72
Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …. Supported by NSF.

Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Embed Size (px)

Citation preview

Page 1: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Quantum Spin Liquid

Patrick Lee

MIT

Collaborators:M. Serbyn, A. Potter,T. SenthilN. NagaosaX-G WenY. Ran Y. ZhouM. HermeleT. K. NgT. Grover ….

Supported by NSF.

Page 2: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Outline:

1. Introduction to quantum magnetism and spin liquid.

2. Why is spin liquid interesting?

Spin liquid is much more than the absence of ordering: Emergence of new particles and gauge fields.

3. Spin liquid in organic compounds and kagome lattice.

4. Low energy theory: fermion plus gauge field.

5. Proposals for experimental detection of emergent particles and gauge fields.

Page 3: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Conventional Anti-ferromagnet (AF):

1970 Nobel PrizeLouis Néel Cliff Shull

1994 Nobel Prize

Page 4: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

strongly-correlated electron systemexample: Hi Tc cuprate.

Undoped CuOUndoped CuO22 plane: plane:

Mott Insulator due toMott Insulator due to ee-- - e - e-- interaction interaction

Virtual hopping inducesVirtual hopping induces AF exchange J=4tAF exchange J=4t22/U/U

CuOCuO22 plane with doped holes: plane with doped holes:

LaLa3+3+ Sr Sr2+2+: La: La2-x2-xSrSrxxCuOCuO44

tt

One hole per site: should be a metal according to band theory.

Mott insulator.

Page 5: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Competing visions of the antiferromagnet

Lev Landau

Quantum

| |

“….To describe antiferromagnetism, Lev landau and Cornelis Gorter suggested quantum fluctuations to mix Neel’s solution with that obtained by reversal of moments…..Using neutron diffraction, Shull confirmed (in 1950) Neel’s model.

……Neel’s difficulties with antiferromagnetism and inconclusive discussions in the Strasbourg international meeting of 1939 fostered his skepticism about the usefulness of quantum mechanics; this was one of the few limitations of this superior mind.”

Jacques Friedel, Obituary of Louis Neel, Physics today, October,1991.

Classical

Page 6: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Mott against Slater debate:

Slater:Anti-ferromagnetic ground state.Unit cell is doubled. Then we have 2 electrons per unit cell and the system can be an insulator, consistent with band theory.

Mott:One electron per unit cell. Charge gap is due to correlation. Antiferromagnetism is secondary.Mott insulator violate band theory.

Can there be a Mott insulator which does not have AF order?

Page 7: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

P. W. Anderson introduced the RVB idea in 1973.

Key idea: spin singlet can give a better energy than anti-ferromagnetic order.

What is special about S=1/2?

1 dimensional chain:

Energy per bond of singlet trial wavefunction is

-(1/2)S(S+1)J = -(3/8)J vs. -(1/4)J for AF.

Page 8: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

In 1973 Anderson proposed a spin liquid ground state (RVB) for the triangular lattice Heisenberg model.. It is a linear superposition of singlet pairs. (not restricted to nearest neighbor.)

New emergent property of spin liquid:

Excitations are spin ½ particles (called spinons), as opposed to spin 1 magnons in AF. These spinons may even form a Fermi sea.

Emergent gauge field. (U(1), Z2, etc.)

Topological order (X. G. Wen) in case of gapped spin liquid: ground state degeneracy, entanglement entropy.

Spin liquid: destruction of Neel order due to quantum fluctuations.

More than 30 years later, we may finally have several examples of spin liquid in higher than 1 dimension!

Spin liquid is more than the absence of Neel order.

Page 9: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Requirements: insulator, odd number of electron per unit cell, absence of AF order.

Finally there is now a promising new candidate in the organics and also in a Kagome compound.

It will be very useful to have a spin liquid ground state which we can study.

Two routes to spin liquid:

1.Geometrical frustration: spin ½ Heisenberg model on Kagome, hyper-kagome.

2. Proximity to Mott transition.

Page 10: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Introduce fermions which carry spin index

Constraint of single occupation, no charge fluctuation allowed.

