118
Quantifying variation in discrete force–time characteristics during the sprint start: Considerations for monitoring training adaptations by Lindsay Musalem A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Exercise Sciences University of Toronto © Copyright by Lindsay Musalem 2016

Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

       

Quantifying  variation  in  discrete  force–time  characteristics  during  the  sprint  start:  Considerations  

for  monitoring  training  adaptations            

by            

Lindsay  Musalem              

A  thesis  submitted  in  conformity  with  the  requirements  for  the  degree  of  Master  of  Science  

Department  of  Exercise  Sciences  University  of  Toronto  

   

 

   

   

©  Copyright  by  Lindsay  Musalem  2016  

Page 2: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

ii  

Quantifying  variation  in  discrete  force–time  characteristics  during  the  sprint  start:  Considerations  for  monitoring  training  adaptations  

Lindsay Musalem

Master of Science Department of Exercise Sciences

University of Toronto 2016

Abstract

Biomechanical  quantities  during  the  sprint  start  have  been  correlated  with  race  

time.  “Typical”  training  variation  in  these  quantities  must  be  understood  to  

interpret  changes.  Purposes  were  to:  (1)  describe  variation;  and  (2)  compare  

variation  between-­‐session.  Using  force  plate-­‐instrumented  starting  blocks,  foot-­‐

block  interactive  forces  were  measured  from  four  starts  in  two  training  sessions  

(n=10).  Pre-­‐tension  (PT),  reaction  time  (RT),  block  time  (BT),  rate  of  force  

development  (RFD),  peak  force  (PF),  impulse,  time  of  force  application  (TFA),  time  

to  peak  (TTP),  peak  force  offset  (PFTO),  and  force  ‘off’  offset  (FOTO)  were  derived  

trial-­‐by-­‐trial.  Variable-­‐specific  coefficients  of  variation  (CoVs)  were  calculated  

within-­‐session,  and  compared  between-­‐session.  PT,  BT,  RFD  and  TTP  exhibited  

within-­‐session  CoVs  ≤  10%.  TTP  CoVs  were  significantly  different  (p  <  0.05)  

between-­‐session.  Until  individuals’  typical  variability  is  established,  quantities  with  

larger  (>  20%)  within-­‐session  CoVs  (RT,  RFD,  TTP,  TFA)  and  those  with  significant  

differences  between-­‐session  may  not  be  appropriate  for  monitoring.  

   

Page 3: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

iii  

Table  of  Contents  List  of  Figures  ...........................................................................................................................  iv  

List  of  Tables  .............................................................................................................................  v  

List  of  Appendices  ...................................................................................................................  vi  1   Introduction  .......................................................................................................................  1  

2   Review  of  Literature  ........................................................................................................  5  2.1   Pre-­‐tension  (PT)  .....................................................................................................................  5  2.2   Reaction  Time  (RT)  ...............................................................................................................  6  2.3   Block  Time  (BT)  .....................................................................................................................  8  2.4   Rate  of  Force  Development  (RFD)  ....................................................................................  9  2.5   Peak  Force  (PF)  ....................................................................................................................  10  2.6   Impulse  ....................................................................................................................................  11  2.7   Other  Force–Time  Characteristics  .................................................................................  12  2.8   Summary  .................................................................................................................................  12  

3   Methods  .............................................................................................................................  14  3.1   Study  Overview  .....................................................................................................................  14  3.2   Participants  ...........................................................................................................................  14  3.3   Data  Collection  ......................................................................................................................  15  3.4   Signal  Conditioning  and  Processing  ..............................................................................  17  3.5   Data  Analyses  ........................................................................................................................  19  3.6   Statistics  ..................................................................................................................................  23  

4   Results  ...............................................................................................................................  24  4.1   Pre-­‐Tension  ...........................................................................................................................  24  4.2   Reaction  Time  .......................................................................................................................  26  4.3   Block  Time  .............................................................................................................................  26  4.4   Rate  of  Force  Development  (RFD)  ..................................................................................  27  4.5   Peak  Force  ..............................................................................................................................  30  4.6   Impulse  ....................................................................................................................................  31  4.7   Time  to  Peak  (TTP)  .............................................................................................................  33  4.8   Time  of  Force  Application  .................................................................................................  35  4.9   Peak  Force  Time  Offset  ......................................................................................................  36  4.10   Force  ‘Off’  Time  Offset  ......................................................................................................  37  

5   Discussion  ........................................................................................................................  39  5.2   Study  Limitations  .................................................................................................................  44  

6   Conclusion  ........................................................................................................................  48          

Page 4: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

iv  

List  of  Figures  Figure  1.  Starting  Block  Components  ...............................................................................................  2  Figure  2.  Adjustable  block  settings:  plate  angles  (θF,  θR)  and  front  foot  to  start  line  

(F_SL)  and  rear  foot  to  start  line  (R_SL)  distances.  .........................................................  16  Figure  3.  Residual  Analyses  of  RES_3  signal  for  two  male  (a)  (b)  and  two  female  (c)  

(d)  participants  ...............................................................................................................................  19  Figure  4.  Graphical  depiction  of  signal  events  ............................................................................  20  Figure  5.  Signal-­‐specific  variables  ....................................................................................................  21  Figure  6.  Between-­‐feet  and  overall  variables  ..............................................................................  22  Figure  7.  Pre-­‐tension  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  

R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ............................................  25  

Figure  8.  Reaction  times  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ....................  26  

Figure  9.  Block  times  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  *  indicates  that  mean  values  were  significantly  different  inter-­‐session  (p  <  0.05).  ................  27  

Figure  10.  RFD  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ....................  28  

Figure  11.  RFD  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ...  29  

Figure  12.  Peak  Force  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ............................................  31  

Figure  13.  Impulse  of  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  *  Significant  inter-­‐session  difference  in  group  mean  (p  <  0.05).  ....................................................................  32  

Figure  14.  TTP  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ....................  34  

Figure  15.  TTP  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ...  35  

Figure  16.  Time  of  force  application  resultant  and  component  (Front,  Rear)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N  =  10)  are  presented;  error  bars  represent  the  standard  deviation.  ....................................................................  36  

Figure  17.  Peak  Force  Time  Offset  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ...  37  

Figure  18.  Force  ‘Off’  Time  Offset  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  ...  38  

 

   

Page 5: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

v  

List  of  Tables  Table  1.  Participant  demographics  and  anthropometrics  .....................................................  15  Table  2.  Participant  block  configurations  .....................................................................................  16  Table  3.  Derived  signals  for  analysis  ...............................................................................................  18  Table  4.  Signal  Events  ............................................................................................................................  20  Table  5.  Signal-­‐specific  variables  ......................................................................................................  21  Table  6.  Between-­‐feet  variables  ........................................................................................................  22  Table  7.  Overall  variables  .....................................................................................................................  22  Table  8.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  pre-­‐tension  resultant  

(RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  .........................................................................................................  25  

Table  9.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  RFD  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  .............................................................................  28  

Table  10.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  RFD  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  .............................................................................  29  

Table  11.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  peak  force  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  .........................................................................................................  30  

Table  12.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  Force  Impulse  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  .............................................................................  32  

Table  13.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  TTP  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  .............................................................................  33  

Table  14.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  TTP  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10)  ..............................................................................  34  

Table  15.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  Time  of  Force  Application  resultant  and  component  (Front  &  Rear)  forces  inter-­‐session  across  all  athletes  (N=10)  .........................................................................................................................  35  

Table  16.  Force–time  characteristic  CoV  (%)  ranges  from  literature  and  current  study  ....................................................................................................................................................  40  

     

Page 6: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

vi  

List  of  Appendices  7   Appendices  .........................................................................................................................................  52  7.1   Appendix  A  .................................................................................................................................  52  7.2   Appendix  B  .................................................................................................................................  57  7.2.1   Par-­‐Q  Form  .........................................................................................................................  57  7.2.2   Informed  Consent  Form  ................................................................................................  58  

7.1   Appendix  C:  Subject-­‐specific  data  ....................................................................................  60  7.1.1   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  pre-­‐tension  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ..............................................................................................................................................  60  7.1.2   M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  reaction  time  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions   66  7.1.3   M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  block  time  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions   67  7.1.4   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  RFD  from  ‘Go’  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ..............................................................................................................................................  68  7.1.5   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  RFD  from  onset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ...................................................................................................................................  74  7.1.7   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  peak  force  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ..............................................................................................................................................  80  7.1.8   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  impulse  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ..............................................................................................................................................  86  7.1.10   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  TTP  from  ‘Go’  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ...................................................................................................................................  92  7.1.12   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  TTP  from  onset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ...................................................................................................................................  98  7.1.14   Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  time  of  force  application  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  

Page 7: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

vii  

filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  .....................................................................................................................  104  7.1.16   M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  force  ‘Off’  time  offset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ...........................................................................................................................................  110  7.1.18   M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  peak  force  time  offset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  ...........................................................................................................................................  111  

   

Page 8: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

1  

1 Introduction    

A  primary  performance  objective  of  any  race  is  to  cover  the  required  distance  

in  the  time  needed  to  win  or  place  (qualify).  A  sprint  race  is  made  up  of  four  

component  phases:  reaction  time  phase;  block  start  phase;  acceleration  phase;  and  

maintenance  phase  (Tellez,  1984).  Each  phase  is  dependent  on  performance  in  the  

phase  immediately  preceding  it,  as  the  prior  phase  dictates  the  athlete’s  starting  

body  configuration  in  the  subsequent  phase.  Force–time  characteristics  associated  

with  ‘good’  performance  in  each  of  these  phases  have  been  extensively  researched  

and  debated  (Harland  &  Steele,  1997;  Majumdar  &  Robergs,  2011),  none  more  so  

than  those  of  the  block  start  phase.    

Five  percent  of  total  100m  race  time  can  be  accounted  for  by  the  block  start  

phase  duration;  however,  due  to  its  influence  on  the  subsequent  acceleration  phase,  

64%  of  total  race  time  is  dependent  on  block  start  duration  (Tellez,  1984).  The  

International  Association  of  Athletics  Federation  (IAAF)  mandates  that  an  official  

provides  two  verbal  cues  (“on  your  mark”  and  “set”),  followed  by  a  loud  gunshot  

from  a  starting  pistol,  to  indicate  the  start  of  a  race  (IAAF,  2014-­‐2015).  Three  

quantities  characterize  the  duration  of  the  block  start:  reaction  time;  movement  

time;  and  response  time.  Reaction  time  (RT)  begins  when  the  gunshot  sounds,  and  

ends  when  movement  is  initiated.  Movement  time  begins  when  movement  is  

initiated,  and  ends  when  the  athlete  is  no  longer  in  contact  with  the  blocks.  

Response  time  consists  of  both  reaction  and  movement  times  combined  (Eikenberry  

et  al.,  2008).  Minimizing  these  times  is  important  to  the  success  of  the  start  (Brown,  

Kenwell,  Maraj,  &  Collins,  2008).  However,  due  to  the  influence  of  the  start  on  the  

rest  of  the  race,  an  athlete’s  actions  during  the  start,  and  more  importantly  how  the  

athlete  interacts  with  the  blocks,  are  considered  vital  to  a  successful  race  outcome  

(Mero,  Kuitunen,  Harland,  Kyrolainen,  &  Komi,  2006).    

During  the  start  phase,  athletes  make  use  of  starting  blocks  (Figure  1).  As  per  

IAAF  (2014-­‐2015)  rules,    

Page 9: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

2  

 

The  starting  blocks  shall  consist  of  two  foot  plates,  against  which  the  athlete’s  

feet  are  pressed  in  the  starting  position.  The  foot  plates  shall  be  mounted  on  

a  rigid  frame  […].  The  foot  plates  shall  be  sloped  to  suit  the  starting  position  

of  the  athlete,  and  may  be  flat  or  slightly  concave.  The  surface  of  the  foot  

plates  shall  accommodate  the  spikes  in  the  athlete’s  shoes,  either  by  using  

slots  or  recesses  in  the  face  of  the  foot  plate  or  by  covering  the  surface  of  the  

foot  plate  with  suitable  material  permitting  the  use  of  spiked  shoes.  (p.  154)  

Athletes  exert  forces  against  the  foot  plates  to  accelerate  the  whole-­‐body  

centre-­‐of-­‐mass  upward  and  forward.  Most  elite  level  sprinters  today  use  a  standing  

staggered  start  position,  with  a  moderate  to  long  anteroposterior  distance  (i.e.,  at  

least  one  lower  leg  [shank]  length  apart  between  foot  plates  (Menely  &  Rosemier,  

1968)).  This  allows  athletes  to  continue  to  exert  force  on  the  front  foot  plate  after  

their  rear  foot  has  left  the  blocks.  This  produces  a  longer  duration  of  force  

application,  and  thus  a  greater  change  in  velocity  (Mero  et  al.,  2006;  Salo  &  Bezodis,  

2004).    

 Figure  1.  Starting  Block  Components  

Page 10: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

3  

 

Numerous  characteristics  of  the  interactive  forces  between  the  feet  and  

blocks  have  been  compared  across  sprinters  to  identify  potential  performance  

determinants.  Based  on  100m  personal  best  times,  athletes  have  been  ranked  and  

categorized  as  world-­‐class  vs.  fast  vs.  slow  (Willwacher,  Herrmann,  Heinrich,  &  

Bruggemann,  2013),  elite  vs.  sub-­‐elite  (Fortier,  Basset,  Mbourou,  &  Faverial,  2005),  

elite  vs.  well-­‐trained  (Slawinski  et  al.,  2010),  top  vs.  middle  vs.  lower  class  sprinters  

(Baumann,  1976)  and  skilled  vs.  less-­‐skilled  (Gagnon,  1978).  If  significant  between-­‐

group  differences  in  force–time  characteristics  are  found,  it  is  reasoned  that  these  

characteristics  are  important  for  performance.  Fortier  et  al.  (2005)  found  that  there  

was  a  significant  difference  between  reaction  times  between  elite  

(RT=10.46±0.11ms)  and  sub-­‐elite  (RT=11.07±0.3ms)  athletes.  However,  these  

findings  are  not  consistent  with  results  of  other  research,  wherein  reaction  times  

were  not  different  between  faster  and  slower  sprinters  (Baumann,  1976;  Coh,  Jost,  

Skof,  Tomazin,  &  Dolenec,  1998;  Slawinski  et  al.,  2010;  Willwacher  et  al.,  2013).  

Similar  discrepancies  are  noted  in  comparisons  made  between  faster  and  slower  

sprinters  in  block  time  (BT),  impulse,  and  rate  of  force  development  (RFD),  time-­‐to-­‐

peak  force  (TTP),  time  of  force  application  (TFA),  and  time  between  right  and  left  

foot  peak  forces  and  time  between  right  and  left  force  offset  (Baumann,  1976;  Coh  et  

al.,  1998;  Fortier  et  al.,  2005;  Gagnon,  1978;  Mero,  Luhtanen,  &  Komi,  1983;  

Slawinski  et  al.,  2010;  Willwacher  et  al.,  2013).  Despite  mechanical  rationale  for  

monitoring  these  characteristics,  findings  suggest  that  there  is  not  a  single  block  

start  force–time  characteristic  that  determines  ranking  across  all  athletes  and  races  

(Bezodis,  Salo,  &  Trewartha,  2010).  Further,  in  other  locomotion  tasks,  it  has  been  

recognized  that  analyses  of  discrete  variables  does  not  necessarily  capture  the  

complexity  of  biomechanical  waveforms  (Bartlett,  Wheat,  &  Robins,  2007).  

