17
Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 1 Quantifying Return Flow in the Upper Wind River Basin Final Report: June 2014 – June 2018 Principle Investigators: Ginger B. Paige, Associate Professor, Dept. of Ecosystem Science and Management, University of Wyoming, [email protected], (307) 766-2200. Scott N. Miller, Professor, Dept. of Ecosystem Science and Management, University of Wyoming, [email protected] (307) 766-4274. Additional Investigator: Andrew D. Parsekian, Assistant Professor, Dept. of Geology and Geophysics, University of Wyoming, [email protected] (307) 766-3603. Abstract: Population growth in the intermountain west, coupled with frequent drought and the prospects of climate change, are challenging the security of water supplies and the agricultural economy in Wyoming and the region. Agriculture is the largest user of water in Wyoming and the intermountain west and accounts for approximately ninety percent of the total amount of water withdrawn from streams and aquifers. However, only a portion of applied water is consumptively used. The rest is returned to streams or aquifers. Some of the potential benefits include recharge of alluvial (shallow) aquifers that serve as underground storage reservoirs, increased likelihood of maintaining late season flow and a steadier more reliable source of water downstream resulting from the return flow pattern of an interactive stream- aquifer system. This project will apply new methods and techniques to directly quantify return flow from controlled agricultural systems in the Spence/Moriarty Wildlife Habitat Management Area in the East Fork watershed in the Upper Wind River Sub-Basin in Wyoming. This location is ideal for this study as we can work directly with the managers controlling the application and timing of the irrigation water. We will use a water balance approach at the “reach scale” to quantify the return flow in the system. To directly measure and monitor the pathways and timing, we will employ new methods in hydrogeophysics and tracers at the field scale. Geophysics tools will be used to map subsurface flow paths, monitor and quantify return flow. In addition, we will use tracers such as isotopes and geochemical markers to directly measure and monitor return flow in the system. Results from this study will be compared to an irrigation return flow study conducted in the Upper Green River Basin in the 1980s. An understanding of the quantity and timing of return water flow is critical for effective water management for downstream water users and maintaining agriculture water security in the state. Statement of critical regional or State water problem: Agriculture is the largest user of water in Wyoming and the intermountain west. However, increasing population in the intermountain west and changing demands on limited water resources from energy and municipal use are challenges for

Quantifying Return Flow in the Upper Wind River Basin Final Report · 2020. 6. 17. · ERT measurements over a 60 m. transect to quantify the changes in soil water content during

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 1

    QuantifyingReturnFlowintheUpperWindRiverBasinFinalReport: June2014–June2018

    PrincipleInvestigators:GingerB.Paige,AssociateProfessor,Dept.ofEcosystemScienceandManagement,UniversityofWyoming,[email protected],(307)766-2200.ScottN.Miller,Professor,Dept.ofEcosystemScienceandManagement,UniversityofWyoming,[email protected](307)766-4274.AdditionalInvestigator:AndrewD.Parsekian,AssistantProfessor,Dept.ofGeologyandGeophysics,UniversityofWyoming,[email protected](307)766-3603.Abstract:Populationgrowthintheintermountainwest,coupledwithfrequentdroughtandtheprospectsofclimatechange,arechallengingthesecurityofwatersuppliesandtheagriculturaleconomyinWyomingandtheregion.AgricultureisthelargestuserofwaterinWyomingandtheintermountainwestandaccountsforapproximatelyninetypercentofthetotalamountofwaterwithdrawnfromstreamsandaquifers.However,onlyaportionofappliedwaterisconsumptivelyused.Therestisreturnedtostreamsoraquifers.Someofthepotentialbenefitsincluderechargeofalluvial(shallow)aquifersthatserveasundergroundstoragereservoirs,increasedlikelihoodofmaintaininglateseasonflowandasteadiermorereliablesourceofwaterdownstreamresultingfromthereturnflowpatternofaninteractivestream-aquifersystem.ThisprojectwillapplynewmethodsandtechniquestodirectlyquantifyreturnflowfromcontrolledagriculturalsystemsintheSpence/MoriartyWildlifeHabitatManagementAreaintheEastForkwatershedintheUpperWindRiverSub-BasininWyoming.Thislocationisidealforthisstudyaswecanworkdirectlywiththemanagerscontrollingtheapplicationandtimingoftheirrigationwater.Wewilluseawaterbalanceapproachatthe“reachscale”toquantifythereturnflowinthesystem.Todirectlymeasureandmonitorthepathwaysandtiming,wewillemploynewmethodsinhydrogeophysicsandtracersatthefieldscale.Geophysicstoolswillbeusedtomapsubsurfaceflowpaths,monitorandquantifyreturnflow.Inaddition,wewillusetracerssuchasisotopesandgeochemicalmarkerstodirectlymeasureandmonitorreturnflowinthesystem.ResultsfromthisstudywillbecomparedtoanirrigationreturnflowstudyconductedintheUpperGreenRiverBasininthe1980s.Anunderstandingofthequantityandtimingofreturnwaterflowiscriticalforeffectivewatermanagementfordownstreamwaterusersandmaintainingagriculturewatersecurityinthestate.StatementofcriticalregionalorStatewaterproblem:AgricultureisthelargestuserofwaterinWyomingandtheintermountainwest.However,increasingpopulationintheintermountainwestandchangingdemandsonlimitedwaterresourcesfromenergyandmunicipalusearechallengesfor

