120
Black Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob McNees Daniel Grumiller Center for Theoretical Physics Massachusetts Institute of Technology Penn State University, May 2007 hep-th/0703230

quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

  • Upload
    voliem

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics

and Hamilton-Jacobi CountertermBased upon work with Bob McNees

Daniel Grumiller

Center for Theoretical PhysicsMassachusetts Institute of Technology

Penn State University, May 2007

hep-th/0703230

Page 2: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Outline

Introduction

Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics 2/32

Page 3: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Outline

Introduction

Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Introduction 3/32

Page 4: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - Why?

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Introduction 4/32

Page 5: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - Why?

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Introduction 4/32

Page 6: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - Why?

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Introduction 4/32

Page 7: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - Why?

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Introduction 4/32

Page 8: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - Why?

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Introduction 4/32

Page 9: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - How?Many different approaches available...

Approach:

I Physical arguments

I QFT on fixed BG

I Conformal anomaly

I Gravitational anomaly

I Euclidean path integral

Advantage:

I Very simple

I Rigorous, plausible

I Rigorous, simple

I Plausible, simple

I Very simple

Drawback:

I ad-hoc!

I lengthy

I too special?

I additional input?

I physical?

Employ Euclidean Path Integral Approach

I Not convincing “first time”-derivation of Hawking effect

I Convenient short-cut to obtain thermodynamical partition function

I Rather insensitive to matter coupling

I Useful insights about gravitational actions!

D. Grumiller — Black Hole Thermodynamics Introduction 5/32

Page 10: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - How?Many different approaches available...

Approach:

I Physical arguments

I QFT on fixed BG

I Conformal anomaly

I Gravitational anomaly

I Euclidean path integral

Advantage:

I Very simple

I Rigorous, plausible

I Rigorous, simple

I Plausible, simple

I Very simple

Drawback:

I ad-hoc!

I lengthy

I too special?

I additional input?

I physical?

Employ Euclidean Path Integral Approach

I Not convincing “first time”-derivation of Hawking effect

I Convenient short-cut to obtain thermodynamical partition function

I Rather insensitive to matter coupling

I Useful insights about gravitational actions!

D. Grumiller — Black Hole Thermodynamics Introduction 5/32

Page 11: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - How?Many different approaches available...

Approach:

I Physical arguments

I QFT on fixed BG

I Conformal anomaly

I Gravitational anomaly

I Euclidean path integral

Advantage:

I Very simple

I Rigorous, plausible

I Rigorous, simple

I Plausible, simple

I Very simple

Drawback:

I ad-hoc!

I lengthy

I too special?

I additional input?

I physical?

Employ Euclidean Path Integral Approach

I Not convincing “first time”-derivation of Hawking effect

I Convenient short-cut to obtain thermodynamical partition function

I Rather insensitive to matter coupling

I Useful insights about gravitational actions!

D. Grumiller — Black Hole Thermodynamics Introduction 5/32

Page 12: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - How?Many different approaches available...

Approach:

I Physical arguments

I QFT on fixed BG

I Conformal anomaly

I Gravitational anomaly

I Euclidean path integral

Advantage:

I Very simple

I Rigorous, plausible

I Rigorous, simple

I Plausible, simple

I Very simple

Drawback:

I ad-hoc!

I lengthy

I too special?

I additional input?

I physical?

Employ Euclidean Path Integral Approach

I Not convincing “first time”-derivation of Hawking effect

I Convenient short-cut to obtain thermodynamical partition function

I Rather insensitive to matter coupling

I Useful insights about gravitational actions!

D. Grumiller — Black Hole Thermodynamics Introduction 5/32

Page 13: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - How?Many different approaches available...

Approach:

I Physical arguments

I QFT on fixed BG

I Conformal anomaly

I Gravitational anomaly

I Euclidean path integral

Advantage:

I Very simple

I Rigorous, plausible

I Rigorous, simple

I Plausible, simple

I Very simple

Drawback:

I ad-hoc!

I lengthy

I too special?

