6
Quantification of Uncertainty in Mineral Prospectivity Prediction Using Neural Network Ensembles and Interval Neutrosophic Sets Pawalai Krai peerapun, Kok Wai Wong, Abstract-Qnantification of unscrtalnty in mineral prospee tivity predictinn is an important prncess tn support decisinfi making In mineral exploration, Dep oF uncertainty can identify lcvel of quality in thc prcdiction. This papcr proposes an approach to predict dwes of hvourability for gold deposits together with quantification of uncertainty in the prediction. Geographic lnfurmatiun Systems (GIS) data is applied to the integratinn of ensemble neural networks and interval neutm- sophip wk Three difTewnt neural network architectufis we uscd in this paper. The prcdiction and its unccrtainty arc represented in the form of truth-membership, indeterminacy- membership. and false-memkrship values, Two networks are created for sash network architecturn to predict degrees of favr)urahility for deposit and nnn depmit, which are represented by truth add false memhership v.sloes wspectiuely. Uncertainty or indeterminacy-mcmbcrship valucs am ~stimatd from both trnth and false membership values. The results obtained using different neural network ensemhle techniques are diwussed in this paper. Uncertainty estimation in mineral prospectivity prediction is an important task in order to support decision making in regional-scale mineral exploration. I11 this pnper. we focus on uncertainty of type vagueness in which it refers to boundaries that cannot be defined precisely. In [I]. vague objects are separated into vague point, vague Tine, and vague region. Dilo et al. [I] defined vague point as a finite set of disjoint sites with known location. but the existence of the sites may be uncertain. This study involves gridded map layers in a GIs database, each grid cell represents n site with a known location. hut uncertain exiqtence of favourability for deposit. Hence. this study deals with vague point. Some locations have one hvndred percent of favourability for deposits. Some locations have zero percent of favourability for mineral deposits. Such cells are referred to as non-deposit or barren cell?. Most locations have degrees of favourability between these two extremes. Therefnre, each cell contains uncertain information about the degree of favourability for deposits, degree of favourability for hamns. and degree of indeter- minable information or uncertainty. In order to store these three types of information for each cell, we apply interval htwalai Kraipccmpun is with the School of Information Tcchnolngy. Murdoch University. Australia {emnil: [email protected].~u) Kok Wai Wong 1% with the School of Inforn~ation Technology. Murdoch University. Australia {elnail. [email protected]) Chun Che Fung is with the Ccntrc for Enterprisc Collabm- lion In Innovative Systems, Murdoch University, AusmIia (cmail: [email protected].;tul Warick Brown is w~th the Centre for Exploration Targeting. The Vniver- siry of Western Australia, Australia (email: [email protected]) Chun Che Fung, and Warick Brown neutrosophic sets [2] to keep these information in the form of truth-membership, falsemembership, and indeterminacy- membership values, respectively. In recent years, neural network methods were found to give ktler mineraI prospectivity prediction results than the conventional empirical statistically-based methods 131. There are various types of neural network used to predict degree of favourability for mineral deposits. For example, Brown et al. [3], [4] applied backpropagation neural network for mineral prospectivity prediction. Skabar [5] used a reed- forward neural network to produce mineral potential maps. Iyer et al. [6], [7] applied a general regression neural network and a polynomial neural network to predict the favourability for gold deposits. Fung ct al. [XI applied neural network ensembles to the prediction of mineral prospectivity. Hansen and Salarnon [91 suggested that ensembles of neu- wl networks gives better results and less emr than a single neural network. Ensembles of neural networks consist of two steps: training of individual components in the ensembles and combing the output from the component networks [lo]. This study aims to apply neural network ensembles to predict the degrees of favourability for gold deposits and also the degrees of favwrability for barrens. These two degrees are then used to estimate the degree of uncertainty in the prediction for each grid cell on a mineral prospectivity map. Each component of neural network ensembles applied in this study consists of a pair of neural networks trained to predict degree of Favourabi lity for deposits and degree of favourability for barrens, respectively. We use three components in the ensemble of neural networks. These component architecrures are feed-forward backpmpagation neural network, general regression neural network, and polynomial neural network. These three are selected mainly because they have successful application in the field. A multilayer feed-forward neural network with backprop- agation learning is applied in this study since it is suitable for a large variety of applications. A general regression neural network is a memory-based supervised feed-forward network based on nonlinear regression theory. This network is not necessary to define the number of hidden layers in advance and has fast training time comparing to backpropagation neural network [I I]. A polynomial neural network is based on Group Method of Data Handling (GMDH) [I21 which identifies thc nonlinear relatiuns bctwecn input and output variables. Similar to general regression neural network, a topology of this network is not predetermined but developed through learning [TI. In order to combine the outputs obtained from components 0-7803-9490-9/06/$20.00/©2006 IEEE 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 3034 Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from IEEE Xplore. Restrictions apply.

