151
EARTH SCIENCE ASSESSMENTS * Items not authenticated (not from a released test—made up or from a non “valid” source). Unit 8(1): 11—Cosmology and Earth’s Place in the Universe E5.1 A: Describe the position and motion of our solar system in our galaxy and the overall scale, structure, and age of the universe. 1. Periodically, there are spectacular meteor showers on Earth. These showers usually occur because the Earth’s orbit passes through the remains of____________. A. a star B. a comet _ C. solar flares D. the rings of Saturn Answer: B 2. As observed with special instruments from Earth, the Sun appears in the sky to be slightly larger in January than in July. Which of the following accounts for this observation? A. The Earth moves in an orbit that is not circular but is closer to the Sun in January than in July. B. The diameter of the Earth is not constant, but bulges slightly at the Equator and contracts slightly during the winter. C. The Earth’s orbit is not in the same plane as the orbits of the other planets. D. The axis of rotation of the Earth is not perpendicular to the plane of its orbit but instead is tilted at an angle. Answer: A Earth Science Assessments – May 2009 1

Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

  • Upload
    buicong

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

EARTH SCIENCE ASSESSMENTS

* Items not authenticated (not from a released test—made up or from a non “valid” source).

Unit 8(1): 11—Cosmology and Earth’s Place in the Universe

E5.1 A: Describe the position and motion of our solar system in our galaxy and the overall scale, structure, and age of the universe.

1. Periodically, there are spectacular meteor showers on Earth. These showers usually occur because the Earth’s orbit passes through the remains of____________.

A. a starB. a comet _C. solar flaresD. the rings of Saturn

Answer: B

2. As observed with special instruments from Earth, the Sun appears in the sky to be slightly larger in January than in July. Which of the following accounts for this observation?

  A.  The Earth moves in an orbit that is not circular but is closer to the Sun in January than

in July.B.  The diameter of the Earth is not constant, but bulges slightly at the Equator and

contracts slightly during the winter.C.  The Earth’s orbit is not in the same plane as the orbits of the other planets.D.  The axis of rotation of the Earth is not perpendicular to the plane of its orbit but

instead is tilted at an angle.

Answer: A

3. A planetary model of a system is appropriate whenever the components of the system and the nature of the forces between them have certain properties. Which of the following might be some of these properties?

  A.  One of the components is much more massive than the others and exerts an attractive

force on each of the other components.B.  One of the components is much more massive than the others and exerts a force on

each of the other components that is perpendicular to the line connecting their centers.C.  All the components are equally massive, are far apart, and attract each other.D.  All the components are equally massive, are close together, and repel each other.

Answer: A

Earth Science Assessments – May 2009 1

Page 2: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. Which of the following diagrams best represents the relationship between galaxies, the universe, and solar systems?

A. B.

C. D.

Answer: A

E5.1b: Describe how the Big Bang theory accounts for the formation of the universe

1. The Big Bang Theory, describing the creation of the universe, is most directly supported by the

A. redshift of light from distant galaxies.B. presence of volcanoes on Earth.C. parent shape of star constellations.D. presence of craters on Earth’s Moon.

Answer: A

2. During the first moments of the big bang, nuclear fusion reactions made few heavy elements because

A. all heavy nuclei are unstable.B. no stable nuclei exist with masses of 5 or 8 hydrogen masses.C. the helium nucleus is unstable.D. the temperature and density were too low.

Answer: B

Earth Science Assessments – May 2009 2

universe

galaxies

solar system

galaxies

universe

solar system

solar system

universe

galaxies

universe

solar systems

galaxies

Page 3: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. In 1998 it was announced that the expansion of the universe is accelerating. What does this imply from the perspective of the big bang?

A. A force exists that we knew nothing about that causes the expansion.B. The universe must be closed.C. The universe is finite.D. The amount of dark matter must be greatly less than the amount of normal matter.

Answer: A

4. How does light from stars data support the Big Bang Theory? It shows that

A. most objects in space are moving away from one another.B. the universe is collapsing again.C. the Big Bang happened slowly over millions of years.D. the light from objects in space is “blue shifted.”

Answer: A

E5.1c: Explain how observations of the cosmic microwave background have helped determine the age of the universe.

1. The cosmic background radiation comes from a time in the evolution of the universe

A. when protons and neutrons were first formed.B. when the Big Bang first began to expand.C. when gamma rays had enough energy to destroy nuclei.D. when electrons began to recombine with nuclei to form atoms.