Disparate  findings  regarding  kinetic  characteristics  of  the  start  suggest  a  similar  

notion:  it  is  more  likely  that  the  relative  importance  of  any  single  force–time  

characteristic  to  total  race  time  is  athlete-­‐  and  context-­‐dependent;  thus  variation  in  

such  characteristics  could  be  expected.  

Page 11: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

4  

 

Although  there  is  mechanical  rationale  to  support  the  importance  of  

consistent  force  production  in  the  sprint  start  (Chow  &  Knudson,  2011),  intra-­‐

individual  variability  in  force–time  characteristics  is  expected  given  that  sprint  

starts  are  complex  movements  involving  many  biomechanical  degrees-­‐of-­‐freedom.    

It  is  perhaps  the  variable  nature  of  the  transition  from  a  static  to  dynamic  state  

during  the  sprint  start  that  affords  elite  performers  the  flexibility  and  adaptability  

necessary  to  consistently  achieve  high  outcome  standards  across  various  conditions  

(Glazier  &  Davids,  2009).  To  date,  there  has  been  no  description  of  the  typical  

amount  of  variation  in  the  abovementioned  force–time  characteristics  during  the  

block  start  phase  of  the  sprint.  Through  quantifying  the  variability  in  force–time  

characteristics  of  the  block  start  phase,  athletes,  coaches,  and  scientists  alike  will  be  

better  able  to  detect  and  interpret  repetition-­‐to-­‐repetition  and  day-­‐to-­‐day  changes  

in  force–time  characteristics,  as  it  provides  the  information  necessary  to  calculate  

effect  sizes,  conduct  statistical  power  analyses,  design  studies,  etc..  The  objective  of  

this  thesis  was  to  quantify  the  within-­‐athlete  variation  of  force–time  characteristics  

in  the  block  start  phase  that  have  been  linked  to  sprint  performance  (i.e.,  total  race  

time).  A  secondary  objective  was  to  compare  these  characteristics  between  training  

sessions.  It  was  hypothesized  that  athletes  would  exhibit  variability  within-­‐session,  

with  the  same  amount  of  variability  from  session-­‐to-­‐session  in  force–time  

characteristics  that  are  related  discriminative  between  groups  of  differently-­‐skilled  

athletes.    

 

   

Page 12: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

5  

2 Review  of  Literature    

 

Sprint  start  performance  is  typically  defined/ranked  based  on  personal  best  

(PB)  times  in  order  to  identify  differentiating  characteristics  between  groups.  A  

nearly  infinite  number  of  characteristics  are  quantifiable  from  a  continuous  force–

time  curve.  Discrete  force–time  measures  offer  a  convenient  summary  of  a  complex  

signal.  Although  few  studies  have  repeatedly  identified  the  same  discrete  force–time  

variables  as  differing  between  groups,  some  have  identified  significant  differences  

between  groups  in  various  force–time  characteristics.  These  characteristics  will  be  

considered  in  this  section,  in  order  to  narrow  the  scope  of  variables  deemed  

important  to  the  race.  Inconsistent  findings  at  the  group  level  pose  a  problem  in  

assessing  the  scope  of  a  meaningful  improvement  in  these  characteristics  on  the  

individual  level  during  training.  This  section  will  briefly  review  the  force–time  

characteristics  that  have  been  found  to  be  discriminative  indicators  of  performance  

in  the  sprint  start  and  consider  the  implications  and  assumptions  of  each,  informing  

the  selection  and  evaluation  of  variables  analyzed  in  this  thesis.  Appendix  A  

provides  additional  details  and  results  of  the  studies  reviewed  below,  as  well  has  

how  athletes  were  categorized  in  each.    

 

2.1 Pre-­‐tension  (PT)  

Pre-­‐tension  has  been  defined  as  the  amount  of  horizontal  force,  with  respect  

to  the  ground,  applied  on  the  blocks  in  the  set  position  (Van  Coppenolle,  Delecluse,  

Goris,  Bohets,  &  Vanden  Eynde,  1989).  Mechanically,  it’s  regarded  as  a  way  to  

preload  the  lower  extremity  extensor  muscles  prior  to  action  to  produce  a  more  

forceful  concentric  contraction  (Guissard,  Duchateau,  &  Hainaut,  1992).  Van  

Coppenolle  et  al.  (1989)  reported  pre-­‐tension  values  of  20-­‐88N  for  the  front  foot,  

and  80-­‐120N  for  the  rear.  Pre-­‐tension  forces  are  thought  to  contribute  to  the  forces  

produced  after  the  ‘Go’  cue.  Similarly,  Baumann  (1976)  defined  ‘spring  tension’  as  

horizontal  forces  applied  by  the  hands  and  feet  in  the  ‘set’  position.  Athletes  

Page 13: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

6  

 

producing  high  pre-­‐tension  values  are  thought  to  be  in  better  position,  

kinematically,  to  produce  higher  forces  exiting  the  blocks.    

A  discrepancy  exists  however  among  these  studies  as  to  whether  horizontal  

hand  forces  are  included  in  pre-­‐tension  calculations.  Although  multiple  authors  have  

considered  pre-­‐tension  to  be  an  important  factor  in  the  start,  no  research  to-­‐date  

has  correlated  pre-­‐tension  to  race  finish  times.  Further,  some  authors  have  included  

hand  forces  in  its  calculation,  while  others  have  not.  Pre-­‐tension  seems  to  be  an  

important  consideration  in  the  sprint  start;  however,  not  enough  is  known  about  the  

impact  of  this  characteristic,  including  intra-­‐individual  variability,  to  make  definite  

conclusions.  Quantifying  the  day-­‐to-­‐day  variability  could  provide  some  insight  into  

how  to  quantify  a  change  in  performance  in  response  to  monitor  training  

adaptations  for  example.    

 

2.2 Reaction  Time  (RT)  

Reaction  time  has  been  extensively  studied  as  a  function  of  the  sprint  start.  

Generally,  it  is  defined  as  the  time  it  takes  to  initiate  a  response  to  the  given  

stimulus.  In  the  sprint  start,  RT  can  be  calculated  as  the  time  between  the  first  

change  in  force  and  the  sound  of  the  start  gun  (Majumdar  &  Robergs,  2011).  Fortier  

et  al.  (2005)  found  a  significant  difference  in  average  reaction  times  between  elite  

(RT  =  0.1046±0.0001s)  and  sub-­‐elite  (RT  =  0.1107±0.0003s)  groups  of  athletes.  

Slawinski  et  al.  (2010)  found  the  average  RT  of  sprinters  did  not  significantly  differ  

between  elite  (RT  =  0.151±0.016s)  and  well-­‐trained  (RT  =  0.158±0.033s)  sprinters.  

Others  found  that  there  was  no  significant  difference  in  reaction  times  between  any  

of  the  following  groups:  world-­‐class  men  (RT  =  0.16±0.09s);  fast  men  (RT  =  

0.18±0.04s);  slow  men  (RT  =  0.19±0.04s);  fast  women  (RT  =  0.2±0.02s);  and  slow  

women  (RT  =  0.21±0.04s)  (Willwacher  et  al.,  2013).  Baumann  (1976)  found  no  

difference  in  reaction  time  among  three  groups  divided  based  on  100m  PB  times  

(Group  1:  0.101±0.018s;  Group  2:  0.099±0.015s;  Group  3:  0.113±0.014s).  Coh  

(1998)  also  found  a  significant  inverse  correlation  among  men  between  RT  and  time  

to  20m  and  30m,  as  well  as  time  to  10m  in  females.    

Page 14: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

7  

 

Several  factors  play  into  calculating  RT,  many  of  which  have  not  been  

standardized  across  studies.  The  agreement  among  authors  is  that  RT  should  be  

minimized  to  improve  performance.  However,  a  false  start  is  called  when  the  

reaction  time  is  less  than  0.100  seconds  (IAAF,  2014-­‐2015)  despite  the  fact  that  Pain  

&  Hibbs  (2007)  demonstrated  that  neuromuscular-­‐physiological  components  of  

simple  auditory  reaction  times  can  be  under  85ms  and  that  EMG  latencies  can  be  

under  60ms.  In  IAAF  (2014-­‐2015)  races,  the  starter  is  positioned  closest  to  lane  1.  

Research  has  indicated  differences  in  reaction  time  as  a  function  of  the  distance  

between  the  athlete  and  the  starting  gun  exist  (Brown  et  al.,  2008).  Even  when  a  gun  

is  rigged  to  avoid  this  issue  and  trigger  loudspeakers  that  are  positioned  behind  

each  athlete’s  starting  blocks,  athletes  still  react  to  the  sound  of  the  gun  rather  than  

that  of  the  loudspeaker  (Lennart  Julin  &  Dapena,  2003).  In  studies  that  considered  

RT  as  a  differentiator  between  athletes  of  different  skill  levels,  the  method  of  

starting  was  often  not  specified.  Further,  how  a  ‘reaction’  is  discerned  is  also  often  

unspecified  (Fortier  et  al.,  2005;  Willwacher  et  al.,  2013).  A  common  force  

‘threshold’  value  could  lead  to  the  same  reaction  yielding  different  reaction  times  

based  on  an  individual  athlete’s  mass  or  pre-­‐tension  values  (Pain  &  Hibbs,  2007).  

Coh  et  al.  (1998)  defined  a  reaction  as  force  exceeding  10%  of  maximal  force  

attained  by  a  given  athlete.  Baumann  (1976)  also  reported  that  a  significant  

difference  between  the  rear  and  the  front  foot  reaction  time  exists  in  sprinters  of  

many  expertise  levels.  Thus,  it  is  important  to  mind  these  specifications  when  

considering  RT  variation.  

Another  important  factor  in  calculating  RT  is  the  method  for  detecting  the  

reaction.  Again,  it  is  often  unreported.  In  some  studies,  Microgate  technology  was  

used,  with  block  sensors  detecting  reaction  times  (Slawinski  et  al.,  2010).  In  others,  

it  is  clear  it  was  done  using  some  sort  of  pressure  sensor  or  force  plate  (Baumann,  

1976;  Fortier  et  al.,  2005).  For  example,  Fortier  et  al.  (2005)  defined  reaction  time  

as  the  time  from  the  gun  signal  to  the  first  detectable  change  of  force  in  the  

instrumented  blocks.  However,  in  many  studies,  this  information  is  not  provided  

and  thus  the  calculation  method  of  RT  is  unclear,  leading  to  potential  

(non)significant  differences  being  detected  in  RT.  Thus,  due  to  the  inconsistent  

Page 15: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

8  

 

methods  in  calculating  RT  between  studies,  it  is  not  unexpected  that  findings  

pertaining  to  the  significance  of  RT  are  varying.    

As  such,  inconsistencies  in  reaction  time  measurement  could  also  lead  to  

discrepancies  in  other  force–time  measures  that  include  reaction  time  in  their  

derivation  (i.e.,  block  time)  (Willwacher  et  al.,  2013).  

 

2.3 Block  Time  (BT)  

  Block  time  was  found  by  Willwacher  et  al.  (2013)    to  be  significantly  different  

between  world-­‐class  males  (BT  =  0.34±0.02s)  and  other  males  (fast:  BT  =  

0.39±0.03s;  slow:  BT  =  0.4±0.02s)  and  female  (fast:  BT  =  0.39±0.03s;  slow:  BT  =  

0.43±0.03s)  counterparts.  Fortier  et  al.  (2005)  also  found  block  times  to  be  

significantly  different  between  groups  of  differing  ability  (elite:  BT  =  0.37±0.018s;  

sub-­‐elite:  BT  =  0.405±0.04s).  However,  Baumann  (1976)  (group  1:  BT  =  

0.47±0.036s;  group  2:  BT  =  0.468±0.02s;  group  3:  BT  =  0.504±0.032s),  Mero  et  al.  

(1983)  (group  A:  BT  =  0.361±0.027s;  group  B:  BT  =  0.36±0.023s;  group  C:  

0.368±0.037s)  and  Slawinski  et  al.  (2010)  (elite:  BT  =  0.352±0.018s;  well-­‐trained:  

BT  =  0.351±0.02s)  did  not.  This  start  characteristic  ends  when  the  athlete  exits  the  

blocks.  However,  the  onset  of  block  time  measurement  is  inconsistent  among  

authors.  Some  consider  block  time  to  begin  when  the  ‘go’  signal  is  triggered,  while  

others  consider  it  to  begin  at  force  onset,  in  which  case  RT  is  included  in  block  time  

(Willwacher  et  al.,  2013).  RT  notwithstanding,  ‘force  onset’  is  defined  differently  

among  studies.  Slawinski  et  al.  (2010)  delimited  block  time  from  the  first  movement  

in  the  set  position  to  block  clearance;  however,  it  is  unclear  whether  the  first  

movement  was  detected  by  visual  inspection  of  video  data,  force  data,  or  through  

Microgate  technology.  Mero  et  al.  (1983)  instead  calculated  duration  of  force  

production  providing  a  more  specific  method  of  calculation.  In  either  case,  a  block  

time  ‘initiation’  threshold  could  also  provide  more  insight  to  why  discrepancies  in  

findings  between  studies  exist.  Though  block  time  has  been  found  to  be  a  factor  in  

race  success  at  the  group  level,  it  is  unknown  how  consistently  achievable  this  

characteristics  is  on  the  individual  level.    

Page 16: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

9  

 

 

2.4 Rate  of  Force  Development  (RFD)  

  Rate  of  force  development  has  been  cited  as  an  important  variable  associated  

with  the  sprint  start  (Buhrle,  Schmidtbleicher,  &  Ressel,  1983).  Values  of  up  to  

15505N/s  have  been  found  among  elite  sprinters,  while  well-­‐trained  sprinters  

achieved  average  rates  of  force  development  of  about  8459N/s.  It  has  been  

determined  to  be  a  variable  of  interest,  as  elite  athletes  achieved  significantly  higher  

values  as  compared  to  well-­‐trained  athletes  (Slawinski  et  al.,  2010).  Mass  

normalized  RFD  in  the  front  foot  has  also  been  found  to  be  higher  in  world-­‐class  

male  sprinters  (RFD  =  237.37±75.31N/kg/s)  as  compared  to  their  male  and  female  

fast  (male  RFD  =  137.48±47.72N/kg/s;  female  RFD  =  132.21±41.29N/kg/s)  and  

slow  (male  RFD=122.64±41.73N/kg/s;  female  RFD  =  109.38±45.61N/kg/s)  

counterparts  (Willwacher  et  al.,  2013).  Coh  (1998)  also  found  absolute  and  relative  

front  foot  RFD  to  be  strongly  inversely  correlated  to  time  to  20m  (r  =  -­‐0.71,  p  <  0.05)  

and  30m  (r  ≥  -­‐0.76,  p  <  0.05),  in  elite  male  sprinters.  Thus,  RFD  seems  to  be  an  

important  predictor  of  success  in  a  race.    

  Interestingly,  the  within-­‐group  coefficient  of  variation  among  these  

published  RFD  values  is  anywhere  between  28%  and  54%.  RFD  is  a  force–time  

characteristic  made  up  of  components,  often  delimited  differently  between  

researchers.  Among  authors,  it  is  defined  as  a  change  of  force  in  a  unit  of  time  (Coh  

et  al.,  1998).  How  that  time  is  defined,  however,  differs  amongst  authors.  Further,  

authors  often  use  different  force  component  signals  to  calculate  RFD.  Willwacher  

(2013)  considered  the  body-­‐mass  normalized  resultant  (3-­‐dimensional)  force  from  

the  rear  and  the  front  foot  separately.  Although  unreported,  Slawinski  (2010)  

seemingly  calculated  RFD  from  the  absolute  resultant  force  from  both  feet  

combined.  Coh  (1998)  also  did  not  report  the  source  of  his  RFD  calculation.  Thus,  

although  RFD  seems  to  be  an  important  sprint  start  performance  characteristic,  it  is  

unclear  how  it  can  be  routinely  monitored  to  assess  something  like  training  

adaptations  if  its  calculation  is  so  inherently  variable.  For  this  reason,  this  study  will  

calculate  RFD  in  two  ways:  from  the  ‘Go’  signal;  as  well  as  from  force  onset.  