Quantification of Uncertainty in Mineral Prospectivity Prediction Using Neural Network Ensembles and Interval Neutrosophic Sets

Embed Size (px)

DESCRIPTION

Quantification of unsertainty in mineral prospectivity prediction is an important process to support decision making In mineral exploration.

Citation preview

QuantificationofUncertainty inMineral Prospectivity Prediction UsingNeuralNetworkEnsembles and Interval Neutrosophic Sets Pawalai Krai peerapun,Kok Wai Wong, Abstract-Qnantificationof unscrtalnty in mineral prospee tivitypredictinnisan importantprncesstnsupportdecisinfi makingInmineralexploration,D e p oF uncertaintycan identify lcvel of quality in thc prcdiction. This papcr proposes an approachtopredictd w e sofhvourabilityforgolddeposits togetherwithquantificationof uncertaintyintheprediction. Geographic lnfurmatiunSystems(GIS)data isappliedtothe integratinnofensembleneuralnetworksandintervalneutm- sophipw kThreedifTewntneuralnetworkarchitectufiswe uscdinthispaper.Theprcdictionanditsunccrtaintyarc represented int heformoftruth-membership, indeterminacy- membership. andfalse-memkrshipvalues,Twonetworks are createdforsash networkarchitecturntopredictdegreesof favr)urahility for deposit and nnn depmit, which are represented by truth add false memhership v.sloes wspectiuely. Uncertainty or indeterminacy-mcmbcrship valucsam~st i mat dfromboth trnth andfalsemembershipvalues. Theresultsobtainedusing different neuralnetworkensemhle techniques are diwussedin thispaper. Uncertainty estimation in mineral prospectivity prediction is an important task i n order tosupport decision making in regional-scale mineral exploration. I11this pnper.we focus on uncertainty of type vagueness in which it refers to boundaries t ha tcannotbedefinedprecisely.In[I].vagueobjectsare separatedintovaguepoint,vagueTine,andvagueregion. Dilo et al.[ I ] defined vague pointasa finite set ofdisjoint sites with knownlocation. but the existence ofthe sites may be uncertain. This study involves gridded map layers ina GIs database, eachgridcellrepresentsnsitewithaknown location. hutuncertainexiqtenceoffavourability fordeposit.Hence. thisstudydealswithvaguepoint.Somelocationshave onehvndredpercentoffavourabilityfordeposits.Some locationshavezeropercentoffavourabilityformineral deposits. Suchcells are referred toas non-depositor barren cell?. Mostlocations havedegrees offavourabilitybetween thesetwoextremes. Therefnre,eachcellcontains uncertain informationaboutthedegreeoffavourabilityfordeposits, degreeoffavourabilityforhamns.anddegreeofindeter- minableinformationoruncertainty.Inordertostorethese threetypesofinformationforeachcell,weapplyinterval htwalaiKraipccmpun iswiththeSchoolofInformationTcchnolngy. Murdoch University. Australia {emnil:[email protected].~u) KokWaiWong1%withtheSchoolofInforn~ationTechnology.Murdoch University.Australia {elnail. [email protected]) ChunCheFungiswiththeCcntrcforEnterpriscCollabm- lionInInnovativeSystems,MurdochUniversity,AusmIia(cmail: [email protected].;tul WarickBrowni s w~ththeCentre for Exploration Targeting. The Vniver- siryof Western Australia, Australia (email:[email protected]) ChunCheFung, and WarickBrown neutrosophic sets[2] to keep these information in theform oftruth-membership, falsemembership,andindeterminacy- membership values, respectively. Inrecentyears,neuralnetworkmethodswerefoundto givektler mineraIprospectivitypredictionresultsthanthe conventional empirical statistically-based methods 131. There arevarioustypesofneuralnetworkusedtopredictdegree offavourability formineraldeposits.Forexample,Brown etal.[ 3] ,[4]appliedbackpropagationneuralnetworkfor mineralprospectivityprediction.Skabar[5] usedareed- forwardneural networktoproducemineral potentialmaps. Iyer et al. [6], [7]applied a general regression neuralnetwork and a polynomialneuralnetwork topredict the favourability forgolddeposits.Fungctal.