Answer: D

2. The Hubble time is

A. the time it takes the galaxy to double its size.B. the time since recombination occurred.C. the time remaining before the universe stops expanding and begins to contract.D. an estimate of the age of the universe based on the Hubble constant.

Answer: D

Earth Science Assessments – May 2009 3

Page 4: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. What does Cosmic Microwave Background Radiation have to do with the Big Bang theory?

A. It is part of the theory that has never been explained.B. It was radiation made as the Universe started to cool.C. It was radiation in space that got moved out of the way.D It is the radiation released during the explosion.

Answer: D

E5.1d Differentiate between the cosmological and Doppler red shift.

1. Data from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What does that data suggest about the sun?

A. The sun is the center of the solar system.B. The sun is near the end of its life cycle.C. The sun is a smaller, less massive star.D. The sun is spinning on its axis.

Answer: D

2. Redshift and blueshift measurements were recorded for a group of stars and a group of galaxies. Using the collected data shown below, explain how they support the idea that the universe is expanding.

 Star % Red Shift % Blue ShiftA 2%B 0% 0%C 2%D 1%E .5%F .125%G .5%H .125%I 0% 0%

 A. The stars showing a blue shift suggest the universe is expanding.B. The redshift in all the galaxies suggests the universe is expanding.C. The blueshifted stars suggest the universe is not expanding.D. The 0% shift in stars B and I suggest the universe is not expanding.

 Answer: B

Earth Science Assessments – May 2009 4

Galaxy % Red Shift % Blue Shift1 25%2 5%3 3%4 15%5 18%6 5%7 7%8 9%9 11%

Page 5: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Use the following spectrographs of hydrogen to answer the next two questions.

Spectrum of hydrogen on Earth

Red Blue

Spectrum of hydrogen from a distant star

Red Blue

*3. How would the spectrum of hydrogen on the distant star be described?

A. ReflectedB. Red-ShiftedC. OffsetD. Refracted

Answer: B

*4. How would an astronomer explain the difference between the two spectra?

A. Hydrogen gives off light differently if the gravity of the star is large.B. Light traveling through space is warped by the vacuum.C. The star is traveling away from us, lengthening the light waves.D. The star has a slightly different kind of hydrogen it is burning.

Answer: C

Earth Science Assessments – May 2009 5

Page 6: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 9(2): 12—The Sun and Other Stars

E5.2A: Identify patterns in solar activities (sunspot cycle, solar flares, solar wind).

1. A ___________ is believed to occur when energy, stored in a twist in the solar magnetic field above a sunspot, is suddenly released.

A. solar flareB. supergranuleC. spiculeD. coronal hole

Answer: A

2. Why does a comet’s tail point away from the Sun?

A. The solar wind blows the tail away from the Sun.B. It is being pulled by a nearby black hole.C. The Moon’s light only shines on part of the comet.D. The comet’s tail is following the path of Jupiter.

Answer: A

3. The _______ is (are) the hot gases that are the moving extension of the sun’s corona.

A. spiculesB. prominencesC. flaresD. solar wind

Answer: D

4. Sunspots are dark because

A. regions of the photosphere are obscured by material in the chromosphere.B. shock waves move through the photosphere.C. the strong magnetic field inhibits the currents of hot gas rising from below.D. they radiate their energy into space faster than the rest of the photosphere.

Answer: C

Earth Science Assessments – May 2009 6

Page 7: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.2B: Relate events on the Sun to phenomena such as auroras, disruption of radio and satellite communications, and power grid disturbances.

1. The aurora borealis and aurora australis are caused by an interaction between charged particles and Earth’s magnetic field. What layer of Earth’s atmosphere contains these particles?

A. TroposphereB. MesosphereC. IonosphereD. Stratosphere

Answer: C

2. If there were a slight increase in the amount of solar energy that reached the Earth, there would be an immediate increase in____________.

A. erosionB. evaporation _C. volcanic activityD. groundwater flow

Answer: B

3. What effect do solar flares have on Earth?

A. AurorasB. Global warmingC. Magnetic pole reversalD. Tides

Answer: A

4. Cycles of sunspot activity on the sun have been hypothesized to be responsible for changing climate. When would this hypothesis become a theory?

A. When enough evidence was collected to convince most atmospheric scientists.B. When no other evidence could be found that conflicted with the sunspot evidence.C. When scientists were sure that the sunspot theory would never be changed.D. When enough people on Earth understood and accepted the evidence.