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 2

    effectivelymanagingourwaterresources.Agricultureaccountsforapproximatelyninetypercentofthetotalamountofwaterwithdrawnfromstreamsandaquifers.However,onlyaportionofappliedwaterisconsumptivelyused.Therestisreturnedtostreamsoraquifersbyoverlandflow,subsurfacelateralflowandbypercolationthroughthesoiltoanaquifer,whichstoresorreturnsittothestreamsystem.Someofthepotentialbenefitsofirrigationcanincluderechargeofalluvial(shallow)aquifersthatserveasundergroundstoragereservoirs,increasedlikelihoodofmaintaininglateseasonflowandasteadiermorereliablesourceofwaterdownstreamresultingfromthereturnflowpatternofaninteractivestream-aquifersystem.Anunderstandingofthequantityandtimingofreturnwaterflowiscriticalforeffectivewatermanagementfordownstreamwaterusersandmaintainingagriculturewatersecurity.Objectives:ThisstudyusedawaterbalanceapproachcoupledwithintensivefieldinvestigationsandcharacterizationsofthesubsurfaceusinggeophysicstoolstoquantifyanddocumentreturnflowprocessintheSpence/MoriartyWildlifeHabitatManagementArea(WHMA)intheUpperWindRiverBasin,inNorthwestWyoming.Thespecificobjectivesareto:1)quantifythecontributionofreturnflowstosustainedlate-seasonflow(baseflow);2)assessthequalityofthereturn-flowwater;and3)compareresultsofthisstudytotheresultsfromthereturnflowstudyofafloodirrigationsystemthatwasconductedintheNewForkintheUpperGreenRiverBasin(Wetsteinetal.,1989).Methods:Toquantifythereturnflow,weusedawaterbalanceapproachatthereachscalecoupledwithtargetedsetsoffieldexperimentsdesignedtospecificallytrackandquantifythewaterthatmovesthroughthesub-surfaceandreturnstothestreamsystem.OurresearcheffortswerefocusedonBearCreekamajortributaryoftheEastForkintheSpence/MoriartyWHMA(Figure1).TheBearCreeksectionoftheSpence/MoriartyWHMAisidealforthisstudyasthereisawell-definedirrigatedsectionofthewatershedthatcanbeisolatedtocaptureareachscalewaterbalance(Figure2).Attheupperendofthereach,waterisdivertedintotheFosherditchtodeliverwatertothefouridentifiedfields(outlinedinred.)PressuretransducerstomeasurewaterdepthwereinstalledatkeylocationswithinBearCreekandFosherditchtocapturechangesinflowduringtheirrigationseasonwithinthereach.Ratingcurvesweredevelopedforeachsitetoconvertdepthsintostreamflow.