[XI appliedneuralnetwork ensembles tothe predictionofmineralprospectivity. Hansen and Salarnon [91 suggested t hatensembles of neu- wl networks gives better resultsandless emr thana single neuralnetwork. Ensembles of neural networks consist of two steps: training ofindividual components in the ensembles and combing the output from the component networks [lo]. This study aims to apply neural network ensembles to predict the degrees of favourability for gold deposits and also the degrees offavwrabilityforbarrens.Thesetwo degreesarethen usedtoestimate the degree ofuncertaintyinthe prediction foreachgridcellonamineralprospectivitymap.Each component of neural network ensembles applied i n this study consists of a pair of neural networks trained to predict degree ofFavourabi lityfordepositsanddegreeoffavourability forbarrens,respectively.Weusethreecomponentsinthe ensemble of neuralnetworks. These component architecrures arefeed-forwardbackpmpagationneuralnetwork,general regressionneuralnetwork,andpolynomialneuralnetwork. These three are selected mainly because they havesuccessful applicationinthefield. Amultilayer feed-forward neuralnetwork withbackprop- agation learning is applied in this study since it is suitable for alargevarietyofapplications. Ageneralregressionneural network i s amemory-based supervised feed-forward network basedonnonlinearregressiontheory.Thisnetworkisnot necessarytodefine thenumber ofhiddenlayersinadvance andhasfasttrainingtimecomparingtobackpropagation neuralnetwork[ I I]. A polynomialneuralnetworkisbased onGroupMethodofDataHandling(GMDH)[I21 which identifiesthcnonlinearrelatiunsbctwecninputandoutput variables.Similartogeneralregressionneuralnetwork,a topology ofthisnetwork is not predeterminedbut developed throughlearning[TI. In order to combine the outputs obtained from components 0-7803-9490-9/06/$20.00/2006 IEEE2006 International Joint Conference on Neural NetworksSheraton Vancouver Wall Centre Hotel, Vancouver, BC, CanadaJuly 16-21, 20063034Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from IEEE Xplore.Restrictions apply.ofensemble neuralnetworks,wepropose andcompare six aggregation techniqueswhicharebasedonmajorityvote, averaging, and dynamic averaging techniques.Our proposed techniques haveapplied the three membershipvaluesin the aggregation instead of the truth-membership only as in most conventional approaches. The restofthispaper is organized as follows. Section I1 presentsinterval neutrosophic setsusedinthisstudy.Sec- tionIIIexplains theproposedmodelforthequantification ofuncertaintyinthepredictionoffavourabilityforgold depositsusingintervalneutrosophicsetsandensembleof neural networks.Section IV explains theGIs dataset used inthispaper.Experimentalmethodologiesandresultsare also presented inthissection.Conclusions are explainedin section V. 11.INTERVAL NEUTROSOPHIC SETS Anintervalneutrosophicset(INS)isaninstanceof neutrosophicset[13]whichisgeneralizedfromthecon- ceptofaclassicalset,fuzzyset, interval-valuedfuzzyset, intuitionisticfuzzyset,interval-valued intuitionisticfuzzy set,paraconsistentset,dialetheistset,paradoxistset,and tautologicalset[2].Themembership ofanelement tothe interval neutrosophic setisexpressed bythreevalues:t , i, andf ,whichrepresenttruth-membership,indetenninacy- membership, and false-membership,respectively. These three memberships are independent and can be any real sub-unitary subsets. In some special cases, they can be dependent. In this paper, the indeterminacy-membershipvalue depends on both truth-membership and false membership values. The interval neutrosophic set can represent several kinds ofimperfection suchasimprecise,incomplete,inconsistent,anduncertain information [14]. Inthispaper,weexpress imperfection in theformofuncertaintyoftypevagueness.Thisresearch follows thedefinitionofan interval neutrosophic set thatis defined in[2]. This definition is described below. LetX beaspace ofpoints(objects).Aninterval neutro- sophic set inX is where TA is the truth-membership function, IA is the indeterminacy-membership function, and FA is the false-membership function. Theoperations ofinterval neutrosophic setsarealsoap- pliedinthispaper.Detailsoftheoperations canbefound in[14]. 