Page 17: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

10  

 

Component  forces  in  the  horizontal  and  vertical  directions,  as  well  as  two-­‐  and  

three-­‐dimensional  resultant  forces  will  be  analyzed  both  uni-­‐  and  bi-­‐laterally  from  

the  front  and  rear  foot  blocks.    

 

2.5 Peak  Force  (PF)  

  Another  characteristic  of  the  sprint  start  that  has  been  heavily  researched  is  

peak  force  magnitude.  It  is  primarily  considered  to  be  the  maximal  instantaneous  

force  value  produced  by  an  athlete  during  the  block  phase  (Fortier  et  al.,  2005).  

Mechanically,  producing  a  high  peak  (reaction)  force  in  the  horizontal  direction  

would  afford  the  athlete  with  a  large  instantaneous  horizontal  acceleration.  Skilled  

sprinters  have  been  reported  to  produce  almost  65%  more  force  in  their  rear  foot  

than  their  less  skilled  counterparts,  and  69%  more  in  their  front  foot  (Gagnon,  

1978).  This  supports  the  abovementioned  finding  of  a  significant  correlation  

between  peak  front  foot  force  and  time  to  20  and  30m  in  elite  male  sprinters  (Coh  et  

al.,  1998).  Baumann  (1976)  and  Mero  et  al.  (1983)  also  found  that  faster  athletes  

produced  a  larger  peak  horizontal  acceleration  (PHA)  (group  1:  PHA  =  15.4±2m/s2;    

group  2:  PHA  =  13.2±1.7m/s2;  group  3:  PHA  =  12.2±2.4m/s2)  and  force  (group  A:  PF  

=  1186±260N;  group  B:  PF  =  1154±170N;  group  C:  PF  =  898±203N),  respectively,  

out  of  the  blocks  than  slower  athletes.  Other  studies  have  reported  significant  

differences  between  elite  (PFrear  =  1430±431N)  and  sub-­‐elite  (PFrear  =  940±255N)  

sprinters  as  well  as  men  (PFfront  =  16.14±1.45N/kg;  PFrear  =  15.98±2.57N/kg)  and  

women  (PFfront  =  14.46±2.68N/kg;  PFrear  =  11.36±0.29N/kg)  in  resultant  peak  forces  

in  the  front  and  the  rear  (Fortier  et  al.,  2005;  Willwacher  et  al.,  2013).  Overall  most  

studies  have  concluded  that  peak  force  production  is  important,  with  some  studies  

focusing  on  peak  horizontal  force  as  a  marker  of  performance  potential.  However,  

findings  have  not  been  unanimous  among  studies.  

 

Page 18: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

11  

 

2.6 Impulse  

  Impulse  is  the  integral  of  the  force–time  curve,  made  up  of  the  product  of  the  

applied  force  on  the  blocks  and  the  duration  of  application  of  the  force  (Coh  et  al.,  

1998;  Slawinski  et  al.,  2010).  Mechanically,  an  athlete  producing  a  large  impulse  

will,  in  accordance  with  Newton’s  second  law  of  motion,  experience  a  greater  

change  in  momentum,  and  thus  have  a  larger  velocity  when  leaving  the  blocks.  

Significant  correlations  between  absolute  and  body-­‐mass  normalized  front  foot  

impulse  and  time  to  20m  and  30m  have  been  reported  (Coh  et  al.,  1998),  while  

others  have  found  that  on  average,  skilled  sprinters  produce  larger  impulses  than  

less-­‐skilled  sprinters  in  the  rear  foot  (77.7Ns;  51.5Ns)  and  overall  (168.7Ns;  

135.2Ns),  with  a  smaller  difference  between  groups  in  the  front  foot  (86.33Ns;  

83.68Ns)  (Gagnon,  1978).  Mero  et  al.  (1983)  found  some  differences  between  faster  

sprinters  and  their  slower  counterparts  in  both  vertical  (group  A:  Impulse  =  

231±31Ns;  group  B:  Impulse  =  221±55Ns;  group  C:  Impulse  =  178±43Ns)  and  

horizontal  (group  A:  Impulse  =  234±15Ns;  group  B:  Impulse  =  226±31Ns;  group  C:  

Impulse  =  195±23Ns)  impulse  in  the  blocks.    Considering  resultant  forces,  Slawinski  

(2010)  also  found  a  significant  difference  between  elite  (Impulse  =  276.2±36Ns)  and  

well-­‐trained  (Impulse  =  215.4±28.5Ns)  sprinters’  block  impulses.  And,  although  

Baumann  (1976)  found  faster  athletes  (Impulse  =  263±22Ns)  to  produce  larger  

horizontal  impulses  than  their  slower  counterparts  (group  2:  Impulse  =  223±20Ns;  

group  3:  Impulse  =  214±20Ns)  on  average,  no  significant  relationship  was  found.    

Once  again,  although  the  trend  seems  to  be  toward  block  impulse  being  an  

important  consideration  for  performance,  the  strength  of  the  relationship  is  

unknown  with  disagreement  between  studies  as  to  which  foot  or  force  direction  is  

important.  Further,  as  faster  sprinters  have  been  purported  to  produce  shorter  

block  times,  the  balance  between  block  time  and  force  magnitude  is  not  considered  

when  measuring  force  impulse  as  a  performance  characteristic.  Thus,  monitoring  

only  this  characteristic  in  training  might  lead  to  valuable  information  about  the  start  

being  missed.    

 

Page 19: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

12  

 

2.7 Other  Force–Time  Characteristics  

Other  temporal  characteristics  like  time  to  peak  force  (TTP),  delay  between  

rear  and  front  force  peaks  (PFO),  onsets  and  offsets  (FOTO)  have  been  studied  (Coh  

et  al.,  1998;  Fortier  et  al.,  2005;  Mero  et  al.,  1983),  with  significant  differences  found  

between  elite  (100mPB=10.46±0.11s)  and  sub-­‐elite  (100mPB=11.07±0.30s)  

sprinters  in  time  to  rear  peak  force  (elite  =  124±17ms;  sub-­‐elite  =  119±20ms),  delay  

between  end  of  rear  and  front  force  offsets  (elite  =  140±26ms;  sub-­‐elite  =  

173±23ms)  (Fortier  et  al.,  2005).  Coh  et  al.  (1998)  also  found  a  correlation  between  

time  to  peak  force  in  the  front  and  rear  feet  and  time  to  various  distances,  while  

others  found  no  relationship  between  100m  PB  times  and  time  to  peak  force  (Mero  

et  al.,  1983).  Inconsistent  findings  exist  yet  again  for  these  other  force–time  

characteristics,  not  only  due  to  differing  populations  but  also  due  to  discrepancies  in  

methods.    

 

2.8 Summary    

Although  differences  in  skill-­‐level  group  division  and  methods  of  force–time  

characteristic  calculations  could  account  for  inconsistencies  in  findings,  upon  

calculating  coefficients  of  variation  for  group  averages  (Appendix  A),  it  is  unknown  

how  much  individual  variation  in  performance  can  account  for  variability  in  

findings.  Bezodis  et  al.  (2010)  studied  how  block  start  characteristics  correlated  to  

times  and  velocities  at  varying  distances.  Even  with  body  size  crudely  accounted  for  

in  normalized  power  data,  the  authors  found  that  none  of  the  10  measures  ranked  

all  of  the  sprinters  in  the  same  order.  They  concluded  that  although  the  block  start  

does  influence  the  rest  of  the  race,  “…performance  should  ideally  be  quantified  

during  just  the  phase  over  which  technique  is  analyzed,  allowing  the  observed  

performance  levels  to  be  directly  attributed  to  the  observed  techniques.”(p.  266)  

From  the  above  review,  it  is  clear  that  certain  force–time  characteristics  hold  

important  consideration  for  sprint  athletes  looking  to  improve  their  start.  However,  

no  characteristic  has  unanimously  been  found  to  correlate  with  improved  sprint  

race  outcomes.  When  monitoring  these  characteristics  during  training,  an  analysis  

Page 20: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

13  

 

of  an  athlete’s  variability  could  help  coaches  understand  the  importance  of  block  

start  force–time  characteristics  in  relation  to  one  another  within  the  start.  With  the  

aim  of  quantifying  the  within-­‐athlete  variability  of  force–time  characteristics  in  the  

block  start  that  have  been  linked  to  performance  in  sprint  athletes,  it  is  possible  that  

although  athletes  are  achieving  values  associated  with  ‘good’  performance  in  many  

of  these  characteristics,  the  interactivity  between  them  may  not  be  identical  every  

start,  especially  considering  the  biomechanical  complexity  of  the  sprint  start  task.    

The  abovementioned  characteristics  generally  have  statistical  importance  to  

the  race.  Mechanically,  the  importance  of  these  characteristics  are  also  deducible  

from  Newton’s  Second  Law  of  Motion.  In  order  to  maximize  horizontal  velocity  at  

block  exit,  one  must  apply  a  high  magnitude  horizontal  force.  However,  a  vertical  

force  is  also  necessary  to  prevent  the  body  from  collapsing.  Theoretically,  net  lateral  

(side-­‐to-­‐side)  forces  should  be  minimized  to  propel  the  body  up  and  forward  when  

exiting  the  blocks.  Thus,  in  this  study,  discrete  force–time  characteristics  from  the  

horizontal  (Fy)  and  vertical  (Fz)  component  forces,  as  well  as  their  two-­‐dimensional  

resultant  (2F),  and  the  three-­‐dimensional  resultant  (3F).  Further,  each  foot  will  be  

analyzed  individually,  and  two-­‐  and  three-­‐dimensional  forces  will  be  analyzed  from  

both  the  rear  and  the  foot  combined  (Table  3).  

Page 21: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

14  

3 Methods  

3.1 Study  Overview  

In  order  to  obtain  ecologically  valid  training  data,  all  data  collections  took  

place  at  scheduled  team  technical  training  sessions1  under  coach  supervision,  and  

alongside  teammates.  Athletes  performed  4  maximal  sprint  starts  using  force  plate-­‐

instrumented  (FP-­‐instrumented)  start  blocks  at  2  different  training  sessions,  1  week  

apart.  Training  sessions  were  administered  with  as  little  interference  as  possible  in  

that  the  primary  investigator  did  not  alter  or  interfere  with  the  coach’s  scheduled  

training  plans.  The  sessions  were  coach-­‐led  with  the  exception  of  ‘Go’  cues,  which  

were  provided  by  the  primary  investigator.  Starts  were  performed  with  teammates  

starting  alongside  participants,  as  dictated  by  the  coach.  The  blocks  used  were,  from  

the  athlete’s  perspective,  identical  to  those  used  in  daily  training  sessions  (i.e.,  all  

the  same  block  configuration  adjustments  could  be  made,  see  Figure  2).    

 

3.2 Participants  

Ten  intercollegiate  athletes  (5  men,  5  women)  were  recruited  with  coach’s  

permission  during  their  “pre-­‐competition”2  phase  of  training.  Athletes  were  

between  19-­‐30  years  of  age  (Table  1).  Prior  to  participating  in  the  study,  athletes  

were  required  to  complete  the  physical  activity  readiness  questionnaire  (PAR-­‐Q)  to  

ensure  that  they  were  free  of  any  health  issues  that  could  have  altered  performance  

or  been  exacerbated  as  a  result  of  participation  in  the  study  (Appendix  B,  section  

9.2.1)  as  well  as  an  informed  consent  form  (Appendix  B,  section  9.2.2).  This  study  

received  approval  from  the  University  of  Toronto  Research  Ethics  Board  for  

research  involving  human  participants.  Participant  demographics,  anthropometrics,  

                                                                                                               1  Technical  training  sessions  are  those  in  which  an  athlete’s  technique  is  practiced  under  the  

2  Pre-­‐competition  phase  is  defined  as  Phase  3  by  Warden  (1988)  involving  development  of  competition-­‐specific  conditioning,  early  competitions  including  possible  selection  for  major  competition  performance,  and  evaluation  of  early  competition  performance.  

Page 22: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

15  

 

and  season-­‐specific  time  to  30m  testing  data  (FreeLap  USA,  Pleasanton,  CA)  are  

listed  in  Table  1.    

 Table  1.  Participant  demographics  and  anthropometrics       n   Age  (yrs)   Mass  (kg)   Height  (cm)   Time  to  30m  

(s)  Men   5   21.8±1.9   76.5±7.1   181±7.1   3.1±<0.1  

Women   5   23.4±4.2   61.9±4.1   169±5.6   3.6±0.1  Overall   10   22.6±3.2   69.2±9.4   175±8.6   3.34±0.2  

 

3.3 Data  Collection  

Upon  arrival  to  technical  training  sessions,  athletes  performed  their  coach-­‐led  

warm-­‐up  as  they  would  at  typical  training  sessions.  Athletes  were  then  instructed  

by  the  primary  investigator  to  adjust  their  blocks  to  their  personal  preference  

settings.  Adjustable  settings  included  front  foot  to  start  line  (F_SL)  and  rear  foot  to  

start  line  (R_SL)  distances  as  well  as  foot  plate  angles  (θF,  θR)  (Figure  2).  Once  

athletes  felt  comfortable  with  their  configurations,  these  athlete-­‐specific  settings  

were  recorded  (Table  2)  and  remained  unchanged  for  the  duration  of  the  study.  

Each  athlete  was  provided  with  at  least  one  familiarization  trial  to  ensure  

satisfaction  with  his  or  her  block  settings  and  to  become  acquainted  with  the  ‘go’  

cue.  The  primary  investigator  called  the  ‘on  your  mark’  and  ‘set’  cues.  The  ‘go’  cue  

came  in  the  form  of  an  audio  file  that  was  played  and  temporally  synched  to  force  

data  through  a  digital  switch  (operated  by  the  principal  investigator).  Athletes  

performed  4  maximal  starts  at  2  separate  training  sessions,  1  week  apart,  for  a  total  

of  eight  starts  to  30m.  Rest  between  starts  was  coach-­‐determined  (3-­‐5  minutes  

between  starts),  as  to  not  interfere  with  the  daily  training  schedule.    

Page 23: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

16  

 

 

Figure  2.  Adjustable  block  settings:  plate  angles  (θF,  θR)  and  front  foot  to  start  line  (F_SL)  and  rear  foot  to  start  line  (R_SL)  distances.  

