89
Quantum Computing q f U f H H H Nick Bonesteel Discovering Physics, Nov. 16, 2012 0 1 2 1 0 i 2 1 0 i 0 1

Quantum Computing UfUf H H H Nick Bonesteel Discovering Physics, Nov. 16, 2012

Embed Size (px)

Citation preview

Quantum Computing

0

1

q

f2

10 i2

10 i Uf

0

1

H H

H

Nick BonesteelDiscovering Physics, Nov. 16, 2012

What is a quantum computer, and what can we do with one?

A Classical Bit: Two Possible States

0

1 0

A Classical Bit: Two Possible States

0

1 1

0

1 0

x y

NOTx y0 11 0

Single Bit Operation: NOT

0

1 1

x y

NOTx y0 11 0

Single Bit Operation: NOT

A Quantum Bit or “Qubit”

0

1 0

0

1 1

A Quantum Bit or “Qubit”

0

1 0

A Quantum Bit or “Qubit”

0

1 0 12

1

2

1

2

10

A Quantum Bit or “Qubit”

0

1 0 12

1

2

1

2

10

Quantum superpositionof 0 and 1

A Quantum Bit or “Qubit”

0

1 1

2

10

A Quantum Bit or “Qubit”

0

1 0 12

1

2

1

2

10 2

10

A Quantum Bit or “Qubit”

0

1 0

2

10 2

10

A Quantum Bit or “Qubit”

A Quantum Bit: A Continuum of States

0

1sincos qq +0 1

q

2

10 2

10

A Quantum Bit: A Continuum of States

0

1

q

f2

10 i2

10 i

12

sin02

cosfqq ie

-+

Actually, qubit states live on the

surface of a sphere.

A Quantum Bit: A Continuum of States

0

1sincos qq +0 1

q

2

10 2

10

But the circle is enough for us

today.

A Quantum NOT Gate

X0 1

0

1

2

10 2

10

A Quantum NOT Gate

X0 1

0

1

2

10 2

10

X1 0

A Quantum NOT Gate 0

1

2

10 2

10

X02

10

A Quantum NOT Gate

X02

10

0

1

2

10 2

10

X12

10

Hadamard Gate

H02

10

0

1

2

10 2

10

H12

10

Hadamard Gate

H02

10

0

1

2

10 2

10

H12

10

Hadamard Gate

H02

10

0

1

2

10 2

10

H12

10

Hadamard Gate

H02

10

0

1

2

10 2

10

H12

10

Hadamard Gate

H 02

10

0

1

2

10 2

10

H 12

10

H is its own inverse

Hadamard Gate 0

1

2

10 2

10

H is its own inverse

H02

10

H12

10

Hadamard Gate

H 02

10

0

1

2

10 2

10

H 12

10

H is its own inverse

Hadamard Gate 0

1

2

10 2

10

H is its own inverse

H02

10

H12

10

Fair Coin

Trick Coin

Balanced Function

1)1(

0)0(

f

f

0)1(

1)0(

f

f

Unbalanced Function

0)1(

0)0(

f

f

1)1(

1)0(

f

f

or

or

Uf

x x

0 )(xf

A Two Qubit Subroutine to Evaluate f(x)

Uf

x x

0 )(xf

A Two Qubit Subroutine to Evaluate f(x)

Input x can be either 0 or 1

Output is f(x)Initialize to state “0”

)(xf

A Two Qubit Subroutine to Evaluate f(x)

Uf

x x

1

Input x can be either 0 or 1

This qubit can also be in state “1”

)(xf

Uf

x x

1

Bar standsfor “NOT”

0 = 1, 1 = 0

A Two Qubit Subroutine to Evaluate f(x)

Input x can be either 0 or 1

This qubit can also be in state “1”

Uf

x x

0 )(xfUf

x x

1 )(xf

1)1(

0)0(

f

f

0)1(

1)0(

f

f

Balanced Unbalanced

0)1(

0)0(

f

f

1)1(

1)0(

f

for or

),1()0( ff ),1()0( ff

A Two Qubit Subroutine to Evaluate f(x)

)0()1( ff )1()0( ff

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

Uf

0

1

H H

H

10

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

1010

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

101100

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)1()1(1)0()0(0 ffff

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)1()1(1)0()0(0 ffff

Only ran Uf subroutine once, but f(0) and f(1) both appear in the state of the computer!

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)1()1(1)0()0(0 ffff

If f is balanced: f(0) = f(1) and f(0) = f(1)

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)0()0(1)0()0(0 ffff

If f is balanced: f(0) = f(1) and f(0) = f(1)

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)0()0(10 ff

If f is balanced: f(0) = f(1) and f(0) = f(1)

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)1()1(1)0()0(0 ffff

If f is unbalanced: f(0) = f(1) and f(0) = f(1)

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)0()0(1)0()0(0 ffff

If f is unbalanced: f(0) = f(1) and f(0) = f(1)

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)0()0(10 ff

If f is unbalanced: f(0) = f(1) and f(0) = f(1)

A Quantum Algorithm (Deutsch-Jozsa ‘92)

Uf

0

1

H H

H

)0()0(10 ff Unbalanced:

)0()0(10 ff Balanced:

A Quantum Algorithm (Deutsch-Jozsa ‘92)

)0()0(0 ff

)0()0(1 ff

Uf

0

1

H H

H

Unbalanced:

Balanced:

A Quantum Algorithm (Deutsch-Jozsa ‘92)

)0()0(0 ff

)0()0(1 ff

Uf

0

1

H H

H

Unbalanced:

Balanced:

Measure topqubit

A Quantum Algorithm (Deutsch-Jozsa ‘92)

)0()0(0 ff

)0()0(1 ff

Uf

0

1

H H

H

Unbalanced:

Balanced:

Measure topqubit

A Quantum Algorithm (Deutsch-Jozsa ‘92)

)0()0(0 ff

)0()0(1 ff

Uf

0

1

H H

H

Unbalanced:

Balanced:

Measure topqubit

A Quantum Algorithm (Deutsch-Jozsa ‘92)

One qubit

H02

10

2

10

H02

10

H02

10

111001002

1

2

10

2

10

Two qubits

H02

10

H02

10

111001002

1

2

10

2

10

Counting in binary0 1 2 3

Two qubits

H02

10

H02

10

H02

10

1111101011000110100010002

12/3

2

10

2

10

2

10

Three qubits

H02

10

H02

10

H02

10

1111101011000110100010002

12/3

2

10

2

10

2

10

0 1 2 3 4 5 6 7

Three qubits

1111101000100002

12/

N

H02

10

H02

10

H02

10

H02

10

N

2

10

2

10

2

10

2

10

0 1 2 3 2N-1 …

N qubits

1232102

12/

NN

H0

H0

H0

H0

Quantum superposition ofall possible input states!

2

10

2

10

2

10

2

10

N qubits

1232102

12/

NN

H0

H0

H0

H0

Quantum superposition ofall possible input states!

For N=250 the number of states is roughly the number of atoms in the universe!

2

10

2

10

2

10

2

10

N qubits

1232102

12/

NN

H0

H0

H0

H0

Quantum superposition ofall possible input states!

For N=250 the number of states is roughly the number of atoms in the universe!

Uf

)(xfxf U

One function call

N qubits

1232102

12/

NN

H0

H0

H0

H0

Quantum superposition ofall possible input states!

For N=250 the number of states is roughly the number of atoms in the universe!

Uf

)(xfxf U

One function call

x can be any integerFrom 0 to 2N-1

N qubits

1232102

12/

NN

H0

H0

H0

H0

Quantum superposition ofall possible input states!

Uf

)(xfxf U

One function call

)12()3()2()1()0(2

12/

NN

fffff Evaluate f(x) for all possible inputs!

x can be any integerFrom 0 to 2N-1

N qubits

Massive Quantum ParallelismH0

H0

H0

H0

Uf

)12()3()2()1()0(2

12/

NN

fffff

Only one problem: When I measure this state I only learn the value of f(x) for one input x. (No free lunch!)

However, people have shown that a quantum computer can use quantum parallelism to do things no classical computer can do.

Run program Uf once, get result for all possible inputs!

• Given two prime numbers p and q,

p x q = C Easy

C p, q Hard

• Best known classical factoring algorithm scales as

time = exp(Number of Digits)

• Mathematical Basis for Public Key Cryptography.

Prime Factorization

• In 1994 Peter Shor showed that a Quantum Computer could factor an integer exponentially faster than a classical computer!

time = (Number of Digits)

• Shor’s algorithm exploits Massive Quantum Parallelism.

3

Quantum Factorization

OK, so how do we make a quantum computer?

Boolean Logic Gates

x

yzx y

Not NOR

Any classical computation can be carried out using these two gates

x y0 11 0

x y z0 0 10 1 01 0 01 1 0

Transistor Logic

A A

A

BA B

The Integrated Circuit

Core i7: 731,000,000 transistors

Single Qubit Gates

U U

X

X

0 0

0 1

0 0

1 1

Controlled-NOT Gate

X

X

1 1

1 0

0 0

1 1

X

X

X

XU

U

Any quantum computation can be carried out using these two gates

Universal Set of Gates

UX

Quantum Circuit

2012 Nobel Prize in Physics

DaveWineland

SergeHaroche

State of the Art: Superconducting Qubits

From : “Quantum Computers,” T. D. Ladd et al., Nature 464, 45-53 (2010)

High fidelity (~95%) 2-qubit gates on a time scale of 30 ns.

Nature  460, 240-244 (2009)

2 superconducting qubits coupled by a microwave resonator

Nature  460, 240-244 (2009)

2 superconducting qubits coupled by a microwave resonator

High fidelity (~95%) 2-qubit gates on a time scale of 30 ns.

8 mm

First steps toward a scalable quantum computer

From: http://ibmquantumcomputing.tumblr.com/

The Real Problem: Decoherence!

The Real Problem: Decoherence!

universetheofrest )10(

Qubit

The Real Problem: Decoherence!

universetheofrest )10(

Qubit Everything else

The Real Problem: Decoherence!

universetheofrest )10(

Qubit Everything else

Over time….

10 universetheofrestuniversetheofrest 10

The Real Problem: Decoherence!

universetheofrest )10(

Qubit Everything else

Over time….

10 universetheofrestuniversetheofrest 10

Quantum coherence of qubit is inevitably lost!

The Real Problem: Decoherence!

Qubit Everything else

Over time….

10 universetheofrestuniversetheofrest 10

Quantum coherence of qubit is inevitably lost!

Amazingly enough, quantum computing is still possible using what is known as “fault-tolerant quantum computation.”

universetheofrest )10(

Coherence Times for Superconducting Qubits

From: “Superconducting Qubits Are Getting Serious”, M. Steffen, Physics 4, 103 (2011)

Threshold for fault-tolerant quantum computation.

From: “Superconducting Qubits Are Getting Serious”, M. Steffen, Physics 4, 103 (2011)

Threshold for fault-tolerant quantum computation.

This is what most of my own research on quantum computing is focused on.

Coherence Times for Superconducting Qubits

A deep question: Do the laws of nature allow us to manipulate quantum systems with enough accuracy to build “quantum machines” ?

Conclusions

A deep question: Do the laws of nature allow us to manipulate quantum systems with enough accuracy to build “quantum machines” ?

If the answer is “yes” (as it seems to be), then quantum computers are coming!

Conclusions