Two ways to proceed:

1. Numerical: Projected trial wavefunction.

2. Analytic: gauge theory.

Extended Hilbert space: many to one representation.

Page 11: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Why fermions?

Can also represent spin by boson, (Schwinger boson.)

Mean field theory:

1. Boson condensed: Neel order.

2. Boson not condensed: gapped state.

Generally, boson representation is better for describing Neel order or gapped spin liquid, whereas fermionic representation is better for describing gapless spin liquids.

The open question is which mean field theory is closer to the truth. We have no systematic way to tell ahead of time at this stage.

Since the observed spin liquids appear to be gapless, we proceed with the fermionic representation.

Page 12: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Enforce constraint with Lagrange multipier

The phase of ij becomes a compact gauge field aij on link ij and ibecomes the time component.

Compact U(1) gauge field coupled to fermions.

Page 13: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

General problem of compact gauge field coupled to fermions.

Mean field (saddle point) solutions:

1. For ij real and constant: fermi sea.

2. For ij complex: flux phases and Dirac sea.

3. Fermion pairing: Z2 spin liquid.Enemy of spin liquid is confinement:(flux state and SU(2) gauge field leads to chiral symmetry breaking, ie AF order)

If we are in the de-confined phase, fermions and gauge fields emerge as new particles at low energy. (Fractionalization)

The fictitious particles introduced formally takes on a life of its own! They are not free but interaction leads to a new critical state. This is the spin liquid.

Z2 gauge theory: generally gapped. Several exactly soluble examples. (Kitaev, Wen)

U(1) gauge theory: gapless Dirac spinons or Fermi sea.

Hermele et al (PRB) showed that deconfinement is possible if number of Dirac fermion species is large enough. (physical problem is N=4). Sung-sik Lee showed that fermi surface U(1) state is always deconfined.

Page 14: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Stability of gapless Mean Field State against non-perturbative effect.

• U(1) instanton

F

Ф

1) Pure compact U(1) gauge theory : always confined. (Polyakov)

2) Compact U(1) theory + large N Dirac spinon : deconfinement phase [Hermele et al., PRB 70, 214437 (04)]

3) Compact U(1) theory + Fermi surface :

more low energy fluctuations deconfined for any N. (Sung-Sik Lee, PRB 78, 085129(08).)

Page 15: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Non-compact U(1) gauge theory coupled with Fermi surface.

Integrating out some high energy fermions generate a Maxwell term with coupling constant e of order unity.

The spinons live in a world where coupling to E &M gauge fields are strong and speed of light given by J.

Longitudinal gauge fluctuations are screened and gapped. Will focus on transverse gauge fluctuations which are not screened.

Page 16: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Physical Consequence

Specific heat : C ~ T2/3

[Reizer (89);Nagaosa and Lee (90), Motrunich (2005).]

Gauge fluctuations dominate entropy

at low temperatures.

Non-Fermi liquid.

Page 17: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Physical meaning of gauge field:

gauge flux is gauge invariant

b= x a

It is related to spin chirality (Wen, Wilczek and Zee, PRB 1989)

Fermions hopping around a plaquette picks up a Berry’s phase due to the meandering quantization axes. The is represented by a gauge flux through the plaquette.

Page 18: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Three examples:

1. Organic triangular lattice near the Mott transition.

2. Kagome lattice, more frustrated than triangle.

3. Hyper-Kagome, 3D.

We are not talking about spin glass, spin ice etc.

Page 19: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Kagome lattice.

Page 20: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Spin liquid in Kagome system. (Dan Nocera, Young Lee etc. MIT).

Curie-Weiss T=300, fit to high T expansion gives J=170K

No spin order down to mK (muSR, Keren and co-workers.)

Herbertsmithite : Spin ½ Kagome.

Mineral discovered in Chile in 1972 and named after H. Smith.

Page 21: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Projected wavefunction studies. (Y. Ran, M. Hermele, PAL,X-G Wen)

Effective theory: Dirac spinons with U(1) gauge fields. (ASL)

Spin ½ Heisenberg on Kagome has long been suspected to be a spin liquid.(P. W. Leung and V. Elser, PRB 1993)

Page 22: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

White, Huse and collaborators find a gapped spin liquid using DMRG.