Answer: A

Earth Science Assessments – May 2009 7

Page 8: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.2C: Describe how nuclear fusion produces energy in the Sun.

1. Fusion is a form of nuclear reaction resulting in an enormous release of heat energy. The fusion of hydrogen to helium is a reaction that commonly occurs in

A. the Sun and other typical stars. B. the ionosphere and thermosphere. C. Earth’s outer core of molten iron. D. a comet’s tail of ionized gases.

Answer: A

2. Only ten percent of a star’s mass undergoes fusion because temperatures outside of the core

A. never gets hot enough for reactions to occur.B. are too hot for reactions to occur.C. are too dependent on the amount of hydrogen.D. are always changing and are never stable.

Answer: A

3. The product of nuclear fusion is

A. hydrogenB. oxygenC. heliumD. nitrogen

Answer: C

4. The source of the sun’s energy is

A. chemical burning.B. nuclear fission.C. nuclear fusion.D. photosynthesis.

Answer: C

Earth Science Assessments – May 2009 8

Page 9: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.2D: Describe how nuclear fusion and other processes in stars have led to the formation of all the other chemical elements.

1. As part of the modern theory of the origins of the elements, it is hypothesized that before the formation of the stars, most of the matter in the universe consisted of what atoms?

A. Hydrogen and heliumB. Nitrogen and carbonC. Silicon and lithiumD. Uranium and radium

Answer: A

2. Massive stars cannot generate energy through iron fusion because

A. iron fusion requires very high density.B. stars contain very little iron.C. massive stars supernova before they create an iron core.D. iron is the most tightly bound of all nuclei.

Answer: D

3. Which of the following best describes the process of nuclear synthesis that created the known elements from hydrogen and helium?

A. Immediately following the Big Bang, intense heat and pressure produced all the existing elements through the fusion of lighter elements.

B. On the protoplanets, radioactive isotopes of primitive elements decayed into stable isotopes that compose the range of elements.

C. The formation of galaxies, stars, and planets produced environments in which the fission of primitive elements produced the elements.

D. Under the intense heat and pressure within stars, the heavier elements formed as the nuclei of two or more lighter elements combined and fused.

Answer: D

*4. A star is discovered with a high percentage of heavier elements. What does that show about the star?

A. It has had nuclear fusion taking place for a long time.B. It was formed in the big bang and is a new star.C. It is recently formed from a gas cloud.D. It is a star that formed from a planet.

Answer: A

Earth Science Assessments – May 2009 9

Page 10: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.2e Explain how the Hertzsprung-Russell (H-R) diagram can be used to deduce other parameters (distance).

Directions: Use the information below to answer the following four questions.

The high school astronomy club visited a local university’s observatory to learn more about how the life cycle of stars and the formation of the universe are investigated. At the observatory a team of scientists was collecting hydrogen spectrographic data on many distant stars and galaxies. The scientists used data from several telescopes, including the Keck Telescopes in Hawaii and the Hubble Space Telescope that orbits Earth. These telescopes are used to observe very distant objects. The scientists also used data from the university’s more limited telescope, which is used to observe closer objects.

At the observatory, the students also learned about the relative size of star types. Some of the information is shown below.

The students also learned how the size, color, luminosity, and absolute magnitude of stars are related. The Hertzsprung-Russell diagram compares characteristics of star types. Each dot on the diagram represents a star whose characteristics have been determined. Notice that the data appear to clump naturally into four star groups: white dwarfs, main sequence, giants, and supergiants.

Earth Science Assessments – May 2009 10

Page 11: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

1. Which statement explains why the team of scientist at the observatory most likely used other telescopes to gather light emission spectra data from stellar objects?

A. Hubble and Keck are in different locations so scientists can see galaxies from different angles.

B. Hubble and Keck are closer to the objects being observed so these objects are easier to find.

C. Hubble and Keck are less affected by Earth’s atmosphere so scientists can see distant galaxies more clearly.

D. Hubble and Keck are less costly to use so scientists can use them for longer periods of time.

Answer: C

2. Which statement correctly describes how a star uses fuel to generate heat and energy?

A. In a protostar, hydrogen atoms combine to form oxygen.B. In a main sequence star, helium atoms combine to form hydrogen.C. In a white dwarf star, heavy atoms break apart to form smaller atoms.D. In a supergiant star, smaller atoms fuse together to form heavier atoms.