I additional input?

I physical?

Employ Euclidean Path Integral Approach

I Not convincing “first time”-derivation of Hawking effect

I Convenient short-cut to obtain thermodynamical partition function

I Rather insensitive to matter coupling

I Useful insights about gravitational actions!

D. Grumiller — Black Hole Thermodynamics Introduction 5/32

Page 14: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - How?Many different approaches available...

Approach:

I Physical arguments

I QFT on fixed BG

I Conformal anomaly

I Gravitational anomaly

I Euclidean path integral

Advantage:

I Very simple

I Rigorous, plausible

I Rigorous, simple

I Plausible, simple

I Very simple

Drawback:

I ad-hoc!

I lengthy

I too special?

I additional input?

I physical?

Employ Euclidean Path Integral Approach

I Not convincing “first time”-derivation of Hawking effect

I Convenient short-cut to obtain thermodynamical partition function

I Rather insensitive to matter coupling

I Useful insights about gravitational actions!

D. Grumiller — Black Hole Thermodynamics Introduction 5/32

Page 15: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole Thermodynamics - How?Many different approaches available...

Approach:

I Physical arguments

I QFT on fixed BG

I Conformal anomaly

I Gravitational anomaly

I Euclidean path integral

Advantage:

I Very simple

I Rigorous, plausible

I Rigorous, simple

I Plausible, simple

I Very simple

Drawback:

I ad-hoc!

I lengthy

I too special?

I additional input?

I physical?

Employ Euclidean Path Integral Approach

I Not convincing “first time”-derivation of Hawking effect

I Convenient short-cut to obtain thermodynamical partition function

I Rather insensitive to matter coupling

I Useful insights about gravitational actions!

D. Grumiller — Black Hole Thermodynamics Introduction 5/32

Page 16: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Outline

Introduction

Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 6/32

Page 17: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 7/32

Page 18: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 7/32

Page 19: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 7/32

Page 20: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 7/32

Page 21: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 7/32

Page 22: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 8/32

Page 23: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 8/32

Page 24: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 8/32

Page 25: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 8/32

Page 26: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 8/32

Page 27: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 9/32

Page 28: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞

2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 9/32

Page 29: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 0

3. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 9/32

Page 30: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 0

3. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 9/32

Page 31: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

What could go Wrong?...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 9/32

Page 32: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

What could go Wrong?...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Euclidean Path Integral 9/32

Page 33: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Outline

Introduction

Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 10/32

Page 34: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]

−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 11/32

Page 35: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]

−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 11/32

Page 36: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]

−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 11/32

Page 37: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K

−∫

∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 11/32

Page 38: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 11/32

Page 39: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Selected List of ModelsBlack holes in (A)dS, asymptotically flat or arbitrary spaces

Model U(X) V (X)

1. Schwarzschild (1916) − 12X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX3. Witten Black Hole (1991) − 1

X−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − aX

BX6. Rindler ground state (1996) − a

XBXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − aX

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordstrom (1916) − 12X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 12X

−λ2 − `X13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X− J

4X3 − ΛX15. KK reduced CS (2003) 0 1

2X(c−X2)

16. KK red. conf. flat (2006) − 12

tanh (X/2) A sinh X

17. 2D type 0A string Black Hole − 1X

−2b2X + b2q2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 12/32

Page 40: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Selected List of ModelsBlack holes in (A)dS, asymptotically flat or arbitrary spaces

Model U(X) V (X)

1. Schwarzschild (1916) − 12X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX3. Witten Black Hole (1991) − 1

X−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − aX

BX6. Rindler ground state (1996) − a

XBXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − aX

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordstrom (1916) − 12X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 12X

−λ2 − `X13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X− J

4X3 − ΛX15. KK reduced CS (2003) 0 1

2X(c−X2)

16. KK red. conf. flat (2006) − 12

tanh (X/2) A sinh X

17. 2D type 0A string Black Hole − 1X

−2b2X + b2q2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 12/32

Page 41: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Equations of Motion (EOM)