Entnglement entropy calculations (Hong-Chen Jiang and others) show that their state is a Z2 spin liquid.

Page 23: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

How to understand Huse-White result?

1. Slave boson: Motrunich 2011: projected slave boson

mean field. Proximity to QCP?

Gapped Z2 spin liquid.

2. Fermion pairing:Lu, Ran and Lee: classified projected fermionic pairing state.

However, recent QMC calculation by Iqbal, Becca and Poilblanc did not find energy gain by pairing. They found that the Dirac SL is remarkably stable and has energy comparable to DMRG after two Lanchoz steps.

Page 24: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Caveats: Heisenberg model not sufficient.

1. Dzyaloshinskii- Moriya term:

Estimated to be 5 to 10% of AF exchange.

2. Local moments, current understanding is that 15% of the Zn sites are occupied by copper.

Theoretically, the best estimate (Huse and White) is that there is a triplet gap of order 0.14J.Experimentally, the gap is much smaller. Specific heat, NMR (Mendels group PRL2008, 2011, T. Imai et al 2011). See also recent neutron scattering. (Y. Lee group, Nature 2012.)

QCP between Z2 spin liquid and AF order. (Huh, Fritz and Sachdev, PRB 2010)

Page 25: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Mendels group, PRL 2012Mendels group PRL 2008

Page 26: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Large single crystals available (Young Lee’s group at MIT).Neutron scattering possible. Science 2012.

Projected Dirac S(k). Serbyn and PAL.

Page 27: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

X = Cu(NCS)2, Cu[N(CN)2]Br, Cu2(CN)3…..

Q2D organics -(ET)2X

anisotropic triangular lattice

dimer model

ET

X

t’ / t = 0.5 ~ 1.1

t’

t t

Mott insulator

Page 28: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Q2D spin liquid -Cu2(CN)3

Q2D antiferromagnet -Cu[N(CN)2]Cl

t’/t=1.06

No AF order down to 35mK.

J=250K.

t’/t=0.75

1 10 10010-3

10-2

10-1

100

101

102

103

104

105

106

4.5 kbar

5 kbar

5.5 kbar

8 kbar

4 kbar

3.5 kbar0 kbar

Resis

tance ()

T (K)

Page 29: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Wilson ratio is approx. one at T=0.

is about 15 mJ/K^2mole

Something happens around 6K.

Partial gapping of spinon Fermi surface due to spinon pairing?

From Y. Nakazawa and K. Kanoda, Nature Physics 2008.

Page 30: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

More examples have recently been reported.

Page 31: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …
Page 32: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

M. Yamashita et al, Science 328, 1246 (2010)

Thermal conductivity of dmit salts.

mean free path reaches 500 inter-spin spacing.

However, ET salt seems to develop a small gap below 0.2 K.

Page 33: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

ET2Cu(NCS)2 9K sperconductor ET2Cu2(CN)3 Insulator spin liquid

Page 34: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Importance of charge fluctuations

Heisenberg model120° AF order

Charge fluctuations are important near the Mott transition even in insulating phase

U/t

Fermi LiquidMott

transition

Metal I n s u l a t o r

J ~ t2/U

Numeric.[Imada and co.(2003)]

Spin liquid state

with ring exchange.

[Motrunich, PRB72,045105(05)] J’ ~ t4/U3

+ …+

Page 35: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Slave-rotor representation of the Hubbard Model :[S. Florens and A. Georges, PRB 70, 035114 (’04),

Sung-Sik Lee and PAL PRL 95,036403 (‘05)]

L = -1 0 1Constraint :

Q. What is the low energy effective theory for mean-field state ?

Page 36: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Effective Theory : fermions and rotor coupled to

compact U(1) gauge field.Sung-sik Lee and P. A. Lee, PRL 95, 036403 (05)

Page 37: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Okamoto ..Takagi

PRL 07

3 dim example?

Hyper-Kagome.