Answer: D

Earth Science Assessments – May 2009 11

Page 12: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. Which relationship between red giants and white dwarfs is a correct inference?

A. The smaller the star, the brighter it appears.B. The larger the star, the dimmer it appears.C. The higher the density, the higher the temperature.D. The higher the density, the lower the temperature.

Answer: C

4. Which statement correctly describes the structure of the Sun under its visible surface?

A. The Sun is composed entirely of gases and has no discernable structure.B. The Sun is composed entirely of gases and has a thin outer convection layer, a large

radiant middle layer, and a small dense core.C. The Sun has a thin liquid outer layer, a gaseous layer, and a large solid core.D. The Sun has a large convection layer of swirling gases and a small dense solid core.

Answer: B

E5.2f: Explain how you can infer the temperature, life span, and mass of a star from its color. Use the H-R diagram to explain the life cycles of stars.

1. Astronomers have discovered vast differences in stars through their observations. One theory used to explain these differences is that

A. the distances between stars are vast.B. stars are at different points in their life cycles.C. Earth’s atmosphere distorts our view of the stars. D. there is too much light pollution on Earth to study stars.

Answer: B

2. An astronomer uses a telescope to observe a star. The color of the star indicates that it has a size and surface temperature similar to that of the Sun. Using this information, the astronomer can conclude that the star

A. is older than the Sun.B. will survive for several billion years.C. is moving very quickly away from Earth.D. has a mass similar to the mass of Jupiter.

Answer: B

Earth Science Assessments – May 2009 12

Page 13: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. What two characteristics of main sequence stars show an approximately linear relationship on the Hertzsprung-Russell diagram?

A. Mass and volumeB. Absolute brightness and the percentage of helium in the starC. Diameter and surface temperatureD. Surface temperature and absolute brightness

Answer: D

4. Which of these elements does this star X contain?

A. MercuryB. CalciumC. SodiumD. Neon

Answer: B

5. In an H-R Diagram, stars with the smallest radius are found in the _______ of the diagram.

A. centerB. upper left cornerC. upper right cornerD. lower left corner

Answer: D

Earth Science Assessments – May 2009 13

Page 14: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.2g: Explain how the balance between fusion and gravity controls the evolution of a star (equilibrium).

1. Bright new stars have been observed in the remains of exploded star systems. What are the new stars made of?

A. From empty spaceB. The energy from the exploded stars has become matterC. From the elements still remaining from the big bang explosionD. The elements produced by the exploding stars

Answer: D

2. A star is discovered with a high percentage of heavier elements. What does that show about the star?

A. It has had nuclear fusion taking place for a long time.B. It was formed in the big bang and is a new star.C. It is recently formed from a gas cloud.D. It is a star that formed from a planet.

Answer: A

3. What happened for the dust cloud to begin nuclear fusion and turn into the sun?

A. It shrunk down to the right size.B. It got hot enough.C. The atomic nuclei got close enough together.D. Vibrations of particles increased to a critical speed.

Answer: C

4. Stars begin their life cycle in

A. a black hole.B. a nova.C. a nebula.D. a supernova.

Answer: C

Earth Science Assessments – May 2009 14

Page 15: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.2h: Compare the evolution paths of low, moderate and high mass stars using the H-R diagram.

*1. The end of the star cycle for a large star predicts a very small dense collection of heavy elements. Which of these discoveries provided this evidence?

A. Looking at very distant stars with the Hubble telescope.B. Discovering the largest star in the universe.C. Finding the first neutron star or pulsar.D. Observing the supernova explosions in other galaxies.

Answer: C

*2. A small star that cools rapidly will produce what types of elements?

A. Elements with small atomic weightsB. Elements that are mostly gasesC. Elements that have large atomic weightsD. Elements that are found on small planets

Answer: A

3. What will happen next, at “B”? The Sun will

A. explode into a nova after it collapses.B. cool down and become a white dwarf.C. collapse and become a black hole.D. disappear and return in another universe.

Answer: B

*4. Massive stars begin their life cycle as which type of object?

A. Black holeB. Neutron starC. Black dwarfD. Nebula

Answer: D

Earth Science Assessments – May 2009 15

Page 16: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

5. What happens to stars much larger than the Sun when they reach point “B”?

A. Collapse then explode into a novaB. Cool down and become a white dwarfC. Explode and then collapse into a black dwarfD. Disappear and return in another universe

Answer: A

Earth Science Assessments – May 2009 16

Page 17: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 1(3): 5—Discerning Earth’s History/2-Earthquakes and Earth’s Interior

E5.3A: Explain how the solar system formed from a nebula of dust and gas in a spiral arm of the Milky Way Galaxy about 4.6 Ga (billion years ago).