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +∂U(X)

∂X(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X= 0

I Integrable! [Easier: first order formulation (Ikeda 1993, Schaller, Strobl 1994)]I Generalized Birkhoff theorem: at least one Killing vectorI Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

I Choose henceforth ∂M as X = const. hypersurface

Adapted coordinate system (Lapse and Shift for radial evolution)

X = X(r) ds2 = N(r)2︸ ︷︷ ︸:=ξ(r)−1

dr2 + ξ(r)︸︷︷︸=kµkµ

(dτ + N τ (r)︸ ︷︷ ︸:=0

dr)2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 13/32

Page 42: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Equations of Motion (EOM)

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +∂U(X)

∂X(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X= 0

I Integrable! [Easier: first order formulation (Ikeda 1993, Schaller, Strobl 1994)]

I Generalized Birkhoff theorem: at least one Killing vectorI Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

I Choose henceforth ∂M as X = const. hypersurface

Adapted coordinate system (Lapse and Shift for radial evolution)

X = X(r) ds2 = N(r)2︸ ︷︷ ︸:=ξ(r)−1

dr2 + ξ(r)︸︷︷︸=kµkµ

(dτ + N τ (r)︸ ︷︷ ︸:=0

dr)2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 13/32

Page 43: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Equations of Motion (EOM)

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +∂U(X)

∂X(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X= 0

I Integrable! [Easier: first order formulation (Ikeda 1993, Schaller, Strobl 1994)]I Generalized Birkhoff theorem: at least one Killing vector

I Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

I Choose henceforth ∂M as X = const. hypersurface

Adapted coordinate system (Lapse and Shift for radial evolution)

X = X(r) ds2 = N(r)2︸ ︷︷ ︸:=ξ(r)−1

dr2 + ξ(r)︸︷︷︸=kµkµ

(dτ + N τ (r)︸ ︷︷ ︸:=0

dr)2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 13/32

Page 44: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Equations of Motion (EOM)

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +∂U(X)

∂X(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X= 0

I Integrable! [Easier: first order formulation (Ikeda 1993, Schaller, Strobl 1994)]I Generalized Birkhoff theorem: at least one Killing vectorI Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

I Choose henceforth ∂M as X = const. hypersurface

Adapted coordinate system (Lapse and Shift for radial evolution)

X = X(r) ds2 = N(r)2︸ ︷︷ ︸:=ξ(r)−1

dr2 + ξ(r)︸︷︷︸=kµkµ

(dτ + N τ (r)︸ ︷︷ ︸:=0

dr)2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 13/32

Page 45: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Equations of Motion (EOM)

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +∂U(X)

∂X(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X= 0

I Integrable! [Easier: first order formulation (Ikeda 1993, Schaller, Strobl 1994)]I Generalized Birkhoff theorem: at least one Killing vectorI Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

I Choose henceforth ∂M as X = const. hypersurface

Adapted coordinate system (Lapse and Shift for radial evolution)

X = X(r) ds2 = N(r)2︸ ︷︷ ︸:=ξ(r)−1

dr2 + ξ(r)︸︷︷︸=kµkµ

(dτ + N τ (r)︸ ︷︷ ︸:=0

dr)2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 13/32

Page 46: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Equations of Motion (EOM)

Extremize the action: δIE = 0

U(X)∇µX∇νX − 1

2gµνU(X)(∇X)2 − gµνV (X) +∇µ∇νX − gµν∇2X = 0

R +∂U(X)

∂X(∇X)2 + 2 U(X)∇2X − 2

∂V (X)

∂X= 0

I Integrable! [Easier: first order formulation (Ikeda 1993, Schaller, Strobl 1994)]I Generalized Birkhoff theorem: at least one Killing vectorI Orbits of this vector are isosurfaces of the dilaton

LkX = kµ∂µX = 0

I Choose henceforth ∂M as X = const. hypersurface

Adapted coordinate system (Lapse and Shift for radial evolution)