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 3

    Figure1.LocationoftheEastForkintheUpperWindRiverSub-Basin(courtesy:WyomingWaterDevelopmentOfficehttp://waterplan.state.wy.us/plan/bighorn/)Geophysics:Asuiteofbackgroundgeophysicalmeasurementsweremadeoneachfieldtocharacterizethesubsurfacestructureoftheirrigatedfields.Measurementsinclude:Seismic,ERT(electricalresistivitytomography,andGPR(groundpenetratingradar).SurfaceNMR(NuclearMagneticResonance)wasusedtomeasurewatercontentinthesubsurface.Measurementsweretakenbeforeandaftertheirrigationseasonineachoftheirrigatedfieldstocapturechangesinsoilmoisturestoragewithdepthineachirrigatedfield.In2016weaddedBoreholeNMRmeasurements.TheboreholeNMRmeasurementswereusedtomeasurechangesinsoilmoistureinthesubsurfaceduringtheintensiveinfiltrationexperiments.Evapotranspiration:ALargeApertureScintillometer(whichmeasuressensibleheatflux)coupledwithameteorologicalstationwereinstalledtomeasureclimaticconditionsandevapotranspirationononeoftheirrigatedfields(Field1;Figure2).

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 4

    Figure2.Locationofinstalledinstrumentationrelativetoirrigatedmeadowsandstream.ReachScaleWaterBalance:ThereachscalewaterbalanceforBearCreekwascalculatedusingthefollowingequation:

    (P+QIRR)=DS+QRT+(ETB+ETNB)+S

    wherePisprecipitation(mm),QIRRisappliedirrigationwater(mm),DSisthechangeinstorageinthesubsurface(mm),QRTisreturnflow(mm)=(QIN-QOUT),ETB,

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 5

    beneficialevapotranspiration(mm),ETNBisnon-beneficialevapotranspiration-riparianvegetation(mm),andS�iserror(mm).TocalculateQrt,QINisstreamdischargeatstreamgageattheupperendofthereachandQOUTisstreamdischargeatthedownstreamgage.WaterQuality:Waterqualitywasmonitoredcontinuouslyattwolocations,aboveandbelowthestudyreachusingin-situwaterqualityprobes.Thesemeasurementsallowustocontinuouslymonitorwaterquality,inparticularECandtemperature,throughouttheirrigationseasonandassessanychangesinwaterqualitywithchangesinflow.WesawnosignificantchangesinECorwaterqualityoverthecourseofthestudy.Geophysics:Backgroundgeophysicalandhydrogeophysicalcharacteristicsweremeasuredinthefourirrigatedmeadowsin2014and2015.SurfaceNMRdatawerecollectedinJune2014tomapwatercontentwithdepth.Thisprocesswasrepeatedin2015,2016and2017butattwotime-steps–beforeandaftertheirrigationseason-toquantifythechangeinwatercontentinthesubsurfaceovertheirrigationseason.In 2016, we added a suite of boreholes for monitoring changes in subsurface flow and ground water. 3 Boreholes were installed along the ERT line (see intensive field experiments) to measure changes in subsurface water content. The borehole NMR is used to directly measure water content with depth (25 cm increments up to 10 meters) during irrigation. In addition, 3 boreholes were installed between the irrigation fields and the riparian area to measure any changes in water level in the phreatic zone between the fields and the stream. These boreholes were fitted with piezometers and a pressure transducer is used to measure any changes in the phreatic zone. Instrumentation:AlargesuiteofhydrologicandhydrogeophysicalinstrumentationwereinstalledordeployedintheBearCreekStudyarea(Table1)overthe2014,2015,2016and2017fieldseasons.LocationsofthepermanentinstrumentationrelativetoBearCreekareshowninFigure2.Together,thesemeasurementswereusedto1)characterizethenearsubsurfaceand2)measurethecomponentsofthewaterbalanceovertheirrigationseason.Installedinstrumentation,exceptforthepressuretransducerslocatedin3boreholes,wasremovedinOctober2017.The3remainingpressuretransducerswereremovedinAugust2018.

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 6

    Table1.InstrumentationinstalledinBearCreekstudyareatomeasurecomponentsofthewaterbalanceandquantifyreturnflow.

    IntensiveFieldInvestigations:A series of intensive field scale measurements using ERT and borehole NMR during irrigation were used to capture changes in soil moisture and identify subsurface flow paths (Zhou et al. 2001). ERT measures electrical potential differences between a series of electrodes, which are generated by the electric current injected into the subsurface.