1. Which of the following statements best describes how the planets of the solar system formed?

A. They are condensed rings of matter thrown off by the young Sun. B. They are the remains of an exploded star once paired with the Sun. C. The Sun captured them from smaller, older nearby stars. D. They formed from a nebular cloud of dust and gas.

Answer: D

2. What caused the dense cloud scientists hypothesize created our solar system to increase in temperature as it condensed?

A. Increasing densityB. Increasing speedC. Increasing frictionD. Increasing mass

Answer: C

3. What happened to the dust and gas that did not contribute to forming the sun?

A. It created other stars.B. It was lost forever.C. It was all burned up by the sun.D. It created the planets.

Answer: D

4. Nearly 5 billion years ago, a rotating mass of dust and gas called the solar nebula gave rise to

A. the sun and several other stars.B. our solar system.C. the Milky Way galaxy.D. all solar systems.

Answer: B

Earth Science Assessments – May 2009 17

Page 18: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.1A: Explain why the Earth is essentially a closed system in terms of matter.

1. What are natural resources?

A. All renewableB. All nonrenewableC. The resources that the oceans provideD. The resources that Earth provides

Answer: D 2. Earth is considered a system because all of its parts ___________.

A. represent separate closed systemsB. interactC. were formed at the same timeD. are powered by the same energy source

Answer: B

3. Any size group of interacting parts that form a complex whole is a(n)

A. sphere.B. energy source.C. tectonic plate.D. system.

Answer: D

4. Earth is essentially a closed system for

A. matter.B. energy.C. matter and energy.D. neither matter nor energy.

Answer: A

Earth Science Assessments – May 2009 18

Page 19: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.2A: Describe the Earth’s principal sources of internal and external energy (e.g., radioactive decay, gravity, solar energy).

1. Which energy resource utilizes hot, dry rocks?

A. GeothermalB. SolarC. WindD. Petroleum

Answer: A

2. Geothermal energy, a possible energy resource, is based on which phenomenon?

A. There are concentrations of heat in some places of Earth’s crust.B. Earth’s internal energy heats its surface more than the Sun does.C. Heat energy from the Sun penetrates deep into Earth.D. Human activity is the largest source of heat energy on Earth.

Answer: A

3. The Earth’s internal energy is almost entirely from what sources?

A. Radioactivity, the Sun, nuclear fusionB. Nuclear fusion, meteoroid and asteroid impacts, gravitational collapseC. Primordial meteoroid and asteroid impacts, radioactivity, gravitational collapseD. Nuclear fusion, chemical reactions, plate tectonics

Answer: C

4. What is the original source of almost all the energy in most ecosystems?

A. CarbohydratesB. SunlightC. WaterD. Carbon

Answer: B

Earth Science Assessments – May 2009 19

Page 20: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.3B: Explain the process of radioactive decay and explain how radioactive elements are used to date the rocks that contain them.

1. What isotope is used for finding the age of materials that are organic in origin?

A. Thorium-232B. Potassium-40C. Uranium-238D. Carbon-14

Answer: D

2. What method is used to determine the exact age of a rock or fossil?

A. DendrochronologyB. Radiometric datingC. The principle of superpositionD. Relative age dating

Answer: B

3. According to the table, what is the half-life of Thorium-234?

A. 8 daysB. 20 daysC. 16 daysD. 24 days

Answer: D

4. According to the figure, after four half-lives (22,820 years), how much C-14 would be left?

A. 6.25%B. 25%C. 0%D. 10%

Answer: A

Earth Science Assessments – May 2009 20

Days Elapsed Grams Of Thorium – 234 Remaining

0 16

12 11

24 8

36 6

Page 21: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.3C: Relate major events in the history of the Earth to the geologic time scale, including formation of the Earth, formation of an oxygen atmosphere, rise of life, Cretaceous-Tertiary (K-T) and Permian extinctions, and Pleistocene ice age.

1. Evidence suggests that Earth is about 4.6 billion years old, even though no Earth rocks have been found that can be dated at more than 4 billion years old. This discrepancy is most likely caused by Earth’s original crust being

A. difficult to date so precisely.B. subject to extensive erosion.C. blasted away during Earth’s formation.D. destroyed by solar radiation.