111.UNCERTAINTYESTIMATIONUSING INTERVAL NEUTROSOPHICSETSAND ENSEMBLENEURAL NETWORKS This paper applies GIs input data to ensemble neural net- works for the prediction of favourability for gold deposits and Indeterminacy Falsity BPNN GRNNOutput Falsity GRNN GiS input data layers Output Falsity PNN Fig. I.Uncertainty model based on the integration of interval neutrosophic sets and ensemble neural network utilizes the interval neutrosophic set to express uncertainties intheprediction.Fig.1showsourproposedmodel.The input feature vectors ofthe proposed model represent values from co-registered cells derived from GIs data layers which are collected and preprocessed from the Kalgoorlie region of Western Australia. Thesame input data set is used in every neural network created in this paper. Inorder topredictdegrees offavourabilityfordeposits, weapplythreetypesofneuralnetworkarchitecture: feed- forwardbackpropagation neuralnetwork(BPNN),general regression neuralnetwork(GRNN),andpolynomial neural neural network (PNN) for training individual network in the ensembles. Wecreatetwoneuralnetworksforeachneural networkarchitecture. Thefirstnetworkisusedtopredict thedegreeoffavourabilityfordeposits(truth-membership values)andanothernetworkisusedtopredictthedegree offavourability for barrens (false-membership values). Both networkshavethesamearchitecture andareappliedwith thesameinputfeaturedata.Thedifference betweenthese twonetworks isthatthesecond networktrained topredict degreesoffavourability for barrens uses the complement of targetoutputs usedinthefirstnetworkwhichistrainedto predictdegreesoffavourabilityfordeposits.Forexample, ifthe target output used to train thefirst networkis0.1,its complement is 0.9. The results from these two networks are usedtoanalyze uncertainty intheprediction. Ifacellhas hightruth-membership valuethenthiscellshould have low false-membership valueandviseversa. Otherwise, thiscell contains highuncertainty. Hence, thedegrees ofuncertainty inthepredictionorindeterminacy-membership valuescan becalculatedasthedifferencebetweentruth-membership and false-membership values. If the difference between truth- 3035Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from IEEE Xplore.Restrictions apply.membershipandfalse-membershipishigh thenthenncer- taintyislow.Inconmst,ifthedifferencebetweenboth values is Inwthen the uncertaintyis high. InFig.1, the proposed neural network ensembles contain t h ~ e componentswhicheachconsistsofa pairofneural networks.Thefirstpairi sfeed-forwardbackpropagation neural networks (truth BPNN and falsity BPNN). The second pairisgeneralregressionneuralnetworks(truthGRNN andfalsityGRNN).Thethirdpairispolynomialneural networks( nt h PNNand faIsityPNN3. Each pairofneural networks is trained to predict degrees of favourability for de- posits (truth-membership values) and degrees of favourability forbarrens(false-membership values).Theindeterminacy- membership values are calculated from the different between truth-m~mbershipandfzlse-memhrshipvalues.Therefore, we havethreeintervalneutrosophicsets whichareoutputs fromthosethreepairsofneuralnetwarks. Wecandefine these outputsas the following. LetXj bethesetofoutputsfromtheneuralnetrvork. Inour case,we have threesets ofoutputs,i.e.XI,X2 and &. representitag outputsets fromBPNN,GRNN andPNN respectively. Eachset Xj contains the outputs from each pair of the neural networks. The output set for BPNN is therefore represented as Xr = {xlr,2 1 2 ,.