    INSTRUMENTATION CriteriaMeasured Approx.Date

    Permanent:ongoing 10PressureTransducers(7BearCreek&4Ditches)

    WaterPressure,Depth,andTemperature Jul-’14/Jun–’15

    3ConductivityMeters(2BearCreek&1FocherDitch)

    SpecificConductanceandSalinity Jul-’14

    MeteorologicalStation:ongoing

    Anemometer WindSpeed&Direction Jul-’14

    NetRadiometerNetRadiation(Rs,Rl,Albedo) Jul-’14

    AirTemperatureSensor Temperature,Humidity Jul-’14TippingBucketRainGage Precipitation Jul-’14SoilMoistureSensors VolumetricWaterContent Jul-’14HeatFluxPlates Soiltemperature Jul–’15

    LargeApertureScintillometer SensibleHeatFlux Sept’14EddieCovarianceFluxTower Transpiration May‘16 PERIODIC:

    SurfaceNuclearMagneticResonance(NMR) WaterContentinsubsurface

    Jun‘14Jun&Oct’15,May&Oct‘16

    BoreholeNMRWaterContentinsubsurfaceduringirrigation July2016

    ElectricalResistanceTomography(ERT)

    Resistance–backgroundChangesinresistanceduringirrigation

    Aug‘14&Aug‘15July&Aug‘16June&Aug‘17

    Seismic/GroundPenetratingRadar/ElectricalMagnetic SubsurfaceStructures

    Jul-Aug‘15Aug‘17

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 7

    The resistivity is directly related to the soil water content in the soil. We use time-lapse ERT measurements over a 60 m. transect to quantify the changes in soil water content during wetting and drying cycles over time and map wetting front velocities. Modelingandparameteridentification:Toanalyzetheresultsoftheintensivefieldinvestigations,HydrusandHydrus2D(https://www.pc-progress.com/en/Default.aspx),process-basedhydrologicmodelsusingRichards’equationwereusedto1)testobservedbehaviorinthepropagationofwettingfrontsunderfloodirrigationand2)identifyhydrologicparametersthatdescribetheobservedflowdynamicsinthesubsurface.Results:Streamflowandirrigation:Streamflowwithinthereachismeasuredusingaseriesof7-streamflowgagingstations(stillingwells,Figure2)wereinstalledinBearCreekandmonitoredoverthe2014and2015irrigationseasons.Inaddition,flowismeasuredintheirrigationditchestoquantifywaterremovedfromBearCreekandappliedthroughtheirrigationsystem.Resultsfrom2015areshowninFigure3.Ratingcurvesdevelopedforeachofthegagingstationsiteshadverygoodstage–dischargerelationships(averageR2=0.97).

    Figure3.Seasonalhydrographs,precipitationandirrigationfromallsites(2015).Returnflowfortheentirereachwascalculatedbysubtractingoutflowfrominflowovertheirrigationseason(Fig.4).TheshiftinhydrographsbetweenJune20andAugust1showsthatreturnflowoccursduringtheirrigationseason.

    0

    50

    100

    150

    200

    250012345678

    Apr 6 Apr 27 May 18 Jun 8 Jun 29 Jul 20 Aug 10 Aug 31 Sep 21 Oct 12 Nov 2

    Prec

    ipita

    tion

    [mm

    ]

    Dis

    char

    ge [m

    3s-

    1 ]

    Time

    PrecipitationGage 1Gage 2Gage 4Gage 6Gage 7Irrigation

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 8

    Figure4.Inflowandoutflowhydrographsusedtocalculatereturnflowin2015(QRT).Evapotranspiration:Evapotranspirationfortheirrigatedmeadowwascalculatedforthegrowingseasonusingthescintillometerandmetstationmeasurements.Theresultsfrommeadow1wereextrapolatedtotheothermeadowsusingareavegetationmeasurementscollectedbeforemowingofthefields.StrongcorrelationsbetweenPenman-MonteithandthescintillometerprovidedfoundationforusingPenman-MonteithtoestimateETfromtheriparianareas(Fig.5).

    Figure5.Evapotranspirationforthe2015irrigationseason.Non-beneficialETistheevapotranspirationfortheriparianareascalculatedfromusingPenman-Montheith.BeneficialETwascalculatedfromthescintillometer.ETmeasurementsusingthescintillometerwerecontinuedoverthe2016and2017fieldseasonsandtheresultsarecurrentlybeingsummarizedandcomparedtotheresultsfromtheEdieCovariancetowermeasurements.