 

Table  2.  Participant  block  configurations  Subject   Foot  Plate  Angle   Block  Position  

θF   θR   F_SL   R_SL   Front  Foot  

(deg)   (deg)   (cm)   (cm)   (R,L)  M01   50   60   54.7   84.5   R  M02   50   60   53.6   78.1   L  M03   50   50   54.7   84.5   R  M04   40   50   54.7   84.5   R  M05   50   50   55.2   81.0   L  S01   50   60   41.5   59.5   L  S02   50   60   51.0   71.5   L  S03   50   50   48.4   64.1   L  S04   50   50   52.6   77.1   R  S05   40   50   53.1   79.0   L  

 

   

Page 24: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

17  

 

Force  plates  (AM600  series,  Bertec  Corporation,  Columbus,  OH)  mounted  into  

custom-­‐built  start  blocks  (for  Own  The  Podium3,  Vancouver,  Canada)  were  used  for  

the  duration  of  the  study.  Using  the  Bertec  pin-­‐out,  ±5  V  full-­‐scale  calibrated  analog  

output  per  rated  load  range  for  each  of  the  six  force  plate  channels  output  from  each  

plate  (Fx,  Fy,  Fz,  Mx,  My,  Mz)  were  digitized  using  an  internal  digital  preamplifier,  

which  digitized  the  analog  signal  from  the  transducer  strain  gauges,  and  conditioned  

it  through  oversampling,  preliminary  amplification,  and  filtering.  The  output  of  the  

force  plate  is  a  16-­‐bit  digital  signal  using  RS-­‐485  format.  Pre-­‐conditioned  signals  

were  then  imported  via  an  analog-­‐to-­‐digital  converter  (NI  USB-­‐6210,  National  

Instruments,  Austin,  TX)  sampling  at  1000Hz  into  to  a  custom-­‐written  LabView  

(National  Instruments,  Austin,  TX)  program.  Force  plates  were  hardware  zeroed  

prior  to  each  trial.  A  digital  switch  was  also  instrumented  to  temporally  synchronize  

an  audible  ‘go’  cue  with  the  digitized  force  platform  data.  Approximately  45%  of  the  

voltage  range  (2.2V/5V)  was  used  throughout  collections.    

3.4 Signal  Conditioning  and  Processing  

Data  were  conditioned  and  processed  using  Visual3D™  software  (V5,  C-­‐Motion  

Inc.,  Germantown,  MD).  Voltage  outputs  were  converted  to  forces  (N)  by  multiplying  

by  600N/V  (as  per  Bertec  specifications),  and  then  by  -­‐1  to  obtain  foot-­‐block  

reaction  forces.  Using  vector  algebra,  signals  were  combined  to  create  resultant  

forces  in  two  dimensions  (planar:  antero-­‐posterior  [Y]  and  vertical  [Z]  directions)  

and  three  dimensions  (spatial:  medio-­‐lateral  [X],  [Y]  and  [Z]  directions)  for  both  the  

front  and  the  rear  feet,  as  well  as  both  feet  combined.  Signal  nomenclature  is  

specified  in  Table  3.    

   

                                                                                                               3  Form  more  information  about  the  organization,  please  visit:  http://ownthepodium.org/  

Page 25: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

18  

 

 

Table  3.  Derived  signals  for  analysis  Foot   Signal   Nomenclature   Calculation  

Rear   Fx   R_Fx   N/A  Fy   R_Fy   N/A  Fz   R_Fz   N/A  Fy,  Fz   R2F   𝑅_𝐹!! + 𝑅_𝐹!!  

Fx,,  Fy,  Fz   R3F   𝑅_𝐹!! + 𝑅_𝐹!! + 𝑅_𝐹!!  

Front   Fx   F_Fx   N/A  Fy   F_Fy   N/A  Fz   F_Fz   N/A  Fy,  Fz   F2F   𝐹_𝐹!! + 𝐹_𝐹!!  

Fx,,  Fy,  Fz   F3F   𝐹_𝐹!! + 𝐹_𝐹!! + 𝐹_𝐹!!  

Rear  &  Front  

Fy,  Fz   RES_2   (𝑅_𝐹! + 𝐹_𝐹!)! + (𝑅_𝐹! + 𝐹_𝐹!)!  

Fx,,  Fy,  Fz   RES_3   (𝑅_𝐹! + 𝐹_𝐹!)! + (𝑅_𝐹! + 𝐹_𝐹!)! + (𝑅_𝐹! + 𝐹_𝐹!)!  

   

In  order  to  decide  on  a  low-­‐pass  filter  cut-­‐off  frequency,  a  residual  analysis  

(Winter,  2009)  was  performed  on  data  collected  from  2  male  and  2  female  randomly  

sampled  athletes.  End-­‐points  of  R_Fy,  F_Fy  R2F,  L3F  and  RES_3  signals  were  padded  

using  the  reflection  method  outlined  by  Smith  (1989)  and  signals  were  

subsequently  reflected  to  create  a  periodic  waveform.  Signals  were  then  low-­‐pass  

filtered  using  a  zero-­‐lag  fourth-­‐order  (second-­‐order  dual-­‐pass)  Butterworth  filter  at  

effective  cutoff  frequencies  of  0  to  50Hz  (at  5Hz  increments)  and  then  by  increments  

of  10Hz  from  50  to  100Hz.  Residuals  were  plotted.  RES_3  was  determined  to  have  

the  highest  residual  values  and  was  used  for  the  subsequent  residual  analysis.  

Residuals  were  plotted  and  the  optimal  regression  line  was  determined  by  fitting  

linear  regression  lines  at  each  incremental  cutoff  frequency.  An  optimal  regression  

line  was  determined  when  the  change  in  R2  value  fell  below  0.01.  The  y-­‐intercept  

was  then  regressed  back  to  the  curve  and  the  cut-­‐off  frequency  value  for  that  point  

was  determined  as  optimal.  The  four  participants’  data  all  fell  within  20-­‐30Hz  as  

Page 26: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

19  

 

‘optimal’  cut-­‐off  frequencies  (Figure  3).  Thus,  in  order  to  remain  conservative  and  

consistent,  force  data  were  low-­‐pass  filtered  with  an  effective  cutoff  frequency  of  

50Hz.      

 

(a)

 

(b)

 

(c)

 

(d)

 

Figure  3.  Residual  Analyses  of  RES_3  signal  for  two  male  (a)  (b)  and  two  female  (c)  (d)  participants  

 

3.5 Data  Analyses  

Once  data  were  low-­‐pass  filtered  at  50Hz,  events  were  defined  for  each  of  the  

following  signals:  R_Fy;  R_FZ;  R2F;  R3F;  F_Fy;  F_FZ;  F2F;  F3F;  RES_2;  and  RES_3  

(Table  4,  Figure  4).  

   

Page 27: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

20  

 

 Table  4.  Signal  Events  

Event   Definition  Go   Defined  as  the  ‘switch’  channel  exceeding  4.5V.    At  this  point,  the  ‘Go’  

cue  was  played  through  speakers.    Pre-­‐Go   Defined  as  0.5  seconds  before  the  ‘Go’  event.  Created  in  order  to  

establish  the  magnitude  of  fluctuations  in  force  application  between  the  ‘Set’  and  ‘Go’  cues.  This  was  later  used  to  define  force  onset.    

Peak   Defined  as  the  global  peak  force  in  the  signal  between  ‘Go’  and  ‘Force  Offset’.  

Force  Onset   Defined  as  the  first  increase  in  force  exceeding  3  standard  deviations  of  the  mean  force  magnitude  applied  between  ‘Pre-­‐Go’  and  ‘Go’.  

Force  Offset  

Defined  as  the  first  instance  at  which  forces  returned  to  0N,  after  ‘Peak’.    

Block  Exit   Defined  as  front  foot  ‘Force  Offset’.  At  this  point,  athlete  had  left  the  blocks.    

 

 Figure  4.  Graphical  depiction  of  signal  events  

Events  were  defined  for  the  purpose  of  calculating  various  temporal  and  

kinetic  variables  in  the  sprint  start.  Signal-­‐specific  variables  were  calculated  for  each  

of  the  following  signals:  R_Fy;  R_FZ;  R2F;  R3F;  F_Fy;  F_FZ;  F2F;  F3F;  RES_2;  and  RES_3  

(Table  5,  Figure  5).  Following  this,  between-­‐feet  variables  were  calculated  between  

front  and  rear  feet  for  the  following  signals:  Fy;  Fz;  2F;  and  3F  (Table  6,  Figure  6).  

Finally,  overall  variables  were  calculated  from  data  describing  the  entire  start  

(Table  7,  Figure  7).  

Page 28: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

21  

 

 Figure  5.  Signal-­‐specific  variables  

Table  5.  Signal-­‐specific  variables  Variable   Definition   Formula  

Pre-­‐Tension   Average  force  between  ‘Pre-­‐go’  and  ‘Go’  

𝐹!"!"#!!"

𝑡!" − 𝑡!"#!!"  

Peak  Force   Magnitude  of  force  at  ‘peak’  event  

N/A  

RFD_GO   Linear  derivative  of  the  force–time  curve  from  ‘Go’  to  ‘peak’  events  

𝐹!"#$ − 𝐹!"𝑡!"#$ − 𝑡!"

 

RFD_ON   Linear  derivative  of  the  force–time  curve  from  ‘force  onset’  to  ‘peak’  events  

𝐹!"#$ − 𝐹!"#$%𝑡!"#$ − 𝑡!"#$%

 

Time  of  Force  Application  

Time  between  ‘force  onset’  to  ‘force  offset’  

𝑡!""#$% − 𝑡!"#$%  

TTP_GO   Time  between  ‘Go’  to  ‘peak’  events  

𝑡!"#$ − 𝑡!"  

TTP_ON   Time  between  ‘force  onset’  to  ‘peak’  events  

𝑡!"#$ − 𝑡!"#$%  

Impulse   Area  under  the  force  time  curve  from  ‘force  onset’  to  ‘force  offset’  events  (trapezoidal  rule)  

𝐹 𝑥 𝑑𝑥!!!"#$

!"#$%

≈ 𝑡!""#$% − 𝑡!"#$%  [𝐹 𝑜𝑛𝑠𝑒𝑡 + 𝐹(𝑜𝑓𝑓𝑠𝑒𝑡)

2]  

Page 29: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

22  

 

 Figure  6.  Between-­‐feet  and  overall  variables  

Table  6.  Between-­‐feet  variables  Variable   Definition   Formula  

Peak  Force  time  Offset  

Time  between  front  and  rear  foot  ‘peak’  forces  

𝑡!_!!"#$ − 𝑡!_!!"#$  

Force  Off  time  Offset  

Time  between  front  and  rear  foot  ‘force  offsets’    

𝑡!_!!""#$% − 𝑡!_!!""#$%  

 

Table  7.  Overall  variables  Variable   Definition   Formula  

Reaction  Time   Time  between  ‘Go’  and  ‘force  onset’  

𝑡!"#$% − 𝑡!"  

Block  Time   Time  in  the  blocks  (i.e.,  time  between  ‘Go’  and  ‘force  offset’)    

𝑡!""#$% − 𝑡!"  

     

Page 30: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

23  

 

 

3.6 Statistics  

 

  Considering  the  first  study  objective,  athlete’s  intra-­‐session  means  and  

standard  deviations  were  computed  for  each  force  signal’s  force–time  variable  (4  

starts  per  session  per  athlete).  Using  these  values,  sessional  coefficients  of  variation  

(CoV)  for  each  variable  were  then  derived  by  dividing  the  standard  deviation  by  the  

mean,  and  multiplying  by  100%.  CoVs  were  then  averaged  across  athletes  to  

compare  relative  variation  between  characteristics.  Following  this,  for  the  second  

objective,  force–time  variables’  means  and  CoVs  were  compared  inter-­‐session,  using  

general  linear  model  analyses  of  variance  (ANOVAs)  with  one  within-­‐participant  

factor  (session).  Alpha  levels  were  set  a  priori  at  0.05;  p-­‐values  less  than  0.05  were  

considered  to  be  statistically  significant.  All  statistical  analyses  were  done  using  SAS  

system  software  (version  9.3.1,  TS1M2;  SAS  Institute  Inc,  Cary,  NC,  USA).    

 

Page 31: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

24  

4 Results  

Considerable  variation  was  observed  in  the  magnitudes  of  variables  associated  

with  all  ten  force–time  characteristics  analyzed,  both  within  and  between  sessions  

(within  athletes).  Of  the  ten  force–time  characteristics,  only  three  had  means  that  

were  not  significantly  different  (p  <  0.05)  inter-­‐session:  pre-­‐tension;  reaction  time;  

and  force  ‘Off’  time  offset.  At  least  one  athletes  exhibited  intra-­‐session  CoVs  of  

greater  than  50%  in  variables  associated  with  seven  of  the  ten  force–time  

characteristics.  Only  block  time  and  force  ‘off’  time  offset  were  found  to  have  no  

CoVs  above  50%  at  the  individual  level.    Larger  CoVs  were  less  frequently  found  at  

the  individual  level  in  force  impulse,  peak  force  and  pre-­‐tension,  while  more  

frequently  found  in  rate  of  force  development,  time  of  force  application,  time  to  

peak,  and  reaction  time.  Specific  results  of  analyses  are  reported  below.  Data  for  

individual  athletes  are  included  in  Appendix  C.  

 

4.1 Pre-­‐Tension  

Resultant  pre-­‐tension  forces  (RES_2  &  RES_3)  were  qualitatively  more  stable  

(6.2%  ≤  CoV  ≤  8.4%)  than  were  their  components  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  (12.4%  

≤  CoV  ≤  62.3%)  (Table  8).  There  was  considerable  variation  in  pre-­‐tension  forces  

across  individual  athletes  (Appendix  C),  but  there  were  no  inter-­‐session  differences  

in  any  of  the  pre-­‐tension  force  means  (p  ≥  0.1486)  (Figure  7)  or  their  CoVs  (p  ≥  

0.1040)  at  the  group  level.    

   

Page 32: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

25  

 

 

Table  8.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  pre-­‐tension  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  

Signal   Session  1   Session  2   p  F_Fy   36.9  (38.2)   25.6  (19.0)   0.3527  F_Fz   17.4  (14.2)   12.4  (11.2)   0.1040  F2F   16.9  (14.6)   11.9  (11.4)   0.1957  F3F   17.0  (15.0)   11.9  (11.4)   0.211  R_Fy   33.3  (41.5)   62.3  (111.0)   0.2526  R_Fz   12.6  (5.0)   11.5  (6.3)   0.6157  R2F   13.0  (4.8)   12.3  (5.9)   0.7732  R3F   12.0  (4.2)   12.5  (5.8)   0.8193  RES_2   6.2  (2.9)   8.3  (6.0)   0.3352  RES_3   6.2  (2.9)   8.4  (5.9)   0.3083  

 

 Figure  7.  Pre-­‐tension  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  

 

Page 33: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

26  

 

4.2 Reaction  Time  

Reaction  times  (standard  deviation)  CoVs  were  between  22.3  (8.5)%  and  33.9  

(5.5)%,  with  four  of  ten  athletes  producing  more  consistent  intra-­‐session  reaction  

times  (CoV  ≤  50%)  than  others.  Five  of  10  athletes  had  less  than  a  5%  inter-­‐session  

change  in  CoVs.    No  significant  inter-­‐session  differences  were  found  in  mean  

reaction  times  (p  =  0.5274)  or  CoVs  (p  =  0.2488)  (Figure  8).  

 Figure  8.  Reaction  times  (s)  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.    

 

4.3 Block  Time  

Block  times  achieved  were  stable,  with  mean  (standard  deviation)  intra-­‐

session  CoVs  being  3.8  (1.8)%  for  session  1  and  6.3  (7.6)%  for  session  2;  only  one  

athlete’s  CoV  exceeded  10%  intra-­‐session.  No  significant  differences  were  found  in  

inter-­‐session  CoVs  (p  =  0.3887).  Although  athletes  exhibited  low  levels  of  variation  

in  block  times  intra-­‐session,  block  times  were  significantly  different  inter-­‐session  (p  

=  0.044),  with  athletes  achieving  different  ranges  of  BTs  at  both  sessions  (Figure  9).    

Page 34: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

27  

 

 Figure  9.  Block  times  (s)  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  *  indicates  that  mean  values  were  significantly  different  inter-­‐session  (p  <  0.05).  