X = X(r) ds2 = N(r)2︸ ︷︷ ︸:=ξ(r)−1

dr2 + ξ(r)︸︷︷︸=kµkµ

(dτ + N τ (r)︸ ︷︷ ︸:=0

dr)2

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 13/32

Page 47: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Solutions

I Define two model-dependent functions

Q(X) := Q0 +∫ X

dX U(X)

w(X) := w0 − 2∫ X

dX V (X)eQ(X)

I Q0 and w0 are arbitrary constants (essentially irrelevant)

I Construct all classical solutions

∂rX = e−Q(X) ξ(X) = eQ(X)(w(X)− 2M

)Constant of motion M (“mass”) characterizes classical solutions

I Absorb Q0 into rescaling of length units

I Shift w0 such that M = 0 ground state solution

I Restrict to positive mass sector M ≥ 0

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 14/32

Page 48: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Solutions

I Define two model-dependent functions

Q(X) := Q0 +∫ X

dX U(X)

w(X) := w0 − 2∫ X

dX V (X)eQ(X)

I Q0 and w0 are arbitrary constants (essentially irrelevant)

I Construct all classical solutions

∂rX = e−Q(X) ξ(X) = eQ(X)(w(X)− 2M

)Constant of motion M (“mass”) characterizes classical solutions

I Absorb Q0 into rescaling of length units

I Shift w0 such that M = 0 ground state solution

I Restrict to positive mass sector M ≥ 0

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 14/32

Page 49: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Solutions

I Define two model-dependent functions

Q(X) := Q0 +∫ X

dX U(X)

w(X) := w0 − 2∫ X

dX V (X)eQ(X)

I Q0 and w0 are arbitrary constants (essentially irrelevant)

I Construct all classical solutions

∂rX = e−Q(X) ξ(X) = eQ(X)(w(X)− 2M

)

Constant of motion M (“mass”) characterizes classical solutions

I Absorb Q0 into rescaling of length units

I Shift w0 such that M = 0 ground state solution

I Restrict to positive mass sector M ≥ 0

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 14/32

Page 50: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Solutions

I Define two model-dependent functions

Q(X) := Q0 +∫ X

dX U(X)

w(X) := w0 − 2∫ X

dX V (X)eQ(X)

I Q0 and w0 are arbitrary constants (essentially irrelevant)