Answer: B

2. For what is the Mesozoic commonly known?

A. The Age of ReptilesB. The Age of HumansC. The Age of the First MammalsD. The Permo-Triassic Extinction age

Answer: A

3. What theory may explain the mass extinction event at the end of the Mesozoic Era?

A. The Big Bang TheoryB. The Theory of EvolutionC. The Theory of Plate TectonicsD. The Meteorite Impact Theory

Answer: D

4. When was the northern hemisphere ice age?

A. The late Pleistocene onlyB. The Miocene and early PleistoceneC. The late Pliocene through the PleistoceneD. The Holocene only

Answer: C

Earth Science Assessments – May 2009 21

Page 22: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.2A: Describe the interior of the Earth (in terms of crust, mantle, and inner and outer cores) and where the magnetic field of the Earth is generated.

1. Which of the following Earth layers has the greatest density?

A. CrustB. MantleC. Inner coreD. Outer core

Answer: C

2. What is the lithosphere composed of?

A. The continental and oceanic crustB. The crust and uppermost mantleC. The lower mantle and outer coreD. The upper mantle

Answer: B

3. The Earth’s inner core is made up of

A. anorthosite.B. nickel-iron alloy.C. lithium-ion.D. nitrogen.

Answer: B

4. In correct order from the center outward, Earth includes which layers?

A. Core, inner mantle, outer mantle, crustB. Inner core, outer core, mantle, crustC. Inner core, crust, mantle, hydrosphereD. Core, crust, mantle, hydrosphere

Answer: B

5. Which layer produces the Earth’s magnetic field?

A. CrustB. Inner coreC. MantleD. Outer core

Answer: D

Earth Science Assessments – May 2009 22

Page 23: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.2B: Explain how scientists infer that the Earth has internal layers with discernable properties using patterns of primary (P) and secondary (S) seismic wave arrivals

1. The map below shows the location of an earthquake epicenter in New York State. Seismic stations A, B, and C received the data used to locate the earthquake epicenter.

The seismogram recorded at station A would show the

A. arrival of P-waves, only.B. earliest arrival time of P-waves.C. greatest difference in the arrival times of P-

waves and S-waves.D. arrival of S-waves before the arrival of P-

waves.

Answer: B

2. An earthquake struck San Diego, California.

The map and table show that the approximate difference in arrival times between the P-wave and S-wave at Seattle is

A. 2 minutes.B. 3 minutes.C. 4 minutes.D. 5 minutes.

Answer: B

Earth Science Assessments – May 2009 23

Page 24: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Base your answers to the next two questions on the diagram below, which shows a cutaway view of Earth in which the interior layers are visible. The paths of earthquake waves generated at point X are shown. A, B, C, and D are locations of seismic stations on Earth’s surface, and point E is located in Earth’s interior.

3. Both P-waves and S-waves were received at seismic stations A and B, but only P-waves were received at seismic stations C and D. Which statement best explains why this occurred?

A. S-waves are much weaker than P-waves.B. S-waves travel faster than P-waves.C. The liquid outer core prevents S-waves from traveling to seismic stations C and D.D. The solid outer core prevents S-waves from traveling to seismic stations C and D.

Answer: C

4. The actual rock temperature at point E is inferred to be approximately

A. 1,500 °C B. 2,900 °C C. 5,000 °CD. 6,200 °C

Answer: C

Earth Science Assessments – May 2009 24

Page 25: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.2d: Explain the uncertainties associated with models of the interior of the Earth and how these models are validated.

1. _________ is the technique used to date and study the ocean floor, which was fundamental in leading to the general acceptance of plate tectonics.

A. PaleomagnetismB. PangaeationC. PlasticityD. Paleoalignment

Answer: A

2. The physical evidence that the core is composed mostly of iron is

A. the known mass of Earth requires material of high density at the core.B. scientists have sampled the core and determined its composition.C. volcanoes regularly erupt material from the core to the surface.D. all of these.

Answer: A

Earth Science Assessments – May 2009 25

Page 26: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 4: 4—Rock Forming Process

E3.1A: Discriminate between igneous, metamorphic, and sedimentary rocks and describe the processes that change one kind of rock into another.