-.,.~ l i , --.,xln} where s r fis a cellin the output from the BPNN at Iwation i. Let AT be an interval neutrosophic set of Xj .Aj can be defined as where TAjis the truth(deposit) mernkrshipfunction. IAjis theindeterminacy membership function. andFAJ is the false (barren)membershipfunction.After!heindividualneural networkistrainedandthethreeintervalneutto5ophicsets A,are created, the nextstep istocombinethese threesets. Insteadofusingonlytruthmembershipvaluestopredict thefavourability forgolddeposits.thef~llowingsareour propusedaggregationtechniquesusingtruth-membership, false-membership, and indeterminacy-membership values, 1)Majority vote using T&F Foreachinternalneutrosophicset.A,,ifaccIlx hastruth-membershipvalueTA~(X$greaterthana thresholdvaluethenthiscelli sclassified as deposit, otherwiseitisclassifiedasbarren.Inthispaper,we usethresholdvaluesranging from0.1to 0,9 i n steps of0.1. Ifacellhasfalse-membershipvalueFA,(x) Iessthana thresholdvaluethenthiscellisclassified asdeposit,otherwiseitisclassifiedasbarren.The resultscalculatedfromthebestthresholdfortruth- membership values and the results calculated fmm the bestthresholdforfalse-membershipvaluesarethen calculatedusingthelogicaloperatorandtoprovide the prediction results for each cell x i n each output Xj. The degree of uncefiainty for each cell, is expressed by theindeterminacy-membership value, IAj (x). Afterthe threeoutputsate classified, the nextstepis to combinetheseoutputs.Themajorityvoteisthen applied in order to aggregate the three outputs. For each cell, iftwoor more outputsareclassified as deposits then the cell is deposit. Othewise, the cell is classified asbarren.Theuncertaintyvalueforeach"deposit" cellisestimatedfromtheaverageindeterminacy- membershipvalueforalltheneuralnerworkpairs intheensemblethatclassifiedtheinputpatternas adepsi t .Likewise,uncertaintyvaluesfor"barren" celIsarecalculatedas theaverage ofindeterminacy- membership values fromthe members of the network pairsthat gave a classification ofbarren. 2)Majoriry vote usingT > F This technique is more flexible than the first technique. The threshold valueis not required for the prediction. For every ccll i n each interval neutrosophic set Aj ,if thetruth-membershipvalueisgreaterthanthe false- membership value(TA$(x)> FA~(X))thenthecell isclassifiedasdeposit.Otherwiseitisclassifiedas barren.Thedegreeofuncertaintyforeachcellis representedbytheindeterminacy-membership value, IA,(x).Similartothefirsttechnique,themajority voteisthenusedtocombinethethreeoutputsand theindeteminacy-memkrshipvaluesarecalculated according to the predicted cell type for each individual output. 31AveragingusingT&F Inthistechnique, thethreeintervalneutrtlsophicsets AJ , j= 1, 2, 3 areaveraged.LetO beanaveraged output mp .O = {or, 02, ..., on)whereq is a cell~f theaveragedoutput mapat locationi. LetAvgbean intervalneutrosophicsetoftheaveragedoutputmap 0. Avgcanbecalculated asfollow Ifa cell has averaged truth-memhrship value TA,,(o) greater than a threshold value then this cell is classified as deposit, otherwise the cell is classified as barren. If a cell has averaped false-membership value FA~ J O) less thana threshold value then this cell is classified as de- posit, otherwise this cell is classified as barsen. Similar to thefirst technique, the logicaloperator andis used tocalculatethepredictionfromtheresultsobtained from the best threshold for buthtruth-membership and false-membership values.The degree of unceflaintyis expmswd bythe averagedindeterminacy-memkrship value I A ~ ~ (0). 