I Construct all classical solutions

∂rX = e−Q(X) ξ(X) = eQ(X)(w(X)− 2M

)Constant of motion M (“mass”) characterizes classical solutions

I Absorb Q0 into rescaling of length units

I Shift w0 such that M = 0 ground state solution

I Restrict to positive mass sector M ≥ 0

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 14/32

Page 51: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes

HorizonsSolutions with M ≥ 0 exhibit (Killing) horizons for each solution of

w(Xh) = 2M

Killing norm2 ξ(X) = eQ(X)(w(X)− 2M

)≥ 0 on Xh ≤ X <∞

Assumption 1

If there are multiple horizons we take the outermost one

Asymptotics

X →∞: asymptotic region of spacetime; most models: w(X)→∞

Consider only models where w(X)→∞ as X →∞

Assumption 2

Consequence: ξ(X) ∼ eQw as X →∞, i.e., ξ asymptotes to ground state

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 15/32

Page 52: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes

HorizonsSolutions with M ≥ 0 exhibit (Killing) horizons for each solution of

w(Xh) = 2M

Killing norm2 ξ(X) = eQ(X)(w(X)− 2M

)≥ 0 on Xh ≤ X <∞

Assumption 1

If there are multiple horizons we take the outermost one

Asymptotics

X →∞: asymptotic region of spacetime; most models: w(X)→∞

Consider only models where w(X)→∞ as X →∞

Assumption 2

Consequence: ξ(X) ∼ eQw as X →∞, i.e., ξ asymptotes to ground state

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 15/32

Page 53: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes

HorizonsSolutions with M ≥ 0 exhibit (Killing) horizons for each solution of

w(Xh) = 2M

Killing norm2 ξ(X) = eQ(X)(w(X)− 2M

)≥ 0 on Xh ≤ X <∞

Assumption 1

If there are multiple horizons we take the outermost one

Asymptotics

X →∞: asymptotic region of spacetime; most models: w(X)→∞

Consider only models where w(X)→∞ as X →∞

Assumption 2

Consequence: ξ(X) ∼ eQw as X →∞, i.e., ξ asymptotes to ground state

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 15/32

Page 54: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes

HorizonsSolutions with M ≥ 0 exhibit (Killing) horizons for each solution of

w(Xh) = 2M

Killing norm2 ξ(X) = eQ(X)(w(X)− 2M

)≥ 0 on Xh ≤ X <∞

Assumption 1

If there are multiple horizons we take the outermost one

Asymptotics

X →∞: asymptotic region of spacetime; most models: w(X)→∞

Consider only models where w(X)→∞ as X →∞

Assumption 2

Consequence: ξ(X) ∼ eQw as X →∞, i.e., ξ asymptotes to ground state

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 15/32

Page 55: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Hole TemperatureStandard argument: absence of conical singularity requires periodicity in Euclidean time

The gττ component of the metric vanishes at the horizon Xh

Regularity of the metric requires τ ∼ τ + β with periodicity

β =4π∂rξ

∣∣∣∣rh

=4π

w′(X)

∣∣∣∣Xh

I If ξ → 1 at X →∞: β−1 is temperature measured ’at infinity’

I Denote inverse periodicity by T := β−1 = w′(X)4π

∣∣∣Xh

I Proper local temperature related to β−1 by Tolman factor

T (X) =1√ξ(X)

β−1

So far no action required but only a line-element

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 16/32

Page 56: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Outline

Introduction

Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Free Energy 17/32

Page 57: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy?

Not yet!

Given the black hole solution, can we calculate the free energy?

Z ∼ exp(−1

~IE [gcl, Xcl]

)∼ e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 18/32

Page 58: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 18/32

Page 59: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 18/32

Page 60: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 18/32

Page 61: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 18/32

Page 62: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Recall ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Recalling ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 19/32

Page 63: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

Recall ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Recalling ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 19/32

Page 64: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Recall ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Recalling ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 19/32

Page 65: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Recall ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Recalling ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 19/32

Page 66: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Recall ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Recalling ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 19/32

Page 67: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 20/32

Page 68: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 20/32

Page 69: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 20/32

Page 70: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 20/32

Page 71: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 21/32

Page 72: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 21/32

Page 73: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 21/32

Page 74: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 21/32

Page 75: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 21/32

Page 76: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 21/32

Page 77: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 22/32

Page 78: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE

2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 22/32

Page 79: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 22/32

Page 80: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 22/32

Page 81: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Reconsider Semiclassical Approximation

Z ∼ exp(−1

~Γ[gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2Γ)× . . .

I Leading term is finite

I Linear term vanishes

I Still have to worry about quadratic term

Solved by ’putting the Black Hole in a box’ (York, 1986; Gibbons, Perry, 1992)

Cavity wall determined by X = Xc

Well-defined canonical ensemble by specifying Xc and Tc = 1/βc

Leading order (set ~ = 1):

Z(Tc, Xc) = e−Γ(Tc,Xc) = e−βcFc(Tc,Xc)

Here Fc is the Helmholtz free energy

D. Grumiller — Black Hole Thermodynamics Free Energy 23/32

Page 82: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Reconsider Semiclassical Approximation

Z ∼ exp(−1

~Γ[gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2Γ)× . . .

I Leading term is finite

I Linear term vanishes

I Still have to worry about quadratic term

Solved by ’putting the Black Hole in a box’ (York, 1986; Gibbons, Perry, 1992)

Cavity wall determined by X = Xc

Well-defined canonical ensemble by specifying Xc and Tc = 1/βc

Leading order (set ~ = 1):

Z(Tc, Xc) = e−Γ(Tc,Xc) = e−βcFc(Tc,Xc)

Here Fc is the Helmholtz free energy

D. Grumiller — Black Hole Thermodynamics Free Energy 23/32

Page 83: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Reconsider Semiclassical Approximation

Z ∼ exp(−1

~Γ[gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2Γ)× . . .