    0

    50

    100

    150

    200

    250012345678

    Apr 6 Apr 27 May 18 Jun 8 Jun 29 Jul 20 Aug 10 Aug 31 Sep 21 Oct 12 Nov 2

    Prec

    ipita

    tion,

    Irrig

    atio

    n [m

    m]

    Dis

    char

    ge [m

    3s-

    1 ]

    Time

    PrecipitationIrrigationOutflowInflow

    0

    50

    100

    150

    200

    25005

    101520253035

    Jun 8 Jun 29 Jul 20 Aug 10 Aug 31 Sep 21 Oct 12 Nov 2

    Prec

    ipita

    tion

    [mm

    ]

    ET, I

    rriga

    tion

    [mm

    ]

    Time

    Precipitation

    Irrigation

    Beneficial ET

    Non-Beneficial ET

    Net ET

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 9

    ClosingtheWaterBalance:Eachofthecomponentsofthewaterbalancewasmeasuredorcalculatedindependentlyforthe2015irrigationseason.Thisallowedustoclosethereachwaterbalanceequation:

    (P+QIRR)=DS+QRT+(ETB+ETNB)+S

    36 mm + 867 mm = 110 mm + 345 mm + (184 mm + 209 mm) + 54 mm Thisresultedinacalculatedreturnflowforthereachof38.2%.Thisvalueislessthanthefour-yearaveragereturnflowof70%fortheNewForkIrrigationdistrictintheUpperGreenRiverBasin(Wetsteinetal.,1989).Wealsofoundthatthereturnflowwasquickandnotaslow,delayedresponseasobservedintheNewFork.Thisresultwasnotunexpectedduetothesignificantdifferencesinthecharacteristicsofthesetwobasins.Similarresponseswereobservedinthe2016irrigationseason.Inthe2017season,thereweresignificantchangesinthechannelmorphologymakingitdifficulttopinpointthechangesinflowthroughouttheirrigationseason.Weusedsomemodelinganddataapproximationtechniquestofillinsomeofthedatagaps. IntensiveFieldExperiments:TimelapseERThasbeenusedtomapchangesinresistivityinmeadow1(Fig.2)duringirrigation.Thechangesinresistivitycanbedirectlyrelatedtoincreasesinsoilwatercontent(Fig.6).Thesestudieswillberepeatedandexpandedoverthenextfieldseasontoquantifysubsurfaceflowandmappotentialflowpaths.Thesemeasurements,coupledwiththereachwaterbalancemetrics,arebeingusedtoidentifythemechanismscontrollingthequantityandtimingofreturnflowinthissystem.

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 10

    Figure6.TimeLapseERTduringwettinganddrying(before,duringandafterirrigationapplications).

    In2016&2017,theintensivefieldexperimentswerecontinuedandexpandedupon.Wecompletedtwowettinganddryingstudiesandwereabletomapwaterflowdynamicsinthesubsurfaceduringwettinganddryingphasesusingtime-lapseERTandboreholeNMRmeasurements(Figures7&8.)

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 11

    Figure7.Comparisonoftime-lapseresistivityduringirrigationexperimentsin2015and2016.Thechangesinresistivityarebeingconvertedtochangesinwatercontent.

    Figure8.ComparisonofresultsfromsurfaceNMRandtime-boreholeNMRshowingwatercontentincreasingatthesamedepthinthesubsurface.

    July2015: - Differencein

    resistivityafter18hoursofirrigation

    -Whiteareasdidn’tchangemorethan5%fromstartingresistivity

    June2016: -Differenceinresistivityafter24hoursofirrigation

    SurfaceNMR BoreholeNMR

    4weeksinbetween

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 12

    Intensivefieldstudyresults:2017irrigationseason

    Figure9.Wettingfrontvelocitiesanddominantflowpathsidentifiedfromthetime-lapseERTdata.Keyinthisprojectisbeingabletotrackthewettingfrontandflowpathsinthesubsurfaceduringandfollowingfloodirrigationapplications.A new method was developed for tracking wetting front in subsurface using time-lapse ERT. The method is based on saturated resistivity and was tested using Hydrus 1D with both synthetic conditions and observations from the field experiments (Figure 10). The method is able to track the observed movement of the wetting front in the subsurface under intensive water application using time-lapse ERT. Theobservedwettingfrontsweremodeledinhydrus1Dusingatwolayersoilprofile.