 

4.4 Rate  of  Force  Development  (RFD)  

RFD  CoVs  from  ‘Go’  (Table  9)  as  well  as  from  force  onset  (Table  10)  are  

presented  below.  CoVs  were  significantly  different  (p  <  0.05)  inter-­‐session  for  

multiple  force  signals,  regardless  of  the  method  used  to  calculate  RFD  (Tables  9  and  

10).  However,  the  two  methods  of  RFD  calculations  yielded  RFD  values  that  were  

different  in  magnitudes  (Figures  10  and  11)  and  in  CoVs  (Tables  9  and  10).  When  

reaction  time  was  included  in  RFD  calculations,  mean  (standard  deviation)  intra-­‐

session  CoVs  between  6.9  (5.4)%  and  19.1  (20.2)%  were  found,  whereas  when  RT  

was  excluded,  CoVs  were  between  14.0  (7.8)%  and  51.4  (33.2)%.  Thus,  more  

variance  was  detected  when  considering  RFD  from  force  onset  (one  athlete’s  intra-­‐

session  CoV>50%),  as  compared  to  RFD  from  ‘Go’  (seven  athletes’  intra-­‐session  

Page 35: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

28  

 

CoV>50%).  No  significant  inter-­‐session  difference  in  mean  RFD  was  found  for  either  

method  of  RFD  calculation  (p  ≤  0.1615).    

 Table  9.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  RFD  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  

Signal   Session  1   Session  2   p  F_Fy   16.3  (18.4)   6.9  (5.4)   0.0764  F_Fz   16.8  (14.9)   9.7  (6.2)   0.1541  F2F**   19.0  (20.3)   10.0  (10.8)   0.0462  F3F**   19.1  (20.2)   10.0  (10.8)   0.0457  R_Fy**   16.5  (7.6)   10.2  (6.4)   0.0053  R_Fz   17.0  (11.4)   14.0  (7.8)   0.1498  R2F**   16.7  (9.5)   11.7  (7.0)   0.0167  R3F**   16.7  (9.5)   11.7  (7.0)   0.0176  RES_2   10.2  (4.5)   9.3  (6.0)   0.7537  RES_3   10.2  (4.5)   9.3  (6.0)   0.7606  

**  Significant  inter-­‐session  difference  in  group-­‐level  CoV  (p  <  0.05)    

 

 Figure  10.  RFD  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  

Page 36: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

29  

 

Table  10.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  RFD  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  

Signal   Session  1   Session  2   p  F_Fy**   40.3  (22.0)   21.4  (14.4)   0.0159  F_Fz   17.0  (11.4)   14.0  (7.8)   0.1388  F2F**   42.1  (23.9)   21.5  (14.3)   0.0146  F3F**   42.2  (23.8)   21.5  (14.3)   0.0145  R_Fy   33.1  (31.1)   26.6  (31.1)   0.6372  R_Fz   38.1  (32.2)   29.5  (30.0)   0.5316  R2F   34.3  (31.9)   28.7  (29.9)   0.6696  R3F   34.3  (31.9)   28.6  (29.9)   0.6687  RES_2   51.4  (33.2)   34.5  (31.9)   0.1619  RES_3   51.4  (33.2)   34.5  (31.8)   0.1623  

**  Significant  inter-­‐session  difference  in  group-­‐level  CoV  (p  <  0.05)    

   

 Figure  11.  RFD  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  

 

Page 37: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

30  

 

 

4.5 Peak  Force  

Mean  (standard  deviation)  intra-­‐session  peak  force  CoVs  between  5.1  (5.1)%  

and  14.5  (18.9)%  were  found  (Table  11),  with  only  one  athlete  exhibiting  an  intra-­‐

session  CoV  greater  than  50%.  A  significant  difference  in  inter-­‐session  CoVs  was  

found  in  rear  foot  horizontal  force  (p  =  0.0233)  (Table  11).  No  inter-­‐session  

significant  differences  (p  >  0.1083)  in  mean  peak  force  values  were  found  (Figure  

12).    

Table  11.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  peak  force  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  

Signal   Session  1   Session  2   p  F_Fy   12.7  (17.4)   5.1  (5.1)   0.1159  F_Fz   12.4  (12.3)   7.7  (6.1)   0.2309  F2F   14.5  (18.9)   8.2  (12.6)   0.0772  F3F   14.5  (18.8)   8.3  (12.5)   0.0790  

R_Fy**   14.1  (7.5)   10.4  (7.9)   0.0233  R_Fz   13.1  (9.8)   12.2  (9.2)   0.6642  R2F   13.0  (8.5)   10.8  (8.8)   0.1855  R3F   13.0  (8.5)   10.8  (8.8)   0.2009  RES_2   6.7  (2.7)   8.6  (6.7)   0.3872  RES_3   6.8  (2.6)   8.6  (6.7)   0.3939  

**  Significant  inter-­‐session  difference  in  group-­‐level  CoV  (p  <  0.05)    

 

Page 38: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

31  

 

 Figure  12.  Peak  Force  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  

4.6 Impulse  

Likely  due,  in  part,  to  increased  front  foot  block  time,  impulse  magnitudes  

were  on  average  larger  in  the  front  foot  than  the  rear  foot  (Figure  13).  Mean  

(standard  deviation)  intra-­‐session  CoVs  were  between  6.7  (3.9)%  to  16.8  (8.3)%  

(Table  12),  with  only  one  athlete  exhibiting  intra-­‐session  CoVs  greater  than  50%.  

Significant  inter-­‐session  differences  in  mean  force  impulses  were  found  in  the  front  

foot  (F_Fz  [p  =  0.0140];  F2F  [p  =  0.0284];  F3F  [p  =  0.0306])  and  the  resultant  of  

horizontal  and  vertical  impulse  (RES_2  [p  =  0.0490])  (Figure  13).  A  significant  

difference  in  inter-­‐session  CoVs  was  found  in  the  rear  foot  horizontal  force  (Table  

12).  

   

Page 39: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

32  

 

 

Table  12.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  Force  Impulse  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  

Signal   Session  1   Session  2   p  F_Fy   10.0  (7.1)   10.8  (19.8)   0.9219  F_Fz   16.8  (8.3)   14.5  (18.0)   0.7128  F2F   14.2  (7.2)   12.3  (18.5)   0.7715  F3F   14.1  (7.2)   12.3  (18.5)   0.7728  

R_Fy**   15.1  (10.7)   6.7  (3.9)   0.0118  R_Fz   15.9  (16.8)   9.7  (3.8)   0.2477  R2F   14.3  (13.2)   7.5  (3.7)   0.1172  R3F   14.3  (13.2)   7.5  (3.8)   0.1142  RES_2   13.2  (8.8)   12.8  (17.1)   0.9513  RES_3   13.2  (8.7)   12.8  (17.1)   0.9496  

**  Significant  inter-­‐session  difference  in  group-­‐level  CoV  (p  <  0.05)    

 

 Figure  13.  Impulse  of  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  *  Significant  inter-­‐session  difference  in  group  mean  (p  <  0.05).  

 

Page 40: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

33  

 

4.7 Time  to  Peak  (TTP)  

Differences  between  methods  of  calculation  were  apparent  in  mean  (standard  

deviation)  CoVs  with  TTP  from  ‘Go’  CoVs  found  between  4.2  (1.6)%  and  6.2  (5.9)%  

(Table  13)  and  TTP  from  force  onset  CoVs  between  20.0  (18.2)%  and  68.9  (46.9)%  

(Table  14).  No  inter-­‐session  significant  differences  (p  >  0.05)  in  mean  TTP  or  TTP  

CoVs  were  found  when  calculating  time  to  peak  from  ‘Go’  (Table  13,  Figure  14).  

However,  significant  inter-­‐session  differences  in  CoVs  in  front  foot  (F_Fy  [p  =  

0.0043];  F_Fz  [p  =  0.0103];  F2F  [p  =0.0023];  F3F  [p  =0.0022])  as  well  as  resultant  

force  (RES_2  [p  =0.0297];  RES_3  [p  =  0.0297])  (Table  14)  time  to  peak  from  force  

onset  were  found.  When  calculating  TTP  from  force  onset,  no  significant  inter-­‐

session  differences  in  mean  TTP  were  found  (p  ≥  0.5829)  (Figure  15).    

 

Table  13.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  TTP  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10).  

Signal   Session  1   Session  2   p  F_Fy   5.8  (5.0)   4.3  (1.8)   0.4183  F_Fz   4.8  (2.1)   4.2  (1.6)   0.4919  F2F   6.2  (5.9)   5.0  (2.4)   0.4434  F3F   6.2  (5.9)   5.0  (2.4)   0.4353  R_Fy   5.6  (3.0)   5.5  (2.2)   0.9873  R_Fz   5.6  (2.7)   5.9  (2.4)   0.8148  R2F   5.5  (3.0)   5.7  (2.3)   0.9072  R3F   5.5  (3.0)   5.7  (2.3)   0.9037  RES_2   5.9  (3.1)   5.8  (2.1)   0.9669  RES_3   5.9  (3.1)   5.8  (2.1)   0.9687  

 

Page 41: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

34  

 

 Figure  14.  TTP  from  ‘Go’  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  

 Table  14.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  TTP  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  inter-­‐session  across  all  athletes  (N=10)  

Signal   Session  1   Session  2   p  F_Fy**   47.2  (24.2)   20.0  (18.2)   0.0043  F_Fz**   46.6  (24.9)   22.7  (23.2)   0.0103  F2F**   50.8  (24.5)   23.0  (18.7)   0.0023  F3F**   50.8  (24.5)   23.0  (18.7)   0.0022  R_Fy   34.4  (33.8)   20.7  (18.2)   0.2001  R_Fz   37.7  (33.5)   22.2  (18.4)   0.1683  R2F   35.0  (34.2)   22.1  (17.9)   0.2374  R3F   35.0  (34.2)   22.1  (17.9)   0.2377  

RES_2**   68.9  (46.9)   33.6  (32.9)   0.0297  RES_3**   68.9  (46.9)   33.6  (32.9)   0.0297  

**  Significant  inter-­‐session  difference  in  group  CoV  (p  <  0.05)    

   

Page 42: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

35  

 

   Figure  15.  TTP  from  force  onset  resultant  (RES_2  &  RES_3)  and  component  (F_Fy,  F_Fz,  R_Fy  &  R_Fz)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.  

4.8 Time  of  Force  Application  

Mean  (standard  deviation)  time  of  force  application  CoVs  between  14.6  

(10.5)%  and  37.7  (20.8)%  were  found,  with  significant  inter-­‐session  differences  (p  =  

0.0131)  in  CoVs  found  in  the  front  foot  (Table  15).  No  significant  inter-­‐session  

differences  (p  ≥  0.3270)  in  mean  force  application  were  found  (Figure  16).  

 Table  15.  Mean  (SD)  sessional  (1&2)  CoV  (%)  and  p  values  for  Time  of  Force  Application  resultant  and  component  (Front  &  Rear)  forces  inter-­‐session  across  all  athletes  (N=10)  

Signal   Session  1   Session  2   p  Front**   37.7  (20.8)   19.6  (18.2)   0.0131  Rear   23.6  (22.1)   14.6  (10.5)   0.1951  

Resultant   28.4  (22.6)   17.2  (18.7)   0.1053  **  Significant  inter-­‐session  difference  in  group-­‐level  CoV  (p  <  0.05)    

Page 43: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

36  

 

 Figure  16.  Time  of  force  application  resultant  and  component  (Front,  Rear)  forces  compared  inter-­‐session.  Mean  values  across  all  athletes  (N  =  10)  are  presented;  error  bars  represent  the  standard  deviation.  

4.9 Peak  Force  Time  Offset    

Very  small  mean  (standard  deviation)  intra-­‐session  CoVs  were  observed  and  

were  not  different  between  session  1  [0.1  (0.3)%]  and  session  2  [0.1  (0.2)%].  No  

significant  inter-­‐session  differences  in  means  (p  =  0.7119)  or  CoVs  (p  =  0.3000)  

were  found  (Figure  17).    

Page 44: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

37  

 

 Figure  17.  Peak  Force  Time  Offset  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.    

 

4.10 Force  ‘Off’  Time  Offset  

Mean  (standard  deviation)  intra-­‐session  force  ‘Off’  time  offset  CoVs  from  7.7  

(5.5)%  to  11.4  (8.5)%  were  found.  No  significant  inter-­‐session  differences  in  means  

(p  =  0.4070)  or  CoVs  (p  =  0.1291)  were  found.    

Page 45: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

38  

 

 Figure  18.  Force  ‘Off’  Time  Offset  compared  inter-­‐session.  Mean  values  across  all  athletes  (N=10)  are  presented;  error  bars  represent  the  standard  deviation.    

Page 46: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

39  

5 Discussion    

Previous  research  and  mechanical  rationale  were  used  to  identify  block  start  

force–time  characteristics  that  have  (or  could)  discriminate  between  sprinters  of  

varying  skill  and  ability  levels.  Results  of  this  study  extend  this  knowledge  by  

probing  the  evaluative  properties  of  these  characteristics.  Although  between-­‐athlete  

variation  in  force–time  characteristics  was  examined  herein  via  the  CoV  as  a  

secondary  objective,  the  primary  focus  was  on  the  quantification  and  description  of  

the  amount  of  within-­‐athlete  variation  using  the  CoV.  While  significant  inter-­‐session  

differences  in  means  also  provide  important  information  about  between-­‐session  

variability,  differences  in  CoVs  inter-­‐session  demonstrate  that  athletes  are  not  

consistently  variable  from  session  to  session;  the  bandwidth  of  variability  exhibited  

by  an  athlete  may  not  be  consistent  from  one  training  session  to  the  next.    

Of  the  ten  variables  analyzed,  only  three  were  not  found  to  be  significantly  

different  (p<0.05)  in  both  mean  and  CoV  across  all  force  signals  between  training  

sessions:  Pre-­‐tension,  RT,  and  force  ‘Off’  time  offset.  Although  no  significant  

differences  in  variation  between  sessions  existed,  individual  athletes  still  

demonstrated  variability  within  a  training  session  in  many  of  these  measures.  

Further,  six  of  ten  measures  were  not  only  variable  within  athletes  (between  starts)  

but  were  also  different  depending  on  the  components  of  the  force  signal  analyzed.  

Individual  athletes  were  variable  within  and  between  training  sessions  in  these  

measures  and  in  many  cases,  the  variation  wasn’t  necessarily  consistent  between  

athletes  for  the  same  measures.  CoV  ranges  for  force–time  characteristics  were  

comparable  to  previous  studies  (Table  16),  with  some  characteristics  covering  a  

larger  range  of  CoVs  (RT,  RFD),  others  covering  a  smaller  range,  and  some  achieved  

more  consistency  (BT,  peak  force  time  offset).    