I Leading term is finite

I Linear term vanishes

I Still have to worry about quadratic term

Solved by ’putting the Black Hole in a box’ (York, 1986; Gibbons, Perry, 1992)

Cavity wall determined by X = Xc

Well-defined canonical ensemble by specifying Xc and Tc = 1/βc

Leading order (set ~ = 1):

Z(Tc, Xc) = e−Γ(Tc,Xc) = e−βcFc(Tc,Xc)

Here Fc is the Helmholtz free energy

D. Grumiller — Black Hole Thermodynamics Free Energy 23/32

Page 84: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Reconsider Semiclassical Approximation

Z ∼ exp(−1

~Γ[gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2Γ)× . . .

I Leading term is finite

I Linear term vanishes

I Still have to worry about quadratic term

Solved by ’putting the Black Hole in a box’ (York, 1986; Gibbons, Perry, 1992)

Cavity wall determined by X = Xc

Well-defined canonical ensemble by specifying Xc and Tc = 1/βc

Leading order (set ~ = 1):

Z(Tc, Xc) = e−Γ(Tc,Xc) = e−βcFc(Tc,Xc)

Here Fc is the Helmholtz free energy

D. Grumiller — Black Hole Thermodynamics Free Energy 23/32

Page 85: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Reconsider Semiclassical Approximation

Z ∼ exp(−1

~Γ[gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2Γ)× . . .

I Leading term is finite

I Linear term vanishes

I Still have to worry about quadratic term

Solved by ’putting the Black Hole in a box’ (York, 1986; Gibbons, Perry, 1992)

Cavity wall determined by X = Xc

Well-defined canonical ensemble by specifying Xc and Tc = 1/βc

Leading order (set ~ = 1):

Z(Tc, Xc) = e−Γ(Tc,Xc) = e−βcFc(Tc,Xc)

Here Fc is the Helmholtz free energy

D. Grumiller — Black Hole Thermodynamics Free Energy 23/32

Page 86: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Reconsider Semiclassical Approximation

Z ∼ exp(−1

~Γ[gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2Γ)× . . .

I Leading term is finite

I Linear term vanishes

I Still have to worry about quadratic term

Solved by ’putting the Black Hole in a box’ (York, 1986; Gibbons, Perry, 1992)

Cavity wall determined by X = Xc

Well-defined canonical ensemble by specifying Xc and Tc = 1/βc

Leading order (set ~ = 1):

Z(Tc, Xc) = e−Γ(Tc,Xc) = e−βcFc(Tc,Xc)

Here Fc is the Helmholtz free energyD. Grumiller — Black Hole Thermodynamics Free Energy 23/32

Page 87: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy

Γ(Tc, Xc) = βc Fc(Tc, Xc)

Explicitly: Entropy follows immediately (Bekenstein-Hawking law):

S = − ∂Fc

∂Tc

∣∣∣∣Xc

= 2πXh

Entropy determined by dilaton evaluated at the horizon (Gegenberg, Kunstatter,

Louis-Martinez, 1995)

Similarly: dilaton chemical potential (surface pressure) ψc = −∂Fc/∂Xc|Tc

D. Grumiller — Black Hole Thermodynamics Free Energy 24/32

Page 88: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy

Γ(Tc, Xc) = βc Fc(Tc, Xc)

Explicitly:

Fc(Tc, Xc) =√wc e−Qc

(1−

√1− 2M

wc

)− 2πXhTc

Entropy follows immediately (Bekenstein-Hawking law):

S = − ∂Fc

∂Tc

∣∣∣∣Xc

= 2πXh

Entropy determined by dilaton evaluated at the horizon (Gegenberg, Kunstatter,

Louis-Martinez, 1995)