4)Averaging usingT > F In thistechnique.thethreeinterval neutrosophicsets are also averagedand the results arestored in Avg.if the averaged truth-membership value is greater than the 3036Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from IEEE Xplore.Restrictions apply.averagedfalse-~nernbershipvalue.T.;-T;l,?,(o):r F.;-T;l,,,(o) thenthe cellis clnssifiedas deposit. Otherwise the cell isclassifiedasbarr.en.Thedegree ofiincertnintyfor eac I1 cellis repr.esented by the averagedi~~rletesminacy- iilerribersllipvalueT.,A,,,(O). 5 )Dynamic nver.ngingusing'I'k 1.' Illsteadofusingequalweightaveraginp.tliistecli- niqiieuscsdynan~icweightaveragingi nwhichthe weightistheco~riple~nentof theuncertaintyvalueor indeterminacy-~nernbership value for eaclicell.Irnccr- taintyisintegratedintotruth-rnernbershipandfalse- inernbershipvaluestosupporqtheco~lfidericeofthe prediction.LctY he a dy~a mi c averagedoutpi~tInnp. Y= {gL?U2,.,,, gIL)where3~isacellofdynamic averagedoutpi~tatlocntio~iE. LctDheaninterval neutrosophicset of the dyrlari~icaveragedoutpi~tY. II callbe definedas follow u~here I f occllhas truth-mcmhcrshipvalue 'I?>( 9) grcalcr than 3 ~I~i-csl~wld~ a l u c I ~ C I I hiscvllis~Iassificdasdcpusir, ottler~lisethecelli xcli~ssifiet-las hiil.en. On(he olher hand.i f acellhasr;~l\e-rnen~bershipvalueFD( y)Irsx thanathresholdvaluethenthir;celli qclassifiedax depocit,otherwisethecellisclahsifiedasharretl.The resultsobtainedfrornthebestthresholdtorbothtruth- membershipandfalse-me~nhershl valuecarethe11 combinedusliigtliclogicalopcratol.irnrltoprovidc lhcpredictionrcsults.Thudcgrccofuncertaintyis cx- prcsscdbythe i i i dct ~mi nacy- n~anba. shi pvalueID(y) whichi scaluulatcdasthedii'i'crcntbct~vccn truth- incn~bcrshipilndL~lsc-mcmbcrshipl,alues. 6)nynarr~icaveragingusingT> F Inthistechnique,anintervalneutrosnphicxetI3is createdusingthesameprevioustechnique.Inorder topredictthefavourabilityfordepocits.ifthettuth- membership valueis greater thanthe false-membership ualucI >)(?I)>&A(!!)thcnthecellisclassifiedaa duposit.Othc~.wiscthcccllisulassificdas barren. Thc dcg~.ucol'unccrtaiiiryfureachccllisrcprcscntcdby thcindc~crminacq.-ii~c~l~bc~-shipvalucIn (y).A.GIS rlrrrusat Thedatasetusedintliisstudywasobtainedfroina11 approxiinately100 x 100 k111 arcaoftheArcllaen~iYilgarn Block, ncnr Kalgoorlie. WcstcniAustralia. This data set W C ~ Cpreprocessecland compiledinto GISlayers fr.oi11 avarietyof soutrcssuch as geology. geochernistsy, andgeophysics.Lt'r: usedtenlayersinraster-format to create input feature vecto~.s forwrnod el.Theselayersreprwentdifferent~ ~ r i a b l e ssucliasfavourabilityofhostrnckc,distancet o thenearest regional-scalefault,anddistaricetothenearestirlagnetic noomnly.Enclilayer- is dividedillto a gsiclofsqilnrc cells of 100 111 side.IIcncc,the]nap arcacontnios1.254.00Q cells. Eachccllstoresasingleattributevaluewhichisscaledto therangc[0, I].Forexarnple.a ccllinalayer- representing the distarice to the nearestfaultcontaiosavalueofdistarice scaledt otheraLlgc[O, 11.Eachsinglegridcellisalso classifiedintodepositor'barrencell.Thecellscontaining greatel- than1.000kgtotalcontainedgoldarc,labeledas deposits.Allothercellsatcclassifiedasnon-depositsor barrencells.Inthispnpcr.wcl i st : 268cellswhichatc separatedinto120 depositcellsand148 barrencells.These cellsarc dividedinto tsainitigandtestdntasets.L k iisc 85 deposit cells and102 barrencells fortsninitig data.Fur testing data,w~usc: 35 depositcells and16 barrencells. Intliispnpcr.twopnirsofneuralnetworkstrainedusing feed-forwal-dbackpropagatio~~neural~ieiwork andpenenl regrecsionneuraltietworkarecreatedusingMatlah..4pair ut polynomialncuralnetworksI StraincdusingPKN onlinc- soft\vnrcdcvclupcdby Tctkoctal[15]. Eachpairofncurrtl networksisrrnincdtopredictdugrccsorhvoui-;rbilityfor depo\i(sariddegreesoffavou~abilily forbarrenswllich are truth-tiie~nhershipT., (.c)andfalw-tne~rthershipF d , (;c), reqpectively.Thew twovalue3 a1.rthenu5edtncalculatethe indetrrmi nacy-mt.mbr3rchi1,ibrclip vnluecI, , , (.I:).Thethreeoutputs obtained from thcsct111.c~iictivork aruliitccturcs arc comhincd usingllicproposedcnsc~nblctccliniqucs.Allrcsultsshown inthispaperarccaluulatcdI'romllictcsrdataset. TableI2ndTahle11showthepercentageoftotalcnrtect cell5obtainedfromindividualtieurn1networknrchitectures using a range otthresholdvaluec to the truth-membershi p and to thufalsc-mcmbcrshipvrtlucs.rcspcutivcly. Thc hcstthrcsli- uldstorhctruth-mcmhcrshipforl3PNN.GKNS. andPKN mc0.5. 