   

Page 47: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

40  

 

 

Table  16.  Force–time  characteristic  CoV  (%)  ranges  from  literature  and  current  study  

   

As  was  found  in  previous  studies,  results  varied  depending  on  the  method  of  

calculation  of  select  variables.  For  example,  rate  of  force  development,  calculated  

from  ‘Go’  and  from  force  onset  showed  discrepancies  in  RFD  magnitude,  as  well  as  

within-­‐  and  between-­‐day  variation.  When  calculated  from  ‘Go’,  significant  

differences  (p  <  0.05)  between  sessions  were  found  in  planar  (X  &  Y)  and  3-­‐

dimensional  (X,  Y  &  Z)  rear  and  front  foot  CoVs.  This  differed  from  RFD  from  force  

‘onset’  where  significant  differences  were  found  in  front  foot  horizontal,  planar  (X  &  

Y)  and  3-­‐dimensional  (X,  Y  &  Z)  front  foot  CoVs.  A  similar  phenomenon  was  

observed  as  well  in  time  to  peak  measures  calculated  from  ‘Go’  and  force  ‘onset’.  It  

was  expected  that  TTP  magnitudes  would  differ  based  on  the  calculation  

delimitations.  As  such,  between-­‐session  significant  differences  were  observed  in  

TTP  from  ‘Go’  CoVs,  whereas  TTP  from  force  ‘onset’  was  significantly  different  

between  sessions  in  the  front  foot,  as  well  as  in  the  resultant  planar  (X  &  Y)  and  3-­‐

dimensional  (X,  Y  &  Z)  rear  and  front  foot  combined  CoVs.  It  has  been  suggested  that  

discrepancies  in  definitions  of  discrete  parameters  have  led  to  inconsistent  findings  

in  biomechanics  literature  (O'Connor  &  Bottum,  2009).  TTP  and  RFD  variation  were  

sensitive  to  changes  in  calculation  methods.  It  is  therefore  important  to  consider  the  

sprint  start  quantities  being  targeted  by  these  two  measures  before  appropriating  a  

calculation  method.    When  comparing  an  athlete’s  rate  of  force  development  to  a  

measure  of  power  for  example,  a  more  appropriate  time  frame  for  RFD  calculation  

would  be  from  force  ‘onset’;  whereas  including  RT  in  RFD  calculations  may  give  

more  insight  into  the  whole  movement  initiation  process  from  a  motor  control  

perspective.  However,  in  deciding  which  approach  is  more  appropriate,  one  must  

!

!! Pre%

tension!RT! BT! RFD! Peak!

Force!Impulse! TTP! Time!of!

Force!App.!

Peak!Time!Offset!

‘Off’!Time!Offset!

Current!Study! 6"62$ 22"34$ 4"6$ 7"42$ 5"15$ 8"17$ 4"69$ 15"38$ 0.1$ 8"11$Willwacher!(2013)! N/A$ 10"56$ 5"8$ 28"54$ 3"27$ N/A$ N/A$ N/A$ N/A$ N/A$Fortier!(2005)! N/A$ 13"17$ 5"8$ N/A$ 19"30$ N/A$ 14"19$ 5"22$ N/A$ 13"19$Slawinski!(2010)! N/A$ 11"21$ 5"6$ 35"45$ N/A$ 13$ N/A$ 11"19$ N/A$ N/A$Mero!(1983)! N/A$ N/A$ N/A$ N/A$ 13"23$ 6"25$ 20"32$ 6"10$ N/A$ N/A$

Baumann!(1976)! N/A$ 12"18$ 4"8$ N/A$ 13"20$ 8"9$ N/A$ N/A$ N/A$ N/A$

Page 48: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

41  

 

account  that  the  latter  approach  will  inherently  exhibit  variability  as  a  result  of  RT.  

Further,  to  mitigate  the  effects  of  inducing  further  non-­‐biological  variability  into  

measurements  used  for  tracking,  maintaining  a  consistent  measurement  

environment  is  imperative.  For  instance,  when  measuring  RT,  the  ‘Go’  cue  should  

come  from  the  same  source  location,  at  the  same  volume,  otherwise,  the  

measurement  of  RT  may  not  be  comparable  from  start  to  start.    

This  study  examined  discrete  force–time  characteristics  of  the  sprint  start  

that  have  been  linked  empirically  or  theoretically  (based  on  mechanical  rationale)  

with  sprint  race  performance.  It  has  been  well  researched  that  the  transition  from  a  

static  to  a  dynamic  state  of  human  movement  is  inherently  and  predictably  variable  

by  nature  both  within  and  between  individuals  (Diedrich  &  Warren,  1995;  Kelso,  

Scholz,  &  Schoner,  1986;  Kelso,  Schoner,  Scholz,  &  Haken,  1987).  Thus,  a  single  

(common)  sprint  start  strategy  is  unlikely  to  afford  elite  performers  the  flexibility  

and  adaptability  necessary  to  consistently  achieve  high  outcome  standards  across  

various  conditions  (Glazier  &  Davids,  2009).  An  assumption  is  often  made  that  there  

is  an  ‘isomorphic’  common  optimal  pattern  of  movement  based  on  the  notion  that  

there  is  a  single  most  effective  and  efficient  way  of  performing  a  movement  (Brisson  

&  Alain,  1996).    Traditionally,  skilled  motor  performance  has  been  characterized  by  

low  variability  in  outcome  measures  (Anderson  &  Pitcairn,  1986)  and  thus,  the  

assumption  is  made  that  these  outcomes  are  the  result  of  highly  consistent  patterns  

of  movement  coordination  and  control.  Based  on  these  assumptions,  a  ‘champion’s  

model’  approach  is  taken  wherein  highly  skilled  performers’  movement  solutions  

are  widely  accepted  as  optimized  (Hatze,  1983)  and  thereby  imitated  by  less  skilled  

performers  (Newell,  1986).  However  the  sprint  start  is  a  complex  task  with  multiple  

challenges  such  as  horizontally  and  vertically  accelerating  from  the  blocks  while  at  

the  same  time  situating  oneself  for  the  subsequent  acceleration  phase  (Tellez,  

1984),  which  leads  to  a  rather  inconsistent  and  large  selection  of  variables  to  be  

optimized  (Latash,  2012).  Thus,  although  many  discrete  force–time  characteristics  

have  been  found  to  discriminate  between  performers  of  varying  skill  and  ability  

levels  (as  evidenced  in  the  literature  review),  the  evaluative  properties  of  these  

characteristics  depend,  in  part,  on  the  variation  of  their  across  repetitions  and  

Page 49: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

42  

 

sessions  within  a  given  athlete.  From  the  results  of  this  study,  athletes  exhibit  

different  levels  of  variability  depending  on  the  characteristic  analyzed  both  within-­‐  

and  between-­‐session.    Through  characterization  of  their  within-­‐  and  between-­‐  

session  variation,  a  bandwidth  of  variability  for  each  individual  provides  a  

framework  for  evaluation  of  athletes  in  the  daily  training  environment,  regardless  of  

their  skill  level.  More  specifically,  results  of  this  research  can  be  used  to  calculate  

effect  sizes,  conduct  statistical  power  analyses,  and  to  thus  aid  in  both  group  and  

single-­‐subject  experimental  designs.  The  information  required  for  these  

aforementioned  purposes  was  largely  lacking  in  the  literature,  and  was  the  key  

motivation  for  this  thesis.    

Many  of  the  discrete  measures  studied  have  the  potential  to  interact  with  one  

another.  Specifically,  when  considering  multiple  force–time  characteristics  of  the  

sprint  start,  interdependence  of  these  measures  is  inevitable.  For  example,  rate  of  

force  development  is  derived  using  two  other  features  that  have  been  found  to  be  

determinants  of  high  performance  (time  to  peak  as  well  as  peak  force).  Further,  

impulse  is  a  function  of  time  of  force  application  and  force  magnitudes.  Many  

studies  have  correlated  combinations  of  the  same  measures  to  outcome  such  as  total  

race  time.  Given  the  numerous  measures  in  this  study  presents,  a  more  complete  

description  of  the  sprint  start  waveform  resulted  with  respect  to  information  

currently  available  in  the  literature.  Although  these  measures  provide  a  convenient  

summary  of  the  start  for  the  purpose  of  monitoring  progress,  it  must  still  be  

acknowledged  that  attempts  to  collapse  start  data  into  discrete  measures  could  

result  in  a  loss  of  other  potentially  valuable  information  from  the  waveforms  

themselves.  But,  by  analyzing  a  greater  number  and  variety  of  discrete  force–time  

characteristics,  the  risk  of  overlooking  important  information  could  be  reduced.  For  

example,  based  on  Newton’s  Second  Law  of  Motion,  creating  a  large  horizontal  

impulse  in  the  blocks  will  result  in  high  block  exit  velocity.  Biomechanically  

however,  although  producing  a  small  force  over  a  long  period  of  time  will  result  in  a  

large  impulse,  the  effectiveness  of  that  impulse  in  producing  a  large  horizontal  

velocity  is  lost  in  an  explosive  activity  like  the  sprint  start  due  to  the  mechanical  

behaviour  of  muscle-­‐tendon  complexes  (Knudsen,  2009).  Thus,  knowing  the  

Page 50: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

43  

 

magnitude  of  time  of  force  application  of  the  impulse  would  be  more  informative  in  

drawing  conclusions  about  the  success  of  the  sprint  start  than  impulse  alone.    

Although  results  from  this  study  may  not  be  generalizable  in  uncovering  a  

fundamental  principle  of  the  sprint  start,  perhaps  the  ‘champion’s  model’  (Hatze,  

1983)  that  uses  information  such  as  discrete  characteristics  about  elite  athletes  to  

develop  and  evaluate  training  interventions  for  other  less-­‐skilled  athletes  (Fortier  et  

al.,  2005;  Mendoza  &  Schollhorn,  1993;  Myer,  Ford,  Brent,  Divine,  &  Hewett,  2007),  

is  not  appropriate  when  considering  such  a  complex  movement  task.  It  has  been  

suggested  that  individuals’  performances  should  be  verified  for  similarities  or  

trends  in  the  data  before  being  grouped  for  analysis  (Bates,  Dufek,  &  Davis,  1992).  

Despite  being  regarded  as  an  important  consideration  for  sport  biomechanists,  

variability  within  an  athlete  and  between  athletes  has  not  been  thoroughly  

researched  (Bartlett  et  al.,  2007);  analysis  of  discrete  measures  is  often  found  to  be  

an  unsatisfactory  approach  due  to  reductions  in  and  discarded  data  (Dona,  Preatoni,  

Cobelli,  Rodano,  &  Harrison,  2009;  Donoghue,  Harrison,  Coffey,  &  Hayes,  2008).  

Consequently,  one  quantity  cannot  provide  a  complete  description  of  a  complex  

movement  like  the  sprint  start.  Using  a  non-­‐invasive  instrument  such  as  FP-­‐

instrumented  start  blocks  provides  the  means  to  create  a  variability  profile  for  

individual  athletes’  discrete  characteristics  to  provide  a  more  complete  description  

of  their  performance  in  the  blocks.  In  addition,  despite  the  convenience  of  discrete  

measures  in  applied  sport  science,  future  studies  may  look  to  consider  a  more  

comprehensive  biomechanical  waveform  analysis  such  as  principal  component  

analysis  to  better  understand  the  interactivity  of  discrete  force  time  characteristics.  

PCA  converts  a  number  of  correlated  variables  into  a  smaller  number  of  

uncorrelated,  independent  variables  (Deluzio,  Harrison,  Coffey,  &  Caldwell,  2014),  

potentially  providing  athletes,  coaches,  and  sport  scientists  with  a  more  complete  

force–time  profile  informing  the  nature  of  the  variability  both  inter-­‐  and  intra-­‐

individual.  

   

Page 51: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

44  

 

5.2 Study  Limitations      

There  were  several  (de)limitations  that  must  be  acknowledged.  This  study  

was  designed  to  primarily  to  quantify  and  describe  the  variation  in  force–time  

characteristics  in  the  daily  training  environment  and  did  not  afford  opportunities  to  

control  a  number  of  factors.  First,  data  were  collected  during  coach-­‐led  team  

training  sessions.  As  a  result,  although  the  number  of  trials  was  dictated  by  the  

coach  and  informed  by  the  athlete’s  condition  that  day,  start  data  was  a  reflection  of  

the  training  environment.  Second,  no  uncharacteristic  data  were  removed  from  

analyses.  Starts  were  deemed  ‘successful’  if  the  athlete  completed  the  30m  sprint  

following  the  start.  These  starts  were  part  of  the  bandwidth  representative  of  

training  data,  despite  being  potential  statistical  ‘outliers’.  Third,  the  number  of  

potential  participants  was  constrained  based  on  the  fact  that  volunteers  from  a  

small  population  of  intercollegiate  sprinters  who  met  inclusion  criteria  were  

recruited  during  a  single  training  phase.    Finally,  the  expertise  level  of  athletes  was  

not  homogeneous,  with  some  athletes  just  entering  the  training  program,  and  others  

achieving  national  qualification  standards.  Consequently,  although  there  is  limited  

generalizability  of  group  data,  this  study  provides  rationale  and  information  

applicable  for  the  design  and  execution  of  case  studies.  Despite  these  

(de)limitations,  in-­‐field  training  data  were  acquired  within  one  training  phase  which  

will  help  coaches  and  scientists  identify  and  interpret  discrete  force–time  

characteristics  in  the  daily  training  environment,  without  the  effects  of  extraneous  

changes  in  the  training  cycle.  The  FP-­‐instrumented  starting  blocks  allow  for  in-­‐field  

task  evaluation,  eliminating  the  use  of  surrogate  testing  to  evaluate  performance.  

Further,  data  presented  herein  will  inform  future  evaluation  and  feedback  of  

outputs  from  the  FP-­‐instrumented  start  blocks  at  the  individual-­‐level  in  the  daily  

training  environment  in  the  pre-­‐competition  phase  and  in  other  phases  with  further  

monitoring.  These  data  could  also  be  used  in  future  research  to  inform  the  

bandwidth  of  inherent  variability  in  discrete  force–time  characteristics  of  the  sprint  

start.  As  these  characteristics  are  often  used  as  performance  measures  (i.e.,  effect  of  

sprint  start  performance  on  total  race  performance)  as  well  as  outcome  measures  

Page 52: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

45  

 

(i.e.,  effect  of  strength  training  protocol  on  sprint  start  performance)  in  research,  

these  data  could  be  used  as  means  for  athlete-­‐specific  statistical  power  analyses  in  

determining  the  magnitude  of  change  necessary  to  evaluate  a  difference  in  

performance.    

To  address  the  above  (de)limitations,  future  studies  could  look  to  integrate  FP-­‐

instrumented  starting  blocks  on  a  more  permanent  basis  in  the  evaluation  and  

monitoring  of  performance  (using  discrete  measures  and  waveform  analyses).  With  

this  non-­‐invasive  technology,  the  integration  of  FP-­‐instrumented  start  blocks  could  

lead  to  more  representative  data  of  an  athlete’s  performance  over  the  course  of  

training  cycles.  Once  a  range  of  variability  is  established,  future  studies  could  look  to  

address  the  validity  of  the  more  stable  measurements  as  performance  parameters  of  

the  sprint  start.  Further,  if  there  is  mechanical  rationale  for  many  of  the  unstable  

force–time  measures,  coaches  and  scientists  should  consider  establishing  the  

magnitude  of  change  required  outside  of  an  intra-­‐individual’s  variability  bandwidth  

that  demonstrates  a  consequential  change  in  performance.  For  example,  participant  

S03  had  a  1.5%  CoV  in  impulse  while  participant  S02  had  a  17%  CoV.  A  10%  

increase  in  impulse  is  might  be  deemed  meaningful  for  S03  but  not  for  S02  as  it  lies  

within  the  bandwidth  of  variability  for  S02  and  outside  for  S03.    

It  is  also  important  to  note  that  decisions  pertaining  to  the  way  that  FP  signals  

were  conditioned  and  analyzed  could  influence  how  the  findings  are  interpreted.  

First,  although  force–time  characteristics  can  be  calculated  using  many  different  

methods,  this  study  only  considered  one  or  two  methods  of  calculation  per  

characteristic.  Different  methods  of  calculation  could  induce  or  reduce  variability  

from  these  measures,  as  was  seen  in  RFD  and  TTP  from  ‘Go’  and  force  onset.  