Near Mott transition: becomes metallic under pressure.

Page 38: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Strong spin orbit coupling.

Spin not a good quantum number but J=1/2.

Approximate Heisenberg model with J if direct exchange between Ir dominates. (Chen and Balents, PRB 09, see also Micklitz and Norman PRB 2010 )

Slave fermion mean field , Zhou et al (PRL 08)

Mean field and projected wavefunction. Lawler et al. (PRL 08)

Conclusion:

zero flux state is stable: spinon fermi surface.

Low temperature pairing can give line nodes and explain T^2 specific heat.

Page 39: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Enforce constraint with Lagrange multipier

The phase of ij becomes a compact gauge field aij on link ij and ibecomes the time component.

Compact U(1) gauge field coupled to fermions.

Page 40: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Non-compact U(1) gauge theory coupled with Fermi surface.

Integrating out some high energy fermions generate a Maxwell term with coupling constant e of order unity.

The spinons live in a world where coupling to E &M gauge fields are strong and speed of light given by J.

Longitudinal gauge fluctuations are screened and gapped. Will focus on transverse gauge fluctuations which are not screened.

Page 41: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

1. Gauge field dynamics: over-damped gauge fluctuations, very soft!

2. Fermion self energy is singular.

RPA results:

No quasi-particle pole, or z 0.

Page 42: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …
Page 43: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Only bosons with q tangent to a given patch couple.Two patch theory.This is special to 2D.

In 3D bands of tangential points are coupled. Then all points are coupled.

Page 44: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Large N: Polchinski (94), Altshuler, Ioffe and Millis (94). N fermions coupled to gauge field.

Minimal 2 patch model. Sung-Sik Lee, (PRB80 165102 (09)

Plus opposite patch with e -> -eNote curvature of patch is kept.

Page 45: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

It was believed that 1/N expansion is systematic, and D has no further singular correction, but Fermion G might.Sung-Sik Lee showed that 1/N expansion breaks down.

This term is dangerous if it serves as a cut-off in a diagram.He concludes that an infinite set of diagrams contribute to a given order of 1/N.

Page 46: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Recent progress:

Metlitski and Sachdev PRB82, 075127 (10)They did loop expansion anyway and found no log correction to boson up to 3 loops, but for fermion self-energy:

Page 47: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Solution: double expansion. (Mross, McGreevy,Liu and Senthil).

Maxwell term.½ filled Landau level with 1/r interaction.

Expansion parameter: zb-2.Limit N infinity, N finite gives a controlled expansion.

Results are similar to RPA and consistent with earlier expansion at N=2.The double expansion is technically easer to go to higher order.

Page 48: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Conclusion:No correction to boson: z=3/2.

For the gauge field problem, is positive and sub-leading. RPA is recovered to 3 loop.

Page 49: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Sung-Sik Lee, arXiv 2013, co-dimension expansion.

2 patch theory fails for d > 2. Therefore cannot do conventional epsilon expansion. Instead, keep FS to be a line and extend the dimension perpendicular to it to d-1.

He finds an expansion about d=2.5.

Results are consistent with Mross et al:No correction to boson D to 3 loops.Correction to fermions: for the nematic problem

For the gauge field problem, is positive and sub-leading. RPA is recovered to 3 loop.

Page 50: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

How non-Fermi liquid is it?

Physical response functions for small q are Fermi liquid like, and can be described by a quantum Boltzmann equation. Y.B. Kim, P.A. Lee and X.G. Wen, PRB50, 17917 (1994)

Take a hint from electron-phonon problem. 1/T, but transport is Fermi liquid.

If self energy is k independent, Im G is sharply peaked in k space (MDC) while broad in frequency space (EDC). Can still derive Boltzmann equation even though Landau criterion is violated.(Kadanoff and Prange). In the case of gauge field, singular mass correction is cancelled by singular landau parameters to give non-singular response functions. For example, uniform spin susceptibility is constant while specific heat gamma coefficent (mass) diverges.