    Figure10.Comparisonofmodeledandobservedwettingfrontmovementinthesubsurfaceunderintenseirrigation.

    -4-3.5

    -3-2.5

    -2-1.5

    -1-0.5

    00 1 2 3 4 5 6

    Dept

    h of

    wet

    ting

    front

    [m]

    Time from start of infiltration [hour]

    Modeled infiltration for a Loamy SandInfiltration front from time lapse ERT

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 13

    Additionalfieldresults:Conductivity:Conductivity(EC)wasnotfoundtoincreasesignificantlyatthestudysite,andvariedbetween150and280MS/cmoverthecourseoftheirrigationseason.However,theconductivitymetersinstalledontheupstreamanddownstreamstationswereusedtrackchangesinECoverthecourseoftheirrigationseasons.

    Figure11:Conductivityanalysisusingtheupstreamanddownstreamconductivity loggers. Return flow signal becomes apparent through the reach analysis. ComparisonwithNewForkStudy:

    Thisstudyindicatesthatbetween25%and38%ofappliedwater(QRT=271+/-32mm;QIRR=867mm+/-67mm)returnstoBearCreek.Wefoundthatasignificantproportion(~28%)ofirrigationwaterinthissystemwenttosupportriparianareasintheformofETorstorageandroughly17%ofreturnflowatthe

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 14

    siteoccurredinthemonthofOctober,afterirrigationhadceased.Thisisnotablebecauseitindicatesthatthesite’squickresponsetoappliedwaterdidnotprecludelateseasonsupplementationofbaseflows.EventhehigherrangeofreturnflowobservedattheBearCreeksite(38%),belowtheamount(50%)assumedbythestate(Gordonetal.,201x).BearCreekreturnflowprovidesalower“bookend”forwatermanagersandpolicymakersseekingtoconstrainreturnflowestimationsinabroaderrangeofsystems.TheotherWyomingstudyintheNewFork(Wetsteinetal.,1989)foundanaveragereturnflowof70%withapproximately10%contributingtolateseasonbaseflow.BearCreekreturnflowresultsareinlinewithaUtahstudyinBearRiver(Lecinaetal.2011),whichfoundthat28%ofwaterappliedwasnotconsumedbycrops.However,directmeasuresofreturnflowtothestreamsystemwerenotmadeinLecinaetal.(2011)sodirectcomparisonsaredifficult.Summary&Conclusions:ThisprojectsuccessfullyappliednewmethodsandtechniquestodirectlyquantifyreturnflowfromcontrolledagriculturalsystemsintheSpence/MoriartyWildlifeHabitatAreaintheEastForkwatershedintheUpperWindRiverSub-BasininWyoming.Thislocationwasidealforthisstudyaswewereabletoworkdirectlywiththemanagerscontrollingtheapplicationandtimingoftheirrigationwater.Weusedawaterbalanceapproachatthe“reachscale”toquantifythereturnflowinthesystem.Todirectlymeasureandmonitorthepathwaysandtiming,weusednewmethodsinhydrogeophysicsatthefieldscale.Geophysicstoolswereusedtomapsubsurfaceflowpaths,monitorandquantifyreturnflow.Theresultsfromthefieldstudiescoupledwiththereachscalewaterbalanceindicatethatthemajorityofthereturnflowistheresultofsubsurfacelateralflowfromthefields.Resultsfromthisstudyfoundthatreturnflowinthissystemwasapproximately38%,lowerthanthe50%assumedbythestatewatermanagersandmuchlowerthanthe~70%fromtheNewForkstudyconductedintheUpperGreenRiverBasininthe1980s.Anunderstandingofthequantityandtimingofreturnwaterflowiscriticalforeffectivewatermanagementfordownstreamwaterusersandmaintainingagriculturewatersecurityinthestate.References:Gordon,B.L.,S.N.Miller,G.B.Paige,N.Claes,A.Parsekian.201x.Awaterbalancebasedapproachtoquantifyingreturnflowfromirrigatedfieldsinasemi-aridagriculturalsystem.submittedtoJournalofHydrology(revised).Lecina,S.,Neale,C.M.U.,Merkley,G.P.,&DosSantos,C.aC.,2011.IrrigationevaluationbasedonperformanceanalysisandwateraccountingattheBearRiverIrrigationProject(U.S.A.).AgriculturalWaterManagement,98(9),1349–1363.http://doi.org/10.1016/j.agwat.2011.04.001