0.b.i~nd0.5. rcspcctivcly. 'l'hcbcstthresholdstothc rillst-m~i11b~i.shipTor BPNN. CRNN. i ~ndPNNa1.c0.4. 0.4, and0.5. rer;pectively. Table111 shoivs thepel-centage of total col-recicellsobtained~ I ~ I I I thecompari\onbet \veel1iruih- membrr~hi pand falce-ttie~nbrrshipvalues T,,, (z)> F,,;( , r ) ,and obtained usingthelogicaloperator rrrrdtotheprediction rcsultsusingtlichcstthrcaholdfortruth-mcmbcrshipand tlichcstthresholdfort al rc-~t i ci i l crshi valucs.TableIV showstllcpcrucnragcofloraluurrcctcellsublaincdfro111 ctlunlwcightavcriigingandd!niimicwvighriivvritgingusing arangeofthrcsholdvalucslottlc11xth-nicnlbcrship \ : ~ I I U C S(T :-.thresholdval i~es)andto the false-~nernbershipvalues ( F< thresholdvalues). 'lablcVshuwsthvclassification accuracy for the testdnta setusirigour. proposedcnse~tibletechniquesincludingthe accu racyobtainedf1.oi11 theexistirigtechniquesthatapply only truth-member-sl~ipvalues and the accuracyobtainedby applyingonly false-~nernbershipvalues.The comparisonof accuracyamongthesetechniquesshowsthattheaccuracy 3037Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from IEEE Xplore.Restrictions apply.ohlailledTl.nrnnurp~,nposedtech~liques i~sirig holhtl.iltll- rnemhet.shipandfalse-mernhersliipvaluesissinlilnrtothe oucuriicyublaincdfrointhccxistingtcuhniqucsusingunly truth-mcmburshipvalucsandalsusimilarlo~ h c i i ccul ~i l ~~ obtainedfr.0111 thetecli~iiques~isirigo ~l l y false-111e111bership values.Indynamicweightaveragingtechnique,theiinccr- tnilityorindetzrminacy-11ie1111)erqhipvaluerareintegrated illtoIlicrrurh-mcmbcrsliipandL'i~lsc-mcmbcrship valucslu suppol ~t heconfidenceoft heprediction.Thi sproposed techniquep~.nvidesaxlightlybetteraccuracythanthenther cnscmblctcchniqucsshowninthispnper.l:u~thcrmorc. iill ourproposecltechniquescallrepresent~incertairlty int he predictionfor each celllocation. Tablt:VIshowssampleoutpi~tsfro111 e n~e mbl e ofncu- lal11etnn1-ksusingdyrialnicweight,ave~.ngirigbyconsid- eringthecornparisonbetweentr.utli-membershipandfalse- n~ci nbashi pvalucs(Y'U(g)>k h( g) ) . Vuantificationof uncei-hin ~ y cansuppor!thudcci si unmaking.Forex;jmplc, t hethirdrow~ftliihtablecontaint heuncertaintyvalue 0.2949i nwhichthedecision~nakercallacceptthisresult withinnrecorifidence.Sometirrles,~~ncei-tairltyfor3cellis high.]:orcxomplc.rhcrourthrowandrhc scvcnth row ofthis table containucryhighuncertaintyvalueswhicharc 0.8475 and0.97 16, respectively.Thet r n t l ~ - ~ ~ ~ e ~ ~ i l e s s l ~ i pandfalse- n~cmbzrshipToreachuT thesecellsareveryclo\eingether. Tltecellatthefnurlhrnwispredictedtn1,e 3 depnsitwhich 1s correct.The cellat theseventh rowisalso predictedtobe ;Idcpositbutilisinuorrccr.Inlliis casc, thedccision~n~i kcrcanrcmakcdccisionfurthccellsthalcontainhighdcgrcc of uncei~ainly. Inth i hpaper,intervalrle~ltrnsophic bet+areintegrated i nkcnscmbluoT ncul.nlnctworkstoplrdicrdcprccsof favnulakilityfordepn+it>andhanenh. Theyarealsousedto quantifyuncc~tointyintheprediction.Threepairsul" ncuriil networksarctrainediisirigt hr wdiffer.entneuralnctwcrrk archi tttcturehi t ) nrdertoprovidet hl wintervalneutrnmphic scr s whicharc then combincd using our propuscd aggregation techniques.Thethreeneuralnetworkaschitecturesusedin this paperarefeed-forwardhackl,~.npagatior~1le~1ra1rietwo~.!i, genuriilrcgrcssionncuralnctwork.andpulynomiiilncuriil Tlu.c.;tloldKPNSGKNSIPNS valhc( k CO~TCI T kC O ~ T C I ( kC O ~ Y C I0. I5h. 7950.7958.02. 0.259.2662.4659.26 0. 371.6072.8465.43 V,475, 3181,4867.41) 0 . 