Including  RT  in  the  derivation  of  these  quantities  changed  the  variability  of  both  

force–time  characteristics.  Thus,  the  method  of  calculation  of  RT  had  a  large  impact  

on  results  external  to  its  own  measurement,  as  it  was  a  factor  in  other  

characteristics.  Although  choice  of  calculation  has  an  impact  on  results,  

methodological  reporting  and  consistency  can  help  to  narrow  the  scope  of  

interpretation  of  characteristic  variability  in  data.  Second,  data  analysis  involved  the  

use  of  CoV.  Although  CoV  inherently  eliminates  the  notion  of  an  absolute  change  in  

Page 53: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

46  

 

magnitude  of  a  force–time  characteristic,  as  a  relative  measure,  it  allowed  for  

comparison  between  force–time  characteristics.  This  provided  a  better  

understanding  of  which  measures  were  more  stable  than  others.  Subsequently,  an  

analysis  of  variance  of  both  mean  magnitudes  and  CoVs  produced  between-­‐session  

measures  of  variability.  ANOVAs  of  mean  magnitudes  provided  a  measure  of  an  

athlete’s  between-­‐session  variance  of  an  individual  characteristic.  ANOVAs  of  CoVs  

informed  the  between-­‐session  consistency  of  within-­‐session  variability.  That  is,  

whether  an  athlete  was  consistently  variable  session-­‐to-­‐session.      

External  to  measuring  performance  and  progression  or  discrete  force–time  

measures,  tracking  the  type  and  amount  of  variability  could  produce  valuable  

information  about  an  athlete’s  progression  or  condition.  How  variability  is  

interpreted  in  the  sprint  start  however,  has  yet  to  be  explored.  Some  theoretical  

constructs  including  general  motor  program  theory  consider  some  of  the  variability  

to  be  “noise”,  and  thus  a  source  of  decrement  in  performance.  It  is  understood  in  

this  that  more  skilled  performers  exhibit  less  variability.  Other  theories  such  as  

dynamical  systems  theory  or  ecological  dynamics  maintain  that  some  variability  is  

functional  wherein  fundamental  coordination  is  “the  process  of  mastering  the  

redundant  [or  excess]  DoFs,”  somewhat  characterizing  excess  DoFs  as  possible  

sources  of  variability  (Bernstein,  1967).  Thus,  there  is  potential  to  further  interpret  

variability  in  performance.  For  example,  an  anomalous  increase  in  an  athlete’s  

sessional  CoV  within  a  training  phase  could  suggest  there  is  another  factor  

interfering  with  performance  (i.e.,  overtraining,  injury  etc.)  or  augmenting  

performance  (i.e.,  experimenting  with  different  movement  solutions  as  personal  

constraints  vary  [e.g.,  training-­‐induced  changes  in  muscular  strength]).  

Interpretation  of  variability  may  also  theoretically  have  evaluative  applicability.  In  

terms  of  training  phases,  athletes  may  exhibit  more  variability  during  technical  

training  phases,  as  they  explore  their  biomechanical  degrees  of  freedom  (Glazier  &  

Davids,  2009).  Finally,  using  an  athlete’s  bandwidth  of  variability  could  also  provide  

a  measure  of  athlete  readiness.  Unless  an  athlete  is  achieving  standards  within  or  

above  their  bandwidth,  coaches  may  consider  altering  training  or  warm-­‐up  to  

Page 54: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

47  

 

reflect  an  athlete’s  state  of  readiness.  More  research  is  required  however  to  

accurately  interpret  and  evaluate  variability.    

Page 55: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

48  

6 Conclusion      

Data  from  this  study  provides  a  more  complete  description  of  the  magnitudes  

and  variation  in  discrete  force–time  characteristics  of  the  block  start  than  currently  

exists  in  the  literature.  This  information  is  relevant  for  monitoring  and  tracking  

performance  in  the  daily  training  environment,  especially  given  that  recent  

technological  advancements  have  made  it  feasible  to  measure  foot-­‐block  forces  in  

field  settings.  Although  the  number  and  variety  of  measures  presented  herein  adds  

significantly  to  the  knowledge  base,  future  research  involving  waveform  analyses  

(e.g.,  PCA)  is  warranted  to  determine  whether  important  information  from  the  

waveforms  is  lost  in  the  discretization  process.  The  most  immediate  and  direct  

application  of  this  research  is  that  the  knowledge  gained  can  be  used  to  calculate  

effect  sizes,  conduct  statistical  power  analyses,  and  therefore,  to  design  future  

observational  and  experimental  studies.  The  lack  of  information  necessary  for  these  

aforementioned  purposes  was  the  primary  motivation  for  conducting  this  

descriptive  study.      

Page 56: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

49  

References    Anderson,  Mike,  &  Pitcairn,  Tom.  (1986).  Motor  control  in  dart  throwing.  Human  

Movement  Science,  5(1),  1-­‐18.    Bartlett,  R.,  Wheat,  J.,  &  Robins,  M.  (2007).  Is  movement  variability  important  for  

sports  biomechanists?  Sports  Biomech,  6(2),  224-­‐243.  doi:  10.1080/14763140701322994  

Bates,  Barry  T.,  Dufek,  JS,  &  Davis,  Howard  P.  (1992).  The  effect  of  trial  size  on  statistical  power.  Med  Sci  Sports  Exerc,  24,  1059-­‐1068.    

Baumann,  W.  (1976).  Kinematic  and  dynamic  characteristics  of  the  sprint  start.  Paper  presented  at  the  International  Congress  on  Biomechanics,  Jyväskylä,  Finland.  

Bernstein,  Nikolai.  (1967).  the  co-­‐ordination  and  regulation  of  movement.  University  of  Michigan:  Pergamon  Press.  

Bezodis,  N.  E.,  Salo,  A.  I.,  &  Trewartha,  G.  (2010).  Choice  of  sprint  start  performance  measure  affects  the  performance-­‐based  ranking  within  a  group  of  sprinters:  which  is  the  most  appropriate  measure?  Sports  Biomech,  9(4),  258-­‐269.  doi:  10.1080/14763141.2010.538713  

Brisson,  Therese  A.,  &  Alain,  Claude.  (1996).  Should  common  optimal  movement  patterns  be  identified  as  the  criterion  to  be  achieved?  Journal  of  Motor  Behavior,  28(3),  211-­‐223.    

Brown,  A.M.,  Kenwell,  Z.R.,  Maraj,  B.K.V.,  &  Collins,  D.F.  (2008).  "Go"  signal  intensity  influences  the  sprint  start.  Medicine  &  Science  in  Sports  &  Exercise,  40(6),  1142-­‐1148.    

Buhrle,  M.,  Schmidtbleicher,  D.,  &  Ressel,  H.  (1983).  Die  spezielle  Diagnose  der  einzelnen  Kraftkomponenten  in  Hochleistungssport.  Leistungssport,  3,  11-­‐16.    

Chow,  J.  W.,  &  Knudson,  D.  V.  (2011).  Use  of  deterministic  models  in  sports  and  exercise  biomechanics  research.  Sports  Biomech,  10(3),  219-­‐233.  doi:  10.1080/14763141.2011.592212  

Coh,  Milan,  Jost,  Bojan,  Skof,  Branko,  Tomazin,  Katja,  &  Dolenec,  Ales.  (1998).  Kinematic  and  kinetic  parameters  of  the  sprint  start  and  start  acceleration  model  of  top  sprinters.  Gymnica,  28,  33-­‐42.    

Deluzio,  Kevin  J.,  Harrison,  Andrew  J.,  Coffey,  Norma,  &  Caldwell,  Graham  E.  (2014).  Analysis  of  Biomechanical  Waveform  Data.  In  D.  G.  E.  Robertson,  G.  E.  Caldwell,  J.  Hamill,  G.  Kamen  &  S.  N.  Whittlesey  (Eds.),  Research  Methods  in  Biomechanics  (2  ed.,  pp.  317-­‐336).  Champaign,  IL:  Human  Kinetics.  

Diedrich,  Frederick  J.,  &  Warren,  William  H.  (1995).  Why  change  gaits?  Dynamics  of  the  Walk-­‐Run  Transition.  Journal  of  Experimental  Psychology:  Human  Perception  and  Performance,  21(1),  183-­‐202.    

Dona,  Giulia,  Preatoni,  Ezio,  Cobelli,  Claudio,  Rodano,  Renato,  &  Harrison,  Andrew  J.  (2009).  Application  of  functional  principal  component  analysis  in  race  walking:  An  emerging  methodology.  Sports  Biomechanics,  8(4),  284-­‐301.    

Donoghue,  Orna  A.,  Harrison,  Andrew  J.,  Coffey,  Norma,  &  Hayes,  Kevin.  (2008).  Functional  data  analysis  of  running  kinematics  in  chronic  achilles  tendon  injury.  Medicine  &  Science  in  Sports  &  Exercise,  40(7),  1323-­‐1335.    

Eikenberry,  Adam,  McAuliffe,  Jim,  Welsh,  Timothy  N.,  Zerpa,  Carlos,  McPherson,  Moira,  &  Newhouse,  Ian.  (2008).  Starting  with  the  "right"  foot  minimizes  

Page 57: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

50  

 

sprint  start  time.  Acta  Psychologica,  127,  495-­‐500.  doi:  10.1016/j.actpsy.2007.09.002  

Fortier,  Sylvie,  Basset,  Fabien  A.,  Mbourou,  Ginette  A.,  &  Faverial,  Jerome.  (2005).  Starting  block  performance  in  sprinters-­‐  a  statistical  method  for  identifying  discriminative  parameters  of  the  performance  and  an  analysis  of  the  effect  of  providing  feedback  over  a  6-­‐week  period.  Journal  of  Sport  Science  and  Medicine,  4,  134-­‐143.    

Gagnon,  MA.  (1978).  A  kinetic  analysis  of  the  kneeling  and  the  standing  starts  in  female  sprinters  of  different  ability.  Biomechanics,  VI(B),  46-­‐50.    

Glazier,  Paul  S.,  &  Davids,  K.  (2009).  Constraints  on  the  complete  optimization  of  human  motion.  Sports  Medicine,  39(1),  15-­‐28.    

Guissard,  N.,  Duchateau,  J.,  &  Hainaut,  K.  (1992).  EMG  and  mechanical  changes  during  sprint  starts  at  different  front  block  obliquities.  Med  Sci  Sports  Exerc,  24(11),  1257-­‐1263.    

Harland,  M.  J.,  &  Steele,  J.  R.  .  (1997).  Biomechanics  of  the  sprint  start.  Sports  Medicine,  23(1),  11-­‐20.    

Hatze,  H.  (1983).  Computerized  optimization  of  sports  motions:  An  overview  of  possibilities,  methods  and  recent  developments.  J  Sports  Sci,  1(1),  3-­‐12.  doi:  10.1080/02640418308729656  

Competition  Rules,  162  C.F.R.  (2014-­‐2015).  Kelso,  J.A.S.,  Scholz,  John  P.,  &  Schoner,  Gregor.  (1986).  Nonequilibrium  phase  

transitions  in  coordinated  biological  motion:  critical  fluctuations.  Physics  Letters  A,  118(6),  279-­‐284.    

Kelso,  J.A.S.,  Schoner,  Gregor,  Scholz,  John  P.,  &  Haken,  H.  (1987).  Nonequlibrium  transitions  in  coordinated  movements  involving  many  degrees  of  freedom.  Annals  of  the  New  York  Academy  of  Sciences,  504  -­‐  Perspectives  in  Biological  Dynamics  and  Theoretical  Medicine,  293-­‐296.    

Knudsen,  Duane  V.  (2009).  Correcting  the  use  of  the  term  "Power"  in  the  strength  and  conditioning  literature.  Journal  of  Strength  and  Conditioning  Research,  23(6),  1902-­‐1908.    

Latash,  Mark  L.  (2012).  The  bliss  (not  the  problem)  of  motor  abundance  (not  redundancy).  Exp  Brain  Res,  217(1),  1-­‐5.  doi:  10.1007/s00221-­‐012-­‐3000-­‐4  

Lennart  Julin,  A.,  &  Dapena,  Jesus.  (2003).  Sprinters  at  the  1996  Olympic  Games  in  Atlanta  did  not  hear  the  starter’s  gun  through  the  loudspeakers  on  the  starting  blocks.  New  Studies  in  Athletics  by  IAAF,  18(1),  23-­‐27.    

Majumdar,  Aditi  S.,  &  Robergs,  Robert  A.  (2011).  The  science  of  speed:  Determinants  of  performance  in  the  100m  sprint.  International  Journal  of  Sports  Science  and  Coaching,  6(3),  479-­‐490.    

Mendoza,  L.,  &  Schollhorn,  W.  (1993).  Training  of  the  sprint  start  technique  with  biomechanical  feedback.  J  Sports  Sci,  11(1),  25-­‐29.  doi:  10.1080/02640419308729959  

Menely,  Ronald  C.,  &  Rosemier,  Robert  A.  (1968).  Effectiveness  of  four  track  starting  positions  on  acceleration.  Research  Quarterly.  American  Association  for  Health,  Physical  Education  and  Recreation,  39(1),  161-­‐165.  doi:  10.1080/10671188.1968.10616544  

Page 58: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

51  

 

Mero,  A.,  Kuitunen,  S.,  Harland,  M.,  Kyrolainen,  H.,  &  Komi,  P.  V.  (2006).  Effects  of  muscle-­‐tendon  length  on  joint  moment  and  power  during  sprint  starts.  J  Sports  Sci,  24(2),  165-­‐173.  doi:  10.1080/02640410500131753  

Mero,  A.,  Luhtanen,  P.,  &  Komi,  P.  V.  (1983).  A  biomechanical  study  of  the  sprint  start.  Scandinavian  Journal  of  Sports  Sciences,  5,  20-­‐28.    

Myer,  G.  D.,  Ford,  K.  R.,  Brent,  J.  L.,  Divine,  Jon  G.,  &  Hewett,  T.  E.  (2007).  Predictor  of  sprint  start  speed-­‐  the  effects  of  resistive  ground-­‐based  vs.  inclined  treadmill  training.  Journal  of  Strength  and  Conditioning  Research,  21(3),  831-­‐836.    

Newell,  K.  M.  (1986).  Constraints  on  the  development  of  coordination.  In  G.  Wade  &  H.  T.  A.  Whiting  (Eds.),  Motor  Development  in  Children:  Aspects  of  Coordination  and  Control  (Vol.  34,  pp.  341-­‐360).  Dordrecht,  Netherlands:  Martinus  Nijhoff  Publishers.  

O'Connor,  Kristian  M.,  &  Bottum,  Michael  C.  (2009).  Differences  in  cutting  knee  mechanics  based  on  principal  component  analysis.  Medicine  &  Science  in  Sports  &  Exercise,  41(4),  867-­‐878.    

Pain,  M.  T.,  &  Hibbs,  A.  (2007).  Sprint  starts  and  the  minimum  auditory  reaction  time.  J  Sports  Sci,  25(1),  79-­‐86.  doi:  10.1080/02640410600718004  

Salo,  A.  I.,  &  Bezodis,  I.  N.  (2004).  Which  starting  style  is  faster  in  sprint  running-­‐  Standing  or  crouch  start?  Sport  Biomechanics,  3(1),  43-­‐54.    

Slawinski,  Jean,  Bonnefoy,  Alice,  Leveque,  Jean-­‐Michel,  Ontanon,  Guy,  Riquet,  Anne,  Dumas,  Raphaël,  &  Cheze,  Laurence.  (2010).  Kinematic  and  kinetic  comparisons  of  elite  and  well-­‐trained  sprinters  during  sprint  start.  Journal  of  Strength  and  Conditioning  Research,  24(4),  896-­‐905.    

Smith,  G.  (1989).  Padding  point  extrapolation  for  the  Butterworth  digital  filter.  Journal  of  Biomechanics,  22(8-­‐9),  967-­‐971.    