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 15

    Wetstein,J.H.,V.R.HasfurtherandG.L.Kerr(1989).ReturnFlowAnalysisofaFloodIrrigatedAlluvialAquifer:FinalReporttoWyomingWaterResearchCenterandWyomingWaterDevelopmentCommission.Zhou,Y.Q.,Shimada,J.,andSato,A.,(2001).ThreeDimensionalSpatialandTemporalMonitoringofSoilWaterContentUsingElectricalResistivityTomography.WaterResour.Res.,Vol.37,pp.273–285.AdditionalProjectSupport:Thisprojecthasleveragedadditionalsupportfromtwofundingsourcestoexpandtheinstrumentationandprovideadditionalfundingtosupportgraduatestudentresearch. 1)WyomingCenterforEnvironmentalHydrologyandGeophysics(WyCEHG, (NSF EPS-1208909)) 2)WaltonFoundation(throughtheHaubSchoolofEnvironmentandNatural Resources,UniversityofWyoming)providedfundingforMSgraduate student(BeaGordon).Publications:PaigeG.B.,N.Claes,A.Parsekian,B.Gordon,S.N.Miller.2018.TrackingagriculturalwaterinWyoming:Quantifyingreturnflowstostreams.Reflections.UniversityofWyoming,AES.Laramie,WY.Gordon,B.L.(2014),Measuringreturnflows.WesternConfluenceMagazineVol.1,RuckelshausInstitute,LaramieWY.Gordon,B.L.(2016).DeterminationofEvapotranspirationandReturnFlowinaSemiAridAgriculturalSystem.MSthesis,UniversityofWyoming,Laramie,WYClaes,N.G.B.Paige,A.Parsekian.201x.Uniformandlateralpreferentialflowunderfloodirrigationatfieldscale.SubmittedtoHydrologicalProcesses.(inrevision)Gordon,B.L.,S.N.Miller,G.B.Paige,N.Claes,A.Parsekian.201x.Awaterbalancebasedapproachtoquantifyingreturnflowfromirrigatedfieldsinasemi-aridagriculturalsystem.SubmittedtoJournalofHydrology(inrevision)RefereedPublicationsinpreparation:*Claes,N.,G.B.Paige,A.Parsekian.201x.Parameterizationofahydrologicalmodelwithgeophysicaldatatodetermineunsaturatedflowpathsinthesubsurface.TobesubmittedtoVadoseZoneJournal.*Claes,N.,G.B.Paige,A.Parsekian,B.Gordon,S.N.Miller201x.Floodirrigationgeneratedsubsurfaceflowsinalocalwaterbalance.TobesubmittedtoVadoseZoneJournal.

