesewastes to62secondarywastedisposalpointsinMalangarea.Wastesarefinally transported from secondary point to thefinal waste disposal point by dump trucks andarm-rolltruck.About43trucksareemployedinordertotransportthesewastestothefinaldisposalpoint. There are 12 secondary disposal pointswithcompostingfacilities.Thelocalgovernmentalsohasawastebankfoundedin2011tocollectrecycledwastefromtheresidentofMalangcity.In2012,thememberofwastebankare201groupsof households consist of 6,271households, 161schools, 19 offices, and 275 households [GMC,2012].Everyday,thiswastebankcollect2,5tonsrecycled waste. Wastes are also recycled fromthesecondarydisposalpointsaswellasthefinaldisposalpointsbythewastepickers.Around60tonsor 12.8%of thedailywaste are recyled inthesecities.About336.65metricton/daywastesare collected and disposed off in the wastedisposalarea.ThecollectionofrateofMSWinMalangcitywasaround84.44%[METI,2012]. Finaldisposal site is located inSupitUrang,8 km west ofMalang city centre. This landfillstarted operation at 1993 and it is expected tohavealifespanof30yearsandwillbeclosedin2023but due to extensionof landfill from15.0hectaresto25.2hectaresitispredictedthelandfillwill reach its maximum capacity at the end of2042. The landfill was designed as controlledlandfills.Thereisaregularsoilcoverapplicationandleachatetreatmentbutlandfillgasemissionsreleasedtotheatmospherewithalittletreatment.Methane gas has been capture at some cells of

the landfill and used for cooking of about 300householdsaroundthelandfillofSupitUrang. The results of the simulation comparisonof GHG emissions from the four scenariosanalyzedwithmodels thathavebeendevelopedare presented in Figure 4 for a comparison ofGHG emissions and waste management Figure5 for the overall GHG emissions of wasteprocessing. In Scenario 0, at the end of thesimulation, GHG emissions are 272,685.70 tonCO2e. While Scenario 1, GHG emissions are257,548.93tonCO2e.Scenario1istheconditionin2012inwhichthewasteprocessingactivitieshavebeenconducted,bothbysocietyandbythegovernmentofMalangconductedatthetransferstations and landfill Supit Urang. Reduction ofGHG emissions from the processing activity is3,351.74CO2eqorequalto7.27%ofScenario0.

InScenario2,wasteprocessingcapacity in-creased by the community and by the Govern-ment of Malang conducted in transfer stationswherehavesufficientareaandinthelandfillSupitUrang.Attheendofthesimulation,thereductionofGHGemissionsfromwasteprocessingactiv-ityis17,522.60tonCO2e.WhileGHGemissionsfromthelandfillis151,812.98tonCO2e.Intotal,GHGemissionsarereduced134,290.38tonCO2eor47.27%ofScenario1.GHGemissionreduc-tionsarequitelargeduetothevolumeofwasteinthelandfillSupitUrangaresignificantlyreduced.

InScenario3,wasteprocessingcapacity in-creased2timesgreaterthanthecapacityofpro-cessingonScenario2.Attheendofthesimulation,thereductionofGHGemissionsis28,390.88tonCO2e.GHGemissionsatthelandfillis66,132.43tonCO2e. In total,GHG emissions are reduced37,741.55 ton CO2e or 85.15% of Scenario 1.

Figure 4.GHGemissionofwasterecycling2012–2022

Page 8: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

81

Journal of Ecological Engineering Vol. 18(3), 2017

GHGemissions reduced very large because thevolumeofwasteinthelandfillSupitUrangwassignificantly reduced because of enhancing thecapacity ofwaste processing by society and bythegovernmentofthecityofMalang.

CONCLUSION

1. TheresultsoftheanalysisoftheGHGemissionofMSWMbasedonrecyclinginMalangshowthat theGHGemission in2012 (Scenario1)is 192,291.19 tonCO2e, lower than the totalGHGemissionontheconditionwherethereisnowaste reduction from recycling (Scenario0), in the amount of 206,277.65 ton CO2eor reducedby7.27%.TheGHGemission inthenext10years (Scenario1) is254,548.93tonCO2e, higher than theGHG emission ofScenario1, in theamountof192,291.70 tonCO2eorincreasedby32.19%.

2. The reduction ofGHG emission ofMSWMcan be done by applying two scenarios toimprove the recycling capacity. Applicationof Scenario 2, in the next 10 years, GHGemission generated is 133,219.69 ton CO2e,30.16% lower than the GHG emission ofScenario1.ApplicationofScenario3,at thenext 10 years, GHG emission generated is37,741.55tonCO2e,80.37%lowerthanGHGemissionofScenario1.