Tellez,  Tom.  (1984).  Sprinting-­‐  From  start  to  finish.  Track  Technique(88),  2802-­‐2805.    

Van  Coppenolle,  H.,  Delecluse,  C.,  Goris,  M.,  Bohets,  W.,  &  Vanden  Eynde,  E.  (1989).  Technology  and  development  of  speed:  evaluation  of  the  start,  sprint  and  body  composition  of  Pavoni,  Cooman  and  Desruelles.  Athletics  Coach,  23(1),  3581-­‐3582.    

Warden,  Peter.  (1988).  Planning  training  for  the  sprints  &  hurdles.  Track  Coach,  105,  3351-­‐3354.    

Willwacher,  Steffen,  Herrmann,  Volker,  Heinrich,  Kai,  &  Bruggemann,  Gert-­‐Peter.  (2013).  Start  Block  Kinetics-­‐  what  the  best  do  different  than  the  rest.  Chinese  Journal  of  Sport  Biomechanics,  5(S1),  180-­‐183.    

Winter,  D.A.  (2009).  Biomechanics  and  Motor  Control  of  Human  Movement.  New  Jersey:  Wiley  &  Sons  Inc.  

   

   

Page 59: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

 

52  

7 Appendices  

7.1 Appendix  A  Willwacher  et  al.  (2013)  

Variables   Measures   Men   Women  World-­‐class   Fast   Slow   Fast     Slow  

100m  PB  (s)   mean   10.06bcde   11.08ace   11.69abe   11.37ae   12.48abcd  

SD   0.28   0.21   0.14   0.22   0.48  CoV   3%   2%   1%   2%   4%  

Block  Time  (s)   r  (100m  PB)   0.71  mean   0.34  bcde   0.39ae   0.4a   0.39ae   0.43acd  

SD   0.02   0.03   0.02   0.03   0.03  CoV   6%   8%   5%   8%   7%  

Maximum  Resultant  Force  (front)  (N/kg)  

r  (100m  PB)   -­‐0.32  mean   16.27   16.14e   16.42   15.82   14.46b  

SD   2.64   1.45   1.68   3.26   2.68  CoV   16%   9%   10%   21%   19%  

Maximum  Resultant  Force  (rear)  (N/kg)  

r  (100m  PB)   -­‐0.5  mean   15.98de   13.59e   13.66   11.36ae   10.86acd  

SD   2.57   2.37   3.09   0.293   2.9  CoV   16%   17%   23%   3%   27%  

Maximum  RFD  Resultant  Force  (front)  (N/kg/s)  

r  (100m  PB)   -­‐0.51  mean   237.37bcde   137.48a   122.64  a   132.21  a   109.38  a  SD   75.31   47.72   41.73   41.29   45.61  CoV   32%   35%   34%   31%   42%  

Maximum  RFD  Resultant  Force  (rear)  (N/kg/s)  

r  (100m  PB)   -­‐0.42  mean   335.27de   247.33   230.51   204.3a   182.91a  

SD   95.21   86.28   112.61   82.06   97.89  CoV   28%   35%   49%   40%   54%  

Height  (cm)   mean   182.36de   181.27  de   180.6  de   171.3abc   172.65abc  

SD   6.77   5.4   8.4   6.11   4.96  CoV   4%   3%   5%   4%   3%  

Mass  (kg)   mean   80.05bde   73.22ade   72de   60.77abc   62.83  abc  SD   6.94   7.26   8.6   4.54   6.49  CoV   9%   10%   12%   7%   10%  

Reaction  time  (s)   mean   0.16   0.18   0.19   0.2   0.21  SD   0.09   0.04   0.04   0.02   0.04  CoV   56%   22%   21%   10%   19%  

a,b,c,d,e  significant  difference  (p<0.05)  to  Men  World-­‐Class  Group,  Men  fast,  Men  slow,  Women  fast  and  Women  slow  Group,  respectively          

Page 60: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

53  

 

    Elites1   Sub  Elites2  Fortier  et  al.  (2005)  

100m  PB  (s)   mean   10.46   11.07  SD   0.11   0.3  CoV   1%   3%  

Front  Force  Duration  (ms)     mean   370*   405  

SD   18   40  CoV   5%   10%  

Rear  Force  Duration  (ms)   mean   370   268  SD   18   58  CoV   5%   22%  

Total  Block  Time  (ms)     mean   399*   422  SD   21   33  CoV   5%   8%  

Time  to  Front  Peak  Force  (ms)    

mean   216   260  SD   42   39  CoV   19%   15%  

Time  to  Rear  Peak  Force  (ms)    

mean   124*   119  SD   17   20  CoV   14%   17%  

Front  Force  at  Hands  onset  (N)  

mean   1548   1440  SD   333   118  CoV   22%   8%  

Rear  Force  at  Hands  onset  (N)  

mean   1274   1303  SD   108   166  CoV   8%   13%  

Front  Peak  Force  (N)   mean   1685   1735  SD   490   333  CoV   29%   19%  

Rear  Peak  Force  (N)   mean   1430*   940  SD   431   255  CoV   30%   27%  

Delay  between  Rear  and  Front  force  onset  (ms)  

mean   26   22  

SD   17   34  

CoV   65%   155%  

Delay  between  end  of  Rear  and  Front  force  offset  (ms)  

mean   140*   173  

SD   26   23  

CoV   19%   13%  

Height  (m)   mean   1.72   1.8  

Page 61: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

54  

 

SD   0.1   0.05  CoV   6%   3%  

Mass  (kg)   mean   74.1   75.2  SD   10.3   8.2  CoV   14%   11%  

Reaction  time  (ms)   mean   172*   194  SD   30   26  CoV   17%   13%  

1  100m  PB<10.70s  2  10.70<100m  PB<11.40  *Significantly  different,  p≤0.05    

  Elite     Well-­‐trained  Slawkinski  et  al.  (2010)  

100m  PB  (s)   mean   10.27*   11.31  SD   0.14   0.28  CoV   1%   2%  

Mass  (kg)   mean   79.5**   66.3  SD   10.5   5.5  CoV   13%   8%  

Height  (cm)   mean   179.2   175.3  SD   6.2   4  CoV   3%   2%  

Total  Block  Time  (s)     mean   0.352   0.351  SD   0.018   0.02  CoV   5%   6%  

Pushing  time  on  rear  block  (s)    

mean   0.154   0.14  SD   0.017   0.026  CoV   11%   19%  

Resultant  rate  of  force  development  (N/s)  

mean   15505**   8459  SD   5397   3811  CoV   35%   45%  

Resultant  Impulse  (Ns)  

mean   276.2**   215.4  SD   36   28.5  CoV   13%   13%  

Reaction  time  (s)   Mean   0.151   0.158  SD   0.016   0.033  CoV   10.6%   20.9%  

*p  ≤  0.0001  **p  ≤  0.05      

Page 62: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

55  

 

  Group  A   Group  B   Group  C  

Mero  et  al.  (1983)  

Horizontal  Force  

100m  PB  (s)   mean   10.8C   10.8C   11.5A,B  SD   0.3   0.4   0.3  CoV   2.78%   3.70%   2.61%  

Duration  of  force  production  (s)  

mean   0.361   0.36   0.368  SD   0.027   0.023   0.037  CoV   7.5%   6.4%   10.1%  

Peak  force  (N)   mean   1186c   1154C   898a,B  SD   260   170   203  CoV   21.9%   14.7%   22.6%  

Time  to  peak  force  (s)  

mean   0.075   0.081   0.072  SD   0.015   0.019   0.023  CoV   20%   23.5%   31.9%  

Mean  Force  (N)   mean   650C   628C   531A,B  SD   53   85   38  CoV   8.15%   13.54%   7.16%  

Impulse  (Ns)   mean   234C   226c   195A,b  SD   15   31   23  CoV   6.41%   13.72%   11.79%  

Power  (W)   mean   949C   880c   727A,b  SD   154   159   172  CoV   16.23%   18.07%   23.66%  

Vertical  Force  

Force  production  at  the  time  of  maximal  horizontal  force  (N)  

mean   958C   1036C   683A,B  SD   207   180   174  CoV   21.61%   17.37%   25.48%  

Mean  Force  (N)   mean   641C   615c   484A,b  SD   101   174   121  CoV   15.76%   28.29%   25%  

Impulse  (Ns)   mean   231C   221c   178A,b  SD   31   55   43  CoV   13.42%   24.89%   24.16%  

Power  (W)   mean   310c   330c   272a,b  SD   35   50   45  CoV   11.29%   15.15%   16.54%  

Resultant  Force  

Absolute  (N)   mean   1555C   1561C   1175A,B  SD   329   205   240  CoV   21.16%   13.13%   20.43%  

Relative  (N/kg)   mean   20.8C   19.9C   15.3A,B  SD   3.9   1.9   3.5  CoV   18.75%   9.55%   22.88%  

Direction  (deg,,  from  horizontal)  

mean   40   42   38  SD   5   5   4  CoV   12.50%   11.90%   10.53%  

A,B,CSignificantly  different  from  group  A,  group  B,  group  C  respectively,  p<0.01  a,b,cSignificantly  different  from  group  A,  group  B,  group  C  respectively,  p<0.05  

Page 63: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

56  

 

  Skilled   Less-­‐skilled  Gagnon  (1978)   Rear  Foot   Peak  Force  (N)   438.6   286.5  

Time  on  block  (s)   0.257   0.247  Impulse  (Ns)   77.7   51.5  

Front  foot   Peak  Force  (N)   533.3   365.9  Time  on  block  (s)   0.483   0.48  Impulse  (Ns)   86.3   83.7  

Overall   Impulse  (Ns)   173.8   135.2  Females  only,  mean  values  are  displayed.  No  standard  deviation  or  significance  was  provided.  

  Group  1   Group  2   Group  3  Baumann  (1976)   100m  PB  (s)   mean   10.35   11.11   11.85  

SD   0.012   0.16   0.24  CoV   0.12%   1.44%   2.03%  

Reaction  time  (s)   mean   0.101   0.099   0.113  SD   0.018   0.015   0.014  CoV   17.82%   15.15%   12.39%  

Block  time  (s)   mean   0.47   0.468   0.504  SD   0.036   0.02   0.032  CoV   7.66%   4.27%   6.35%  

Peak  horizontal  acceleration  (m/s2)  

mean   15.42,3   13.21,3   12.21,2  SD   2   1.7   2.4  CoV   12.99%   12.88%   19.67%  

Horizontal  Impulse  (Ns)   mean   263   223   214  SD   22   20   20  CoV   8.37%   8.97%   9.35%  

1,2,3  Significant  differences  exist  between  groups  1,2,3  respectively,  no  p  value  specified.    

  Males   Females  5m   10m   20m   30m   5m   10m   20m   30m  

Coh  (1998)  

Front  Foot  RFD  (N/s)   0.38   -­‐0.3   -­‐0.71*   -­‐0.78*   -­‐0.06   -­‐0.16   -­‐0.06   -­‐0.13  Front  Foot  Relative  RFD  (N/kg/s)  

0.37   -­‐0.31   -­‐0.71*   -­‐0.76*   -­‐0.23   -­‐0.24   -­‐0.1   -­‐0.07  

Reaction  Time  (s)     0.43   -­‐0.34   -­‐0.74*   -­‐0.66*   0.49   -­‐0.58*   0.55   0.3  Front  Foot  Peak  Force  (N)     0.46   -­‐0.32   -­‐0.72*   -­‐0.83*   0.05   0.03   0.11   -­‐0.22  Front  Foot  Impulse  (Ns)   0.49   -­‐0.17   -­‐0.57*   -­‐0.71*   0.07   -­‐0.01   0   -­‐0.34  Relative  Front  Foot  Impulse  (Ns/kg)  

0.51   -­‐0.22   -­‐0.63*   -­‐0.76*   -­‐0.09   -­‐0.07   -­‐0.02   -­‐0.034  

Front  Foot  Time  to  Peak  (s)  

-­‐0.69*   -­‐0.55*   -­‐0.55*   -­‐0.66*   0.44   0.48   0.61*   0.56*  

Rear  Foot  Time  to  Peak  (s)   -­‐0.79*   -­‐0.41   -­‐0.41   -­‐0.60*   0.58*   0.59*   0.69*   0.50*  Correlation  coefficients  to  time  at  5,  10,  20  &  30m  *  Indicates,  correlation  is  statistically  significant  (p  <  0.05)  

Page 64: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

57  

 

7.2 Appendix  B  

7.2.1 Par-­‐Q  Form    

 

Page 65: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

58  

 

7.2.2 Informed  Consent  Form  

   

Page 66: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

59  

 

   

Page 67: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

60  

 

7.1 Appendix  C:  Subject-­‐specific  data  

7.1.1 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  pre-­‐tension  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

Page 68: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

61  

 

 

     

Page 69: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

62  

 

   

 

Page 70: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

63  

 

 

   

Page 71: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

64  

 

 

Page 72: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

65  

 

     

Page 73: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

66  

 

 

7.1.2 M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  reaction  time  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

   

           

Page 74: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

67  

 

7.1.3 M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  block  time  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

Page 75: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

68  

 

7.1.4 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  RFD  from  ‘Go’  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

Page 76: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

69  

 

 

 

Page 77: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

70  

 

 

 

Page 78: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

71  

 

 

 

Page 79: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

72  

 

 

 

Page 80: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

73  

 

     

Page 81: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

74  

 

 

7.1.5 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  RFD  from  onset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

 

Page 82: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

75  

 

 

 

Page 83: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

76  

 

 

 

Page 84: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

77  

 

 

 

Page 85: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

78  

 

 

 

Page 86: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

79  

 

     

Page 87: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

80  

 

7.1.7 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  peak  force  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

 

Page 88: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

81  

 

 

 

Page 89: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

82  

 

 

 

Page 90: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

83  

 

 

 

Page 91: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

84  

 

 

 

Page 92: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

85  

 

 

Page 93: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

86  

 

7.1.8 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  impulse  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

Page 94: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

87  

 

 

 

Page 95: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

88  

 

 

 

Page 96: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

89  

 

 

 

Page 97: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

90  

 

 

 

Page 98: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

91  

 

     

Page 99: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

92  

 

7.1.10 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  TTP  from  ‘Go’  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

 

Page 100: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

93  

 

   

 

Page 101: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

94  

 

 

 

Page 102: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

95  

 

 

 

Page 103: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

96  

 

 

 

Page 104: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

97  

 

     

Page 105: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

98  

 

7.1.12 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  TTP  from  onset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

 

Page 106: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

99  

 

 

 

Page 107: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

100  

 

 

 

Page 108: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

101  

 

 

 

Page 109: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

102  

 

 

 

Page 110: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

103  

 

     

Page 111: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

104  

 

7.1.14 Signal-­‐specific  M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  time  of  force  application  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

 

Page 112: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

105  

 

 

 

Page 113: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

106  

 

 

 

Page 114: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

107  

 

 

 

Page 115: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

108  

 

   

 

Page 116: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

109  

 

   

   

Page 117: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

110  

 

7.1.16 M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  force  ‘Off’  time  offset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions  

 

     

Page 118: Quantifyingvariationindiscrete!force–time ... · ii! Quantifyingvariationindiscrete!force–time!characteristicsduringthesprintstart: Considerations!for!monitoring!training!adaptations!

111  

 

7.1.18 M01-­‐M05  &  S01-­‐S05  single-­‐start  and  mean  peak  force  time  offset  magnitudes,  unfilled  black  circles  represent  starts  from  session  1;  filled  black  circles  represent  starts  from  session  2;  red  circle  represents  means  from  both  sessions