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 16

    *Gordon,B.L.,S.N.Miller,G.B.Paige,N.Claes,A.Parsekian,D.Beverly.201x.Ascintillometer-basedevaluationofevapotranspirationinasemi-aridagriculturalsystemPresentations:*Cook,J.N.E.W.Kempema,B.L.Gordon,N.Claes,S.N.Miller,G.B.Paige.2018.ReturnFlows:Quantifyingwateravailability.Flow2018:ManagingRivers,ReservoirsandLakesintheFaceofDrought.April24-26,2018.FortCollins,CO.(poster)*Claes,N.G.B.Paige,A.Parsekian.2018.Estimationofwettingfrontmovementatfieldscale.AnnualSymposiumontheApplicationofGeophysicstoEngineeringandEnvironmentalProblems(SAGEEP).NewOrleans,LA.March28th,2018(oralpresentation).*Claes,N.,G.B.Paige,A.Parsekian,S.N.Miller,E.Kempema.2017.QuantifyingReturnFlowintheUpperWindRiverBasin.WyCEHG:3rdWaterInterestGroupMeeting,Laramie,WY.October30,2017.(invited)Paige,G.B.2017.WyCEHG:BuildingcapacityinhydrologyandgeophysicsinWyoming.WyomingWaterAssociationAnnualMeeting,Sheridan,WY.October27,2017.(invited)*Claes,N.,G.B.Paige,A.Parsekian,B.Gordon,S.N.Miller,J.Cook.2017.Identificationofsurfaceandsubsurfaceflowpathsaffectingreturnflow:merginghydrologyandgeophysics.UCOWR/NIWRAnnualMeeting2017.FortCollins,CO.June13-15,2017.(invited)Claes,N.,G.B.Paige,andA.DParsekian.2016.ReturnFlow:ahydrogeophysicalassessmentofflowpaths.2016AGUFallMeeting,December14-18,2016,SanFrancisco,CA.(poster) Paige,G.B.,S.N.Miller,A.D.,Parsekian,B.LGordon,N.Claes.2016.QuantifyingReturnFlowintheUpperWindRiverBasin.BigHornBasinPlanningMeeting,March15,2016,Worland,WY.(invitedpresentation)Claes,N.,G.B.Paige,A.DParsekian,andS.NMiller.2016.Time-lapseERTandNMRforquantificationofthelocalhydrologicimpactofirrigationmanagement.29thAnnualSymposiumontheApplicationofGeophysicstoEngineeringandEnvironmentalProblems(SAGEEP),March20-24,2016,Denver,CO.(poster) ParsekianA.D.,Paige,G.B.,MillerS.N.,GordonB.L.,Claes,N.2015.Returnflow:untanglingthewaterbudgetonflood-irrigatedfields.2015WaterInterestGroupMeeting,Oct.13,2015,Laramie,WY.(invited)Gordon,B.L.,Miller,S.N.,Paige,G.B,Claes,N.,Parsekian,A.,Beverly,D.2015.A

  • Paige, Miller, & Pareskian: “Quantifying Return Flow in the Upper Wind River” 17

    ComparisonofMethodsforCalculatingEvapotranspirationinaSemi-AridAgriculturalSystem,2015AGUFallMeeting,December14-18,2015,SanFrancisco,CA.(poster)Claes,N.,Paige,G.B,Parsekian,A.D.,Miller,S.N.,Gordon,B.L.2015.Characterizationofreturnflowpathwaysduringfloodirrigation.2015AGUFallMeeting,December14-18,2015,SanFrancisco,CA.(poster)Gordon,B.L.,Miller,S.N.,Paige,G.B,Claes,N.,Parsekian,A.,Beverly,D.2015.CalculatingReturnFlowsandConsumptiveUseinaSemi-AridAgriculturalSystem,2015WaterInterestGroupMeeting,Oct.13.2015,Laramie,WY.(poster) Claes,N.,Paige,G.B,Parsekian,A.D.,Miller,S.N.,Gordon,B.L.,2015.Characterizationoffloodirrigation:merginghydrologyandgeophysics.WyCEHGWaterInterestGroupandWyomingRound-Up,2015,14thOctober,Laramie,WY.(poster)Claes,N.,Paige,G.B,Parsekian,A.D.,Miller,S.N.,Gordon,B.L.2015.Time-lapseERT:detailedcharacterizationofreturnflowfromfloodirrigation.RAD-seminar,2015,13thNovember,Laramie,WY.Gordon,B.L.,Paige,G.B,Miller,S.N.2014.EastForkreturnflowstudy,WyomingGameandFishDepartment,AquaticHabitatManagers.Dubois,WY.GraduateStudents:DirectlyFunded:NeilsClaes,PhD.PrograminHydrology,UniversityofWyoming.StartedJanuary2015–DefendingOctober2018.PartiallySupported:BeaGordon,MS,RangelandEcologyandWatershedManagement/WaterResources.UniversityofWyoming.DefendedApril2016.ThesisTitle:DeterminationofEvapotranspirationandReturnFlowinaSemi-AridAgriculturalSystemJoeCook,MS.VisitingGraduateStudentfromDept.,ObservatoiredesSciences,UniversitedeRennes,Rennes,France.StartedMarch2016.Undergraduates:Over25undergraduateshaveconductedfieldinvestigationsfortheprojectaspartoftheWyCEHGGeophysicsTeam:Collectedbackgroundgeophysicalcharacteristicsofthefieldsite.(partialsupportfortheundergraduatesfromWyCEHG)