1. Which of the following rock represents an igneous intrusion?

A. GraniteB. LimestoneC. MarbleD. Shale

Answer: A

2. While on vacation, a student visits the area around a volcano that has recently erupted. The student can expect to find samples of ______________

A. clastic sedimentary rock.B. nonfoliated metamorphic rock.C. chemically formed sedimentary rock.D. extrusive igneous rock. _

Answer: D

3. Metamorphic rocks can form from

A. sedimentary rocks.B. igneous rocks.C. metamorphic rocks.D. all of the above

Answer: D

Earth Science Assessments – May 2009 26

Page 27: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.1B: Explain the relationship between the rock cycle and plate tectonics theory in regard to the origins of igneous, sedimentary, and metamorphic rocks.

1. The breakdown of rocks and minerals into smaller particles without a change in composition is called ________________

A. igneous intrusion.B. chemical precipitation.C. mechanical weathering.D. metamorphic foliation.

Answer: C

2. Which of these provides the best estimate of how long it took a thick layer of sedimentary rock to form?

A. Use a microscope to closely examine the size of particles that make up the rock layer.B. Make a model that creates a sedimentary rock layer at a constant rate.C. Calculate the age of the top and bottom of the layer.D. Measure the rate at which similar layers of sediments collect.

Answer: C

3. Why does the United States have large areas of limestone?

A. Fields covered much of the country for millions of years.B. Seas covered the country for millions of years.C. Desert covered much of the country for millions of years.D. Forests covered much of the country for millions of years.

Answer: B

4. Why do chemical sedimentary rocks have a non-clastic texture?

A. They are made from pieces of other rocks.B. They are made from volcanic rock.C. They are made from igneous rocks.D. They are not made from pieces of other rocks.

Answer: D

Earth Science Assessments – May 2009 27

Page 28: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

5. All of the energy that drives Earth’s rock cycle comes from

A. the wind.B. Earth’s interior and the sun.C. the breakdown of organic matter.D. the movement of water over Earth’s surface.

Answer: B

E3.1c: Explain how the size and shape of grains in a sedimentary rock indicate the environment of formation (including climate) and deposition.

1. In an area where a river has cut deep into Earth, there are several layers of very different rock exposed. The oldest rock layer is most likely to be the layer that is

A. below the other layers.B. the thickest layer.C. the most rich in fossils.D. igneous intrusive rock.

Answer: A

2. For undisturbed, horizontal strata of sedimentary rocks, their age

A. increases from top to bottom.B. decreases from top to bottom.C. can be determined from their color.D. is the same.

Answer: A

3. Which sedimentary rock would most likely be deposited in a very high-energy stream?

A. ShaleB. CoalC. SiltstoneD. Conglomerate

Answer: D

Earth Science Assessments – May 2009 28

Page 29: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. Sedimentary rocks with ripple marks suggest that the rocks formed

A. along a beach or stream bed.B. when ancient animals walked over them.C. from the shell fragments of ancient sea-dwelling animals.D. when wet mud dried and shrank.

Answer: A

E3.1d: Explain how the crystal sizes of igneous rocks indicate the rate of cooling and whether the rock is extrusive or intrusive.

1. Intrusive igneous rocks form

A. fine-grained rocks.B. when a molten mass of rocks cools quickly.C. on Earth’s surface.D. coarse grained rocks.

Answer: D

2. Extrusive rocks, which cool more rapidly than intrusive rocks, are generally more

A. coarsely grained.B. finely grained.C. radioactive.D. magnetic.

Answer: B

3. What igneous rock texture is characterized by two distinctly different crystal sizes?

A. Coarse-grained textureB. Fine-grained textureC. Glassy textureD. Porphyritic texture

Answer: D

4. As the rate of cooling of igneous rocks increases, the size of the crystals that form

A. decreases.B. increases.C. is not affected.D. cannot be determined.

Answer: A

Earth Science Assessments – May 2009 29

Page 30: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.1e: Explain how the texture (foliated, nonfoliated) of metamorphic rock can indicate whether it has experienced regional or contact metamorphism.

1. What results when rocks come in contact with molten rocks such as those in an igneous intrusion?

A. PrecipitationB. Regional metamorphismC. Contact metamorphismD. Hydrothermal metamorphism

Answer: C

2. A metamorphic rock can be classified according to its

A. density and texture.B. texture and composition.C. color and composition.D. density and color.

Answer: B

3. A foliated metamorphic rock forms when crystals

A. combine and form visible bands.B. combine but do not form visible bands.C. become less compact.D. align themselves parallel to the direction of the forces acting on them.

