50
Jonathan P. Dowling Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University Baton Rouge, Louisiana USA AQIS, 31 AUG 10, University of Tokyo Dowling JP, “Quantum Optical Metrology — The Lowdown On High-N00N States,” Contemporary Physics 49 (2): 125-143 (2008).

Quantum Optical Computing, Imaging, and Metrologyphys.lsu.edu/~jdowling/talks/NRT10-AQIS.pdf · Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Jonathan P. Dowling

    Quantum Optical Computing,Imaging, and Metrology

    quantum.phys.lsu.edu

    Hearne Institute for Theoretical PhysicsQuantum Science and Technologies Group

    Louisiana State UniversityBaton Rouge, Louisiana USA

    AQIS, 31 AUG 10, University of Tokyo

    Dowling JP, “Quantum Optical Metrology — The Lowdown On High-N00NStates,” Contemporary Physics 49 (2): 125-143 (2008).

  • !"

  • Photo: H.Cable, C.Wildfeuer, H.Lee, S.D.Huver, W.N.Plick, G.Deng, R.Glasser, S.Vinjanampathy,K.Jacobs, D.Uskov, J.P.Dowling, P.Lougovski, N.M.VanMeter, M.Wilde, G.Selvaraj, A.DaSilva

    Inset: P.M.Anisimov, B.R.Bardhan, A.Chiruvelli, L.Florescu, M.Florescu, Y.Gao, K.Jiang, K.T.Kapale, T.W.Lee,D.J.Lum, S.B.McCracken, C.J.Min, S.J.Olsen, R.Singh, K.P.Seshadreesan, S.Thanvanthri, G.Veronis.

    Not Shown: R.Cross, B.Gard, D.J.Lum, G.M.Raterman, C.Sabottke,

    Hearne Institute for Theoretical PhysicsQuantum Science & Technologies Group

  • Nano-Technology

    “There's Plenty of Room at the Bottom.”— Richard Feynman (1960)

    {1010010100101101}

    Classical: All The Information in EveryComputer in the World Can Be Stored

    in a Centimeter-Size Chunk of 1021(1,000,000,000,000,000,000,000)

    Silicon Atoms at One Bit Per Atom.

    1.0 cm

    Quantum TechnologyThere's Plenty More Room

    in the Quantum!

    Quantum: All The Information inEvery Computer in the World CanBe “Stored” in Seventy (70)

    Silicon Atoms atOne Quantum Bit Per Atom!

    |1010010100101101>

    twonanometers

    Si - SILICON

  • IN 3-SPACE POWERS OF 2 IN HILBERT-SPACE

    210 21,000,000 = 10301,0301060 versus 10300 2010 A.D. 2060 A.D.

  • Quantum Metrology

    QuantumSensing

    QuantumImaging

    Quantum Computing

    You Are Here!

  • The Most Important Outcome of the Race to Build A QuantumComputer will Certainly NOT be a Quantum Computer!

    $FundingQuantum

    Computing$

    $FundingQuantum

    Metrology$

    $

    1995 2005 2015 2025 2035

    You Are Here!

  • Outline

    1.1. Nonlinear Optics Nonlinear Optics vsvs. Projective Measurements. Projective Measurements

    2.2. Quantum Imaging Quantum Imaging vsvs. Precision Measurements. Precision Measurements

    3.3. Showdown at High N00N!Showdown at High N00N!

    4.4. Mitigating Photon LossMitigating Photon Loss

    6.6. Super Resolution with Classical LightSuper Resolution with Classical Light

    7. 7. Super-Duper Sensitivity Beats Heisenberg!Super-Duper Sensitivity Beats Heisenberg!

  • Optical Quantum Computing:Two-Photon CNOT with Kerr Nonlinearity

    The Controlled-NOT can be implemented using a Kerr medium:

    Unfortunately, the interaction χ(3) is extremely weak*: 10-22 at the single photon level — This is not practical!

    *R.W. Boyd, J. Mod. Opt. 46, 367 (1999).

    R is a π/2 polarization rotation,followed by a polarization dependentphase shift π.