On the other hand, 2kf response is enhanced. (Altshuler, Ioffe and Millis, PRB 1994).May be observable as Kohn anomaly and Friedel oscilations. (Mross and Senthil)

Page 51: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

What about experiments?

Linear T specific heat, not T^2/3.

Thermal conductivity:

Nave and Lee, PRB 2007.

If second term due to impurity dominates, we have k/T goes to constant, in agreement with expt. Numerically the first term due to gauge field scattering is very close to expt at 0.2 K. Then we may expect small upturn and small deviation from linearity.

Page 52: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

NMR on dmit.Stretched exponential decay at low T. Is there a nodal gap?

Page 53: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10Temperature (K)

(a)

13C NMRrelaxation rate

inhomogeneous

Evidence for phase transition at 6K in ET.

Spinon pairing?

U(1) breaks down to Z2 spin liquid. The gauge field is gapped.

What kind of pairing?

One candidate is d wave pairing. With disorder the node is smeared and gives finite density of states. /T is universal constant (independent on impurity conc.) However, singlet pairing seems ruled out by smooth behavior of spin susceptibility up to 30T.

More exotic pairing? Amperean pairing, SS Lee,PL, Senthil. (PRL). Other suggestions: time reversal breaking, Barkeshli, Yao and Kivelson, arXiv 2012, quadratic band touching, Mishmash…C. Xu, arXiv 2013.

Thermal expansion coefficient Manna et al., PRL 104 (2010) 016403

NMR Relaxation rate Shimizu et al., PRB 70 (2006) 060510

inhomogeneous

Page 54: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Open issues on organic spin liquids:

Nature of the small gap in ET vs no gap in dmit.

Explanation of the low temperature NMR, field induced broadening of nmr and MuSR line.

Is it U(1) or Z2? If U(1) ,where is the evidence for gauge fluctuations?

What is the nature of the phase transition at 6K in ET and possibly 4K in dmit?

Quantum critical point between spin liquid state with spinon Fermi surface and metal. Non-Fermi liquid metal? Effective field theory: charge carried by xy bosonic model (2+1 dim) and spinons coupled to gauge field. (S-S. Lee and PAL, PRL 2005). Critical theory described by T. Senthil (PRB 2008).

Page 55: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Other experiments?

How to see spinon Fermi surface?

Angle resolved photo-emission (ARPES)(Evelyn Tang, PL and Matthew Fisher, also Pujari and Lawler, arXiv 2012)

Electron spectrum = convolution of fermion with boson with gap .

Location of the lowest threshold traces out the spinon Fermi surface.

Another idea: 2kF Friedel oscillations may be observable by STM. Mross and Senthil, PRB 2010.

Page 56: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

How to see gauge field?

Coupling between external orbital magnetic field and spin chirality. Motrunich, see also Sen and Chitra PRB,1995.

1 Quantum oscillations? Motrunich says no. System breaks up into Condon domains because gauge field is too soft.

2 Thermal Hall effect (Katsura, Nagaosa and Lee, PRL 09). Expected only above spinon pairing temperature. Not seen experimentally so far. (perhaps due to “Meissner effect” of spinon pairing)

3 In gap optically excitation. Electric field generates gauge electric field. (Ng and Lee PRL 08)

4 Ultra-sound attenuation, (Yi Zhou and P. Lee, PRL 2011)

5 Direct coupling to neutron using DM term in Herbertsmithite. (Lee and Nagaosa, PR 2013)

Page 57: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

2. For transverse ultra-sound, the rapid fall phenomenon, well known for SC, can be a signature of fermion pairing and the existence of gauge field.

Yi Zhou and P. Lee, PRL 2011

1. Spinon coupling to phonon is the same as electron-phonon coupling in the long wave length limit.

Page 58: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

With T. K. Ng (PRL 08)

Gapped boson is polarizible. AC electromagnetic A field induces gauge field a which couples to gapless fermions.

Predict ^2*(1/

Role of gauge field?

Power law is found by Elsasser…Dressel, Schlueter in ET (PRB 2012) but for larger than J. Need low frequency data.

Recent terahertz data by Nuh Gedik group at MIT, Pilon et al. on Herbertsmithite.