5 72.84$0.2569. I4 0. b70..3776.54b4.10 U,764.204 . 4 6?3b 4,8.%.O'L W.2V59.26 U,939,3843. 2 150.62 tlelwork.Theerperimelltalrewltrshow[hatourproposed .- erlcerrthle techniquespm\;idesilnilnraccuracytootherexist- in:,et~sernbletechniquesappliedinthispaper:Resultsfrom thccspcrimcntshavcnotidcntificdanyapproachwhichis -- oblctuprovidcasigniliciintiinprovcmcntvvcrtheothcrs. Ilowcvcr.thcclynaiuiciivcrapiilgappruilchh;js2sligh~lq. better-perforlnance.The keyc~nt r i but i v~i i n t hi sstudyis thatnllt he proposedtecliriiquesarc capable of representing uncertaintyint hepredictionof favourabilityfor enclicell locaticln.While t hi s pnpw focuses only on t he uncertaintyi nt he prediction outpi~t.researchis cuntinued on t he assehslnznt of uncertaintyintheCISitlpi~tdata pr-iot-to npplyitigrot he prcdicriui~s)stcm. 3038Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from IEEE Xplore.Restrictions apply.T ABL E V [O]I.K. I~~IIWIIii[ltI l',Sal i ~~l i o[ l . l~a1Ic111!l i i i l I>\i >ilii~lb l ~ l c l i i ~ l c 111Iel- C[ . ~SSI I IC.31 ION . l CCLl ].12.PI). 99-7-1 ( Dl . I 490. [ l O] 7 -Q.Stl ci i ai i dr.-S.Kon;.Dyn;l ~i i i c;~l l y wh.ci;lirtJc r ~ \ c r ~ i h l ~ - r~curalI L IHa i ~ c l l ccl l Tr)ralcelli i c ~wor k s l ' t ~ r c f r ~ h ~ i o ~ i PIU~~CIII\. PIT?^..I ~ C T / I ~ I ~ / J ! I P I ~ I L ~ I ~ ( I ~ ~ ( ~ / C'OII- Ei ~ac r ~i hl ~. T c c t ~ r ~ i q ~ ~ c 15CCHIVCI)I'd co~i *.cl )t 9cui - r ccr lf < , i - ( , ~ ~ < , ( , or! ~l-lrct,llir~c,Lctrl-ifir~giig. Cotnp;~r,ing i hc kl aj ri i -i ty ~ c l ~ i i i y iI'&;P)h8 578h79.0 1 IWIti>1-1~13iic' ~' ~t~dll'l;.~-cnt nc u~nl nctn.i >l -h~ar cl i ~t cc~l l r c\ i i 1 1 - t l i c] , ~cd~ct ~i >n Lluic>i-iry ~ o l i i ~ g ( I'hP)83 717h 09fin.?? niL~ i i ~ n c r a l ] + ~ n ~ p c c t i ~ i ~ y . /'171i-.flit, I + I L ~ ~ I / I / I ~ ~ ~ , ~ I I ( I ~ ~ I > I I ( I / ( ' ~I I ?/ ~*I , ( , I I ~(, tm ,Avt.r,;i:i~~g ( Ti Y2.8678.3680.25 : WL~~, / I I I I ( , f. r>~~rr~i ff, qL I ~ I ~ ( '3 / WI , I I PI ~ C- . \ (I(':\ii.(' 2oM1. ( ~i ua~y / hou. (-liiII~. , Avcr. : ~gi ~~g(P)YO.0080.438U.25 2W5. -393-39X. AvcraginprT&I:)80.0080.4380.25 1111 A. CJ.I >i l Lhi i ci i Lt ~. I ' o l y n ( ~ [ ~ i i ~ l Thct ~i ->t i [ Cr)iuplc.xSyxl ci i ~s, l t t t 2 4 ~ c r a ~ i i i g !.I'/F)KI.iih78, l h80.23 I ~ Y I I I , \ L I C , ! ~ ~ I I . ~ onSxr f r *~~~. r . Mcrr~ r111r1I-'rht.~-rzr,!~r,r.~(11.1, pp.1h.3-378. Dyi i an~i c:~vcr;lging (T)110 001;l 01X1.11; 1971. 80.0078.2679.0 1 [ 131F, S i ~ ~ a i ~ i > [ i ~ I i ~ ~ t ~ c . /IL!rzi{li~~,yi,-i, Y2 Fi l i pw,r)unl t j rrt : ~ Y I ~ I ~ , I I I AVI KA( , I X( ~ ( ' I ' 2 1,)I.(IIc[ , \ l ~i p \ f c[ >~l hc[ , \ l ~i p\ f cr ~~t >c[ , >I ~i p r ) t ] >~i\i~O.tlk26+539-7 0 1r')t11n\i1H;uirii0.4148U.676?0. 7136 t 1 i I 1 i 0. 83420. 11980,2449 r')t110\i1l ; ) t ] ~ ~ i \ i ~ 0.Sh75U.51490.9475 H;uicijH~ u i c i i 0. 1h29U.8hY611.2943 HAIICI~I:)?]\o\il0. 6105U. 43360. 8432 H;uicijI : ) t ] w+i ~0,5 I 8 I0.4X9t;0. g716 HAIICI~HL~II~II0.3079U,bS.%U,b5J1 PawalaiKrnipeet.npunissupportedbypostgraduaterc- searchscholarship fsoln theRoyalThaiGovcrnlncnt. 300f 151A.-5Li1t>iii-. \4i 1i crdl >t ) t ci ~~i i l I r~i i l p~>i r~; ~lyiri:l ' ~ ~ d - I ' o l - ~ a ~ d [lcuralI I L-I -w \ i \ In aGIS cr~ri i oi i 1i l ci i 1.P111i: rlrclEEf1 Ht ' pi r)~~10 C-vrdi,rt,rzc,c,i 7r. ffro112004). Cliiilrl;Mai.Tl i ailalirl. 3004. 4 11-41 4. [U]C. C. Fung.V. Iy. W.Ri own. i l l i dK.W.\i'oiip.S~ u r i l Sc1w11rk EI I ~ ~ I I I ~ I L ~ I~~ISL.CI.A]I~I[~~ICII lur L l i ~ ~ c r i l l ' r o \ l w~ l ~ + I I ~ I ' i - c ~ I i c l l ~ ~ ~ ~ . Pf ~) i , .1j3cI E H,4t,Fir>1110 c ~ ~ r ~ i ~ r ~ ~ r z < ~ ( ~ ( T P I I ~ J J I I 200.7). \ ~ c l l ~ r ~ ~ ~ r ~ i c . , 4 1 1 s ~ ~ i l i :j. 2005(TI>-KOY. 5pil;o\l. 3039Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from IEEE Xplore.Restrictions apply.