    χ(3)

    Rpol

    PBS

    σz

    |0〉= |H〉 Polarization|1〉= |V〉 Qubits

  • Two Roads toOptical Quantum Computing

    Cavity QED

    I. Enhance NonlinearInteraction with aCavity or EIT —Kimble, Walther,Lukin, et al.

    II. ExploitNonlinearity ofMeasurement — Knill,LaFlamme, Milburn,Nemoto, et al.

  • 210 !"# ++ 210 !"# $+

    Linear Optical Quantum Computing

    Linear Optics can be Used to Construct2 X CSIGN = CNOT Gate and a Quantum Computer:

    Knill E, Laflamme R, Milburn GJNATURE 409 (6816): 46-52 JAN 4 2001

    Franson JD, Donegan MM, Fitch MJ, et al.PRL 89 (13): Art. No. 137901 SEP 23 2002

    Milburn

  • Photon-PhotonXOR Gate

    Photon-PhotonNonlinearity

    Kerr Material

    Cavity QEDEIT

    ProjectiveMeasurement

      LOQC  KLM

    WHY IS A KERR NONLINEARITY LIKE APROJECTIVE MEASUREMENT?

  • G. G. Lapaire, P. Kok,JPD, J. E. Sipe, PRA 68(2003) 042314

    KLM CSIGN: Self Kerr Franson CNOT: Cross Kerr

    NON-Unitary Gates → Effective Nonlinear Gates

    A Revolution in Nonlinear Optics at the Few Photon Level:No Longer Limited by the Nonlinearities We Find in Nature! 

    Projective Measurement YieldsEffective Nonlinearity!

  • Outline

    1.1. Nonlinear Optics Nonlinear Optics vsvs. Projective Measurements. Projective Measurements

    2.2. Quantum Imaging Quantum Imaging vsvs. Precision Measurements. Precision Measurements

    3.3. Showdown at High N00N!Showdown at High N00N!

    4.4. Mitigating Photon LossMitigating Photon Loss

    6.6. Super Resolution with Classical LightSuper Resolution with Classical Light

    7. 7. Super-Duper Sensitivity Beats Heisenberg!Super-Duper Sensitivity Beats Heisenberg!

  • Schrödinger catdefined by relative

    photon number

    Path-entangled state . High N00N state if Nlarge.

    Super-Sensitivity – improving SNR for detecting small phase(path-length) shifts . Attains Heisenberg limit .

    Super-Resolution – effective photon wavelength = λ/N.

    Properties of N00N states

    N00N state

    Schrödinger catdefined by relative

    optical phase

    Sanders, PRA 40, 2417 (1989).Boto,…,Dowling, PRL 85, 2733 (2000).Lee,…,Dowling, JMO 49, 2325 (2002).

  • The Abstract Phase-Estimation ProblemEstimate , e.g. path-length, field strength, etc. withmaximum sensitivity given samplings with a total ofN probe particles.

    Phase Estimation

    Prepare correlationsbetween probes

    Probe-systeminteraction DetectorN single

    particles

    Kok, Braunstein, Dowling, Journal of Optics B 6, (27 July 2004) S811

  • Strategies to improve sensitivity:

    1. Increase — sequential (multi-round) protocol.

    2. Probes in entangled N-party state and one trial

    To make as large as possible —> N00N!

    Theorem: Quantum Cramer-Rao bound

    optimal POVM, optimal statistical estimator

    Phase Estimation

    S. L. Braunstein, C. M. Caves, and G. J. Milburn, Annals of Physics 247, page 135 (1996)V. Giovannetti, S. Lloyd, and L. Maccone, PRL 96 010401 (2006)

    independent trials/shot-noise limit

    !Ĥ

  • Optical N00N states in modes a and b ,Unknown phase shift on mode b so .

    Cramer-Rao bound “Heisenberg Limit!”.

    Phase Estimation

    mode a

    mode b phaseshift

    paritymeasurement

  • Deposition rate:

    Classical input :

    N00N input :

    Quantum Interferometric Lithography

    source of two-modecorrelated

    light

    mirror

    N-photonabsorbingsubstrate

    phase difference along substrate

    Boto, Kok, Abrams, Braunstein, Williams, and Dowling PRL 85, 2733 (2000)

    Super-resolution, beating the single-photon diffraction limit.