Similarly: dilaton chemical potential (surface pressure) ψc = −∂Fc/∂Xc|Tc

D. Grumiller — Black Hole Thermodynamics Free Energy 24/32

Page 89: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy

Γ(Tc, Xc) = βc Fc(Tc, Xc)

Explicitly:

Fc(Tc, Xc) =√wc e−Qc

(1−

√1− 2M

wc

)︸ ︷︷ ︸

=Ec(Tc,Xc)

− 2πXhTc︸ ︷︷ ︸=STc

Entropy follows immediately (Bekenstein-Hawking law):

S = − ∂Fc

∂Tc

∣∣∣∣Xc

= 2πXh

Entropy determined by dilaton evaluated at the horizon (Gegenberg, Kunstatter,

Louis-Martinez, 1995)

Similarly: dilaton chemical potential (surface pressure) ψc = −∂Fc/∂Xc|Tc

D. Grumiller — Black Hole Thermodynamics Free Energy 24/32

Page 90: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Free Energy

Γ(Tc, Xc) = βc Fc(Tc, Xc)

Explicitly:

Fc(Tc, Xc) =√wc e−Qc

(1−

√1− 2M

wc

)︸ ︷︷ ︸

=Ec(Tc,Xc)

− 2πXhTc︸ ︷︷ ︸=STc

Entropy follows immediately (Bekenstein-Hawking law):

S = − ∂Fc

∂Tc

∣∣∣∣Xc

= 2πXh

Entropy determined by dilaton evaluated at the horizon (Gegenberg, Kunstatter,

Louis-Martinez, 1995)

Similarly: dilaton chemical potential (surface pressure) ψc = −∂Fc/∂Xc|Tc

D. Grumiller — Black Hole Thermodynamics Free Energy 24/32

Page 91: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0

D. Grumiller — Black Hole Thermodynamics Free Energy 25/32

Page 92: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0

D. Grumiller — Black Hole Thermodynamics Free Energy 25/32

Page 93: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0

D. Grumiller — Black Hole Thermodynamics Free Energy 25/32

Page 94: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0D. Grumiller — Black Hole Thermodynamics Free Energy 25/32

Page 95: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Outline

Introduction

Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Applications 26/32

Page 96: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1

DG2

spherical reduction

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 27/32

Page 97: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 27/32

Page 98: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd?- EHd+1 + GHYd + HJd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

? !- DG2 + ′GHY′1 + HJ1

?

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 27/32

Page 99: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd?- EHd+1 + GHYd + HJd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

? !- DG2 + ′GHY′1 + HJ1

?

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 27/32

Page 100: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd?- EHd+1 + GHYd + HJd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

? !- DG2 + ′GHY′1 + HJ1

?

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 27/32

Page 101: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Hawking-Page TransitionSpherically symmetric AdS Black Holes in d + 1 dimensions

CD: specific heat at constant dilaton; rh: horizon radius; `: AdS radiusD. Grumiller — Black Hole Thermodynamics Applications 28/32

Page 102: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 29/32

Page 103: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 29/32

Page 104: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 29/32

Page 105: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 29/32

Page 106: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)

I Need finite k corrections (α′ corrections): exact string Black Hole(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 29/32

Page 107: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 29/32

Page 108: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 29/32

Page 109: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 30/32

Page 110: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 30/32

Page 111: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 30/32

Page 112: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 30/32

Page 113: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 30/32

Page 114: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 31/32

Page 115: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 31/32

Page 116: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 31/32

Page 117: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 31/32

Page 118: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 31/32

Page 119: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 31/32

Page 120: quark.itp.tuwien.ac.atquark.itp.tuwien.ac.at/~grumil/pdf/thermodynamics.pdf · Black Hole Thermodynamics - Why? B-H: S= A 4G N, 1st: dE= TdS+work, 2nd: dS≥ 0 Classical General Relativity

Thanks for the attention...

...and thanks to Bob McNees for the style and source files of his talk!D. Grumiller — Black Hole Thermodynamics Applications 32/32