Themodeldevelopedbasedonthecalculationrepresent the data very well. By comparingthe simulation results of the four scenarios,Malang government can plan the reduction of

greenhouse gas emissions by improving wasterecycling program gradually in all elements ofwastemanagement,bothinthecommunity,atthetransferstation,andatlandfillSupitUrang.

Acknowledgement

Theauthorswanttoshowtheirdeepestgratitudeto thosewhohelped in this research, especiallyto the officials ofMalang City goverment whoconcernedwithmunicipalwastemanagement.

REFERENCES

1. Anschutz J., Ijgosse J.,ScheinbergA.2004.Put-tingintegratedsustainablewastemanagementintopractice.WasteNetherland.

2. BrunnerC.R.2002.Waste-to-energycombustion,part 13a incineration technologies. In:Handbbokof SolidWaste Management (Eds G. Tchobano-glous,G.andF.Kreith)McGraw-HillCompanies,pp.13.4–13.7.

3. CheremisinoffN.P.2003.Handbookofsolidwastemanagementandwasteminimizationtechnologies.ButterworthHeinemann.

4. DhokhikahY.,TrihadiningrumY.2012.Solidwastemanagement inAsian developing countries: chal-lengesandopportunities.JournalofAppliedEnvi-ronmentalandBiologicalSciences,2(7),329–335.

5. FikriE.,PurwantoP.,SunokoH.R.,2015.Model-ling of household hazardouswaste (HHW)man-agement in Semarang city (Indonesia) by usinglife cycle assessment (LCA) approach to reducegreenhousegas(GHG)emissions,ProcediaEnvi-ronmentalSciences,23,123–129.

6. GMC(GovernmentofMalangCity).2012.Adipu-

Figure 5.GHGemissionofwastedisposal2012–2022

Page 9: QUANTIFICATION OF GREENHOUSE GAS EMISSIONS FROM … OF.pdf · DOCF = Fraction of total DOC that actu-ally degrades, F = Fraction of methane in LFG. The default values (0.4 to 1.0)

Journal of Ecological Engineering Vol. 18(3), 2017

82

ra’snon-physicaldataofMalangcity2012/2013.7. Houghton J.T., Filho L.G.M., Lim B., Treanton

K.,Mamaty I., BondukiY., GriggsD.J., Callen-derB.A.1998.Revised1996IPCCguidelinesfornationalgreenhousegasinventories.UKMeteoro-logicalOffice.

8. Ifeu (Institut für Energie). 2009. Manual SWM-GHG calculator-tool for calculating GreenhouseGases(GHG)inSolidWasteManagement(SWM).Frankurt:KfWBankengruppeCommunicationDept.

9. KhajuriaA.,YamamotoY.,MoriokaT.2010.Es-timationofmunicipal solidwastegenerationandlandfillareainAsiandevelopingcountries.JournalofEnvironmentalBiology,31(5):649-654.

10.MahyudinR.P.,HadiS.P.,Purwanto.2015.WastereductionbyscavengersinBasirihlandfillBanjar-masinSouthKalimantanIndonesia:wastecompo-sitionbasedanalysis.J.Appl.Environ.Biol.Sci.,5(11),118–126.

11.McDougall F., White P., Franke M., Hindle P.2001. Integrated solidwastemanagement : a lifecycleinventory.BlackwellScience.

12.ME(TheMinistryofEnvironment).2008.Indone-siandomesticsolidwastestatisticsyear2008.StateMinistryofEnvironmentRepublicofIndonesia.

13.MeidinaC.,GamseT.2010.Developmentofwastemanagement practices in Indonesia. European

JournalofScientificResearch,40(2),199–210.14.METI(TheMinistryofEconomy,TradeandIn-

dustry). 2012. Study on the integrated waste toenergyproject ingreaterMalang.HitachiZosenCorporation, EX Research Institute Ltd., SmartEnergyCo.,Ltd.

15.MPW(MinistryofPublicWorksandGermanDe-velopmentBank).2012.Emissionreductionincit-ies–solidwastemanagement:feasibilitystudyforselectedmeasuresinMalang,Jombang,Jambiandresultofadditionaltasks.Fichtner.

16.RandT.,HaukohlJ.,MarxenU.2000.Municipalsolidwasteincineration,adecisionmaker’sguide.TheInternationalBankforReconstructionandDe-velopment,WorldBank.

17.SMC (Statistic of Malang City). 2012. MalangCityinFigure2012.

18.TchobanoglousG.,TheisenH.andVigilS.A.1993.IntegratedSolidWasteManagement:Engineering,Principles andManagement Issues.McGraw-HillInternationalEditions.

19.Tsai W.T. 2007. Bioenergy from Landfill Gas(LFG)inTaiwan.ElsevierRenewableandSustain-ableEnergyReviews,11(13),331–344.

20.UNEP(UnitedNationsEnvironmentProgramme).2012.The EmissionsGapReport 2012AUNEPSynthesisReport.