    !N "( ) = ↠+ e# i"b̂†( )N â + e+ i"b̂( )N

    !N "( ) = cos2N " / 2( )

    !N "( ) = cos2 N" / 2( )

    NOONGenerator

    a

    b

  • Quantum MetrologyH.Lee, P.Kok, JPD,J Mod Opt 49,(2002) 2325

    Shot noise

    Heisenberg

  • Sub-Shot-Noise Interferometric MeasurementsWith Two-Photon N00N States

    A Kuzmich and L Mandel; Quantum Semiclass. Opt. 10 (1998) 493–500.

    Low!N00N2 0 + ei2! 0 2

    SNL

    HL

  • a† N a N

    AN Boto, DS Abrams,CP Williams, JPD, PRL85 (2000) 2733

    Super-Resolution

    Sub-Rayleigh

  • New York Times

    DiscoveryCould MeanFasterComputerChips

  • Quantum Lithography Experiment

    |20>+|02>

    |10>+|01>

    Low!N00N2 0 + ei2! 0 2

  • Quantum Imaging: Super-Resolution

    λ

    λ/Ν

    N=1 (classical)N=5 (N00N)

  • Quantum Metrology: Super-Sensitivity

    dP1/dϕ

    dPN/dϕ!" =!P̂

    d P̂ / d"

    N=1 (classical)N=5 (N00N)

    ShotnoiseLimit:Δϕ1 = 1/√N

    HeisenbergLimit:ΔϕN = 1/N

  • Outline

    1.1. Nonlinear Optics Nonlinear Optics vsvs. Projective Measurements. Projective Measurements

    2.2. Quantum Imaging Quantum Imaging vsvs. Precision Measurements. Precision Measurements

    3.3. Showdown at High N00N!Showdown at High N00N!

    4.4. Mitigating Photon LossMitigating Photon Loss

    6.6. Super Resolution with Classical LightSuper Resolution with Classical Light

    7. 7. Super-Duper Sensitivity Beats Heisenberg!Super-Duper Sensitivity Beats Heisenberg!

  • Showdown at High-N00N!

    |N,0〉 + |0,N〉How do we make High-N00N!?

    *C Gerry, and RA Campos, Phys. Rev. A 64, 063814 (2001).

    With a large cross-Kerrnonlinearity!* H = κ a†a b†b

    This is not practical! — need κ = π but κ = 10–22 !

    |1〉

    |N〉

    |0〉

    |0〉|N,0〉 + |0,N〉

  • FIRST LINEAR-OPTICS BASED HIGH-N00N GENERATOR PROPOSAL

    Success probability approximately 5% for 4-photon output.

    e.g.component oflight from an

    opticalparametricoscillator

    Scheme conditions on the detection of one photon at each detector

    mode a

    mode b

    H. Lee, P. Kok, N. J. Cerf and J. P. Dowling, PRA 65, 030101 (2002).J.C.F.Matthews, A.Politi, Damien Bonneau, J.L.O'Brien, arXiv:1005.5119

  • Implemented in Experiments!

  • N00N State Experiments

    Rarity, (1990)Ou, et al. (1990)

    Shih (1990)Kuzmich (1998)

    Shih (2001)

    6-photonSuper-resolution

    Only!Resch,…,White

    PRL (2007)Queensland

    1990’s2-photon

    Nagata,…,Takeuchi,Science (04 MAY)

    Hokkaido & Bristol;J.C.F.Matthews,A.Politi, Damien

    Bonneau, J.L.O'Brien,arXiv:1005.5119

    20074-photon

    Super-sensitivity&

    Super-resolution

    Mitchell,…,SteinbergNature (13 MAY)

    Toronto

    20043, 4-photon

    Super-resolution

    only

    Walther,…,ZeilingerNature (13 MAY)

    Vienna

  • N00N

  • Physical Review 76, 052101 (2007)

  • PRL 99, 163604 (2007)

  • Physical Review A 76, 063808 (2007)

    U

    2

    2

    2

    0

    1

    0

    0.032( 50 + 05 )

  • Objectives

    Approach Status• Use quantum Optics techniques to create,manipulate and measure the collectivestate of an assembly of superconductingqubits.