Page 59: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Recent terahertz data by Nuh Gedik group at MIT, Pilon et al. arXiv 1301. on Herbertsmithite.

Page 60: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Potter, Senthil and Lee, recently identified several mechanisms for in gap absorption in Herbertsmithite. All proportional to ^2 with varying coefficients for the U(1) spin liquid.

1. Electric field couple to gauge electric field. (Ioffe-Larkin) Physical meaning of gauge electric field is the gradient of singlet bond.

a. Purely electronic. (Ng-Lee, PRL 2007) Bulaevskii et al PRB 2008.

b. Magneto-elastic coupling.

2. Modulation of the DM term. Couple to the spin current in the x direction. Expect smaller magnitude.

Page 61: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Bulaevskii, Batista, Mostovoy and Khomskii.PRB 78, 024404 (2008).

Perturbation in t/U of the Hubbard model and project to the spin sector.

E.P provide the coupling of light to the spin degree of freedom.

Is proportional to the gauge electric field.

This is a more physical way to understand the coupling via the gauge field.

It turns out that

Page 62: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

For a triangle this reduces to

What is the physical meaning of the gauge electric field? (Potter et al, appendix)

Recall that gauge magnetic field is the spin chirality.

Page 63: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

For the special case of Dirac spinons:

Order of magnitude is in agreement with Gedik’s experiment.

Page 64: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Magneto-elastic coupling.

Displacement of the Cu ions within the unit cell modulates the exchange J.

The symmetry of the modulation of Si.Sj is the same as the purely electronic mechanism for the Kagome lattice.

Numerically this gives the same order of magnitude as the purely electronic mechanism.

Page 65: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Modulation of the DM term due to motion of the oxygen ions in the unit cell.

It is interesting and it couples to the spin conductivity. However, this is estimated to be smaller in magnitude.

Page 66: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Using neutron scattering to measure spin chirality in Kagome lattices. P. A. Lee and N. Nagaosa, arXiv.

Gauge flux is proportional to scalar spin chirality.

How to measure its fluctuation spectrum?

Maleev, 1995 : neutron measurement of vector chirality.Shastry-Shraiman, 1990: Raman scattering. Limited to small q.Wingho Ko and PAL,2011, RIXS, limited energy resolution.

Savary and Balents PRL 2012, (also O. Benton, O. Sikora and N. Shannon, PRB 2012) showed that neutron scattering couples to gauge fluctuations in the spin ice problem, where spin-orbit coupling is dominant.

Can something similar work for the weak spin-orbit case?

Page 67: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

We expect that fluctuations of the z component of S1 contains information of the fluctuation of the scalar chirality.

Page 68: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

A more formal argument:

Let be a state which carries chirality and has no matrix element to couple to neutron scattering. To first order in DM, it becomes

We predict that neutron scattering contains a piece which contains information on the scalar chirality fluctuations.

Intermediate state is triplet. We assume triplet gap larger than singlet.

Page 69: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Metal- insulator transition by tuning U/t.

U/t

x

AF Mott insulator

metal

Cuprate superconductor

Organic superconductor

Tc=100K, t=.4eV, Tc/t=1/40.

Tc=12K, t=.05eV, Tc/t=1/40.

Page 70: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Superconductivity in doped ET, (ET)4Hg2.89Br8, was first discovered Lyubovskaya et al in 1987. Pressure data form Taniguchi et al, J. Phys soc Japan, 76, 113709 (2007).

Doping of an organic Mott insulator. Also talk by Yamamoto yesterday.

Page 71: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …

Conclusion:

There is an excellent chance that the long sought after spin liquid state in 2 dimension has been discovered experimentally.

organic: spinon Fermi surface

Kagome and Hyper-Kagome.

More experimental confirmation needed.

New phenomenon of emergent spinons and gauge field may now be studied.

Page 72: Quantum Spin Liquid Patrick Lee MIT Collaborators: M. Serbyn, A. Potter, T. Senthil N. Nagaosa X-G Wen Y. Ran Y. Zhou M. Hermele T. K. Ng T. Grover …