    • cavity QED approach• Adapt techniques used in ion trapexperiments to evaluate the uncertaintyon the energy estimation (spectrometry).

    Established the first relation between theuncertainty on the electric charge Qg (ormagnetic flux Fx) estimation and the numberN of qubits:

    NQ xg /1!"!##

    Develop theoretical techniques toenable Heisenberg-limited magneticand electric field measurementswith superconducting circuits.

    Exploit ideas from quantum opticsand superconducting quantumcomputing!

    Entangled Superconducting Qubit MagnetometerA Guillaume & JPD, Physical Review A 73 (4): Art. No. 040304 APR 2006.

  • Outline

    1.1. Nonlinear Optics Nonlinear Optics vsvs. Projective Measurements. Projective Measurements

    2.2. Quantum Imaging Quantum Imaging vsvs. Precision Measurements. Precision Measurements

    3.3. Showdown at High N00N!Showdown at High N00N!

    4.4. Mitigating Photon LossMitigating Photon Loss

    6.6. Super Resolution with Classical LightSuper Resolution with Classical Light

    7. 7. Super-Duper Sensitivity Beats Heisenberg!Super-Duper Sensitivity Beats Heisenberg!

  • Quantum LIDAR

    !in =

    ci N " i, ii= 0

    N

    #

    !"

    forward problem solver

    !" = f ( #in , " ; loss A, loss B)

    INPUT

    “findmin( )“

    !"

    FEEDBACK LOOP:Genetic Algorithm

    inverse problem solver

    OUTPUT

    min(!") ; #in(OPT ) = ci

    (OPT ) N $ i, i , "OPTi= 0

    N

    %

    N: photon number

    loss Aloss B

    NonclassicalLight

    Source

    DelayLine

    Detection

    Target

    Noise

    “DARPA Eyes QuantumMechanics for Sensor

    Applications”— Jane’s Defence

    Weekly

    WinningLSU Proposal

  • 3/28/11 39

    Loss in Quantum SensorsSD Huver, CF Wildfeuer, JP Dowling, Phys. Rev. A 78 # 063828 DEC 2008

    !N00N

    Generator

    Detector

    Lostphotons

    Lostphotons

    La

    Lb

    Visibility:

    Sensitivity:

    ! = (10,0 + 0,10 ) 2

    ! = (10,0 + 0,10 ) 2

    !

    SNL---

    HL—

    N00N NoLoss —

    N00N 3dBLoss ---

  • Super-LossitivityGilbert, G; Hamrick, M; Weinstein, YS; JOSA B 25 (8): 1336-1340 AUG 2008

    !" = !P̂d P̂ / d"

    3dB Loss, Visibility & Slope — Super Beer’s Law!

    N=1 (classical)N=5 (N00N)

    dP1 /d!

    dPN /d!

    ei! " eiN! e#$L " e#N$L

  • Loss in Quantum SensorsS. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008

    !N00N

    Generator

    Detector

    Lostphotons

    Lostphotons

    La

    Lb

    !

    Q: Why do N00N States Do Poorly in the Presence of Loss?

    A: Single Photon Loss = Complete “Which Path” Information!

    N A 0 B + eiN! 0 A N B " 0 A N #1 B

    A

    B

    Gremlin

  • Towards A Realistic Quantum SensorS. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008

    Try other detection scheme and states!

    M&M Visibility

    !M&M

    Generator

    Detector

    Lostphotons

    Lostphotons

    La

    Lb

    ! = ( m,m' + m',m ) 2M&M state:

    ! = ( 20,10 + 10,20 ) 2

    ! = (10,0 + 0,10 ) 2

    !

    N00N Visibility

    0.05

    0.3

    M&M’ Adds Decoy Photons

  • !M&M

    Generator

    Detector

    Lostphotons

    Lostphotons

    La

    Lb

    ! = ( m,m' + m',m ) 2M&M state:

    !

    M&M State —N00N State ---

    M&M HL —M&M HL —

    M&M SNL ---

    N00N SNL ---

    A FewPhotons

    LostDoes Not

    GiveComplete

    “Which Path”

    Towards A Realistic Quantum SensorS. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008

  • Optimization of Quantum Interferometric Metrological Sensors In thePresence of Photon Loss

    PHYSICAL REVIEW A, 80 (6): Art. No. 063803 DEC 2009

    Tae-Woo Lee, Sean D. Huver, Hwang Lee, Lev Kaplan, Steven B. McCracken,Changjun Min, Dmitry B. Uskov, Christoph F. Wildfeuer, Georgios Veronis,

    Jonathan P. Dowling

    We optimize two-mode, entangled, number states of light in the presence ofloss in order to maximize the extraction of the available phase information in aninterferometer. Our approach optimizes over the entire available input Hilbertspace with no constraints, other than fixed total initial photon number.

  • Lossy State ComparisonPHYSICAL REVIEW A, 80 (6): Art. No. 063803 DEC 2009

    Here we take the optimal state, outputted by the code, ateach loss level and project it on to one of three knowstates, NOON, M&M, and “Spin” Coherent.

    The conclusion from thisplot is that the optimalstates found by thecomputer code are N00Nstates for very low loss,M&M states forintermediate loss, and“spin” coherent states forhigh loss.

  • Outline

    1.1. Nonlinear Optics Nonlinear Optics vsvs. Projective Measurements. Projective Measurements

    2.2. Quantum Imaging Quantum Imaging vsvs. Precision Measurements. Precision Measurements

    3.3. Showdown at High N00N!Showdown at High N00N!

    4.4. Mitigating Photon LossMitigating Photon Loss

    6.6. Super Resolution with Classical LightSuper Resolution with Classical Light

    7. 7. Super-Duper Sensitivity Beats Heisenberg!Super-Duper Sensitivity Beats Heisenberg!

  • Super-Resolution at the Shot-Noise Limit with Coherent Statesand Photon-Number-Resolving Detectors

    J. Opt. Soc. Am. B/Vol. 27, No. 6/June 2010

    Y. Gao, C.F. Wildfeuer, P.M. Anisimov, H. Lee, J.P. Dowling

    We show that coherent light coupled with photon numberresolving detectors — implementing parity detection —produces super-resolution much below the Rayleighdiffraction limit, with sensitivity at the shot-noise limit.

    ClassicalQuantum

    ParityDetector!

  • Outline

    1.1. Nonlinear Optics Nonlinear Optics vsvs. Projective Measurements. Projective Measurements

    2.2. Quantum Imaging Quantum Imaging vsvs. Precision Measurements. Precision Measurements

    3.3. Showdown at High N00N!Showdown at High N00N!

    4.4. Mitigating Photon LossMitigating Photon Loss

    6.6. Super Resolution with Classical LightSuper Resolution with Classical Light

    7. 7. Super-Duper Sensitivity Beats Heisenberg!Super-Duper Sensitivity Beats Heisenberg!

  • Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit

    PRL 104, 103602 (2010)PM Anisimov, GM Raterman, A Chiruvelli, WN Plick, SD Huver, H Lee, JP Dowling

    We show that super-resolution and sub-Heisenberg sensitivity isobtained with parity detection. In particular, in our setup, dependenceof the signal on the phase evolves times faster than in traditionalschemes, and uncertainty in the phase estimation is better than 1/.

    SNL HL

    TMSV& QCRB

    HofL

    SNL ! 1 / n̂ HL ! 1 / n̂ TMSV ! 1 / n̂ n̂ + 2 HofL ! 1 / n̂2

  • Outline1.1. Nonlinear Optics Nonlinear Optics vsvs. Projective Measurements. Projective Measurements

    2.2. Quantum Imaging Quantum Imaging vsvs. Precision Measurements. Precision Measurements

    3.3. Showdown at High N00N!Showdown at High N00N!

    4.4. Mitigating Photon LossMitigating Photon Loss

    6.6. Super Resolution with Classical LightSuper Resolution with Classical Light

    7. 7. Super-Duper Sensitivity Beats Heisenberg!Super-Duper Sensitivity Beats Heisenberg!

    有難うございます!