Answer: A

4. Which agent of metamorphism can cause the overall composition of the rock to change?

A. HeatB. A hydrothermal solutionC. PressureD. Running water

Answer: B

Earth Science Assessments – May 2009 30

Page 31: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 10(5): 5—Discerning Earth’s History

E5.3e: Determine the approximate age of a sample, when given the half-life of a radioactive substance (in graph or tabular form) along with the ratio of daughter-to-parent substances present in the sample.

1. X Y + Z + energy

The equation above represents a nuclear decay, in which nucleus X decays into particle Y and nucleus Z and releases energy. Which of the following can explain why energy is released in the decay?

A. The mass of X is less than the sum of the masses of Y and Z.B. The mass of X is less than the difference between the masses of Y and Z.C. The mass of X is greater than the sum of the masses of Y and Z.D. The mass of X is greater than the difference between the masses of Y and Z.

Answer: C

2. Carbon-14 has a half-life of approximately 5,700 years. Analysis of the carbon in a piece of charred wood found in an excavation revealed that the carbon has 25 percent of the amount of carbon-14 that is found in the carbon of living trees. Which of the following is most nearly the age of the excavated wood?

A. 160 yearsB. 5,700 yearsC. 11,400 yearsD. 23,000 years

Answer: C

3. If the half-life of an unstable isotope is 10,000 years, and only 1/8 of the radioactive parent remains in a sample, how old is the sample?

A. 10,000 years oldB. 20,000 years oldC. 30,000 years oldD. 40,000 years old

Answer: C

4. What fraction of the original parent isotope still exists after 4 half-lives have passed?

A. 1/2B. 1/4 C. 1/8D. 1/16

Answer: D

Earth Science Assessments – May 2009 31

Page 32: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.3f: Explain why C-14 can be used to date a 40,000 year old tree but U-Pb cannot.

1. According to the graph below, a piece of timber containing one-eighth of the amount of carbon-14 that is found in a living tree died about how many years ago?

A. 5,700 yearsB. 11,400 yearsC. 17,100 yearsD. 22,800 years

Answer: C

2. Radiocarbon dating is used to date

A. recent geologic events up to 75,000 years ago.B. recent geologic events up to 10,000 years ago.C. distant geologic events more than one million years ago.D. all geologic events of the past.

Answer: A

3. How would you date a sample of rock that you suspect as being one of the earliest on Earth?

A. Use a radioactive isotope with a short half-life.B. Use a radioactive isotope with a long half-life.C. Use an index fossil.D. Use a microfossil.

Answer: B

4. Which of the following is used to determine the absolute age of a rock?

A. Relative-age datingB. CorrelationC. PermineralizationD. Radiometric dating

Answer: D

Earth Science Assessments – May 2009 32

Page 33: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.3g: Identify a sequence of geologic events using relative-age dating principles.

1. The dating process that places geologic events in proper sequence is referred to as a

A. radiometric dating.B. relative dating.C. numerical dating.D. temporary dating.

Answer: B

2. In general, the law of superposition states that in an undeformed sequence of sedimentary rocks, each layer is

A. basically the same age.B. older than the one above it.C. older than the one below it.D. thicker than the one above it.

Answer: B

3. Which type of geologic event has to occur to create an angular conformity?

A. Uninterrupted deposition of sedimentB. Igneous intrusion into layered rockC. Sediment deposited on older, eroded igneous rockD. Folding or tilting of rock layers, followed by renewed deposition

Answer: D

4. In the following geologic cross section, units A, B, C, D, E, and F are sedimentary rocks. Unit G is a granite.

Using the diagram as a reference, which of the following happened most recently?

A. Deposition of unit CB. Deposition of unit BC. Deposition of unit FD. Tilting of C, D, E, and F

Answer: B

Earth Science Assessments – May 2009 33

Page 34: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.3D: Describe how index fossils can be used to determine time sequence.

1. Index fossils help scientists estimate the age of a rock because index fossil species only existed for a relatively short time. What happened to the species that are now used as index fossils?

A. They became extinct.B. They changed their diets.C. They hid in marine sediments.D. They migrated to new environments.

Answer: A

2. Which of the following most likely results in the formation of a fossil?

A. A Mesozoic clam lies exposed on the surface of the sea floor.B. A Mesozoic clam is washed up onto the beach.C. A Mesozoic clam is eaten by a large predatory fish.D. A Mesozoic clam is buried by a mudslide.

Answer: D

3. The task of using fossils to match up rocks of similar ages in different areas is called

A. succession.B. correlation.C. geology.D. fossilization.

Answer: B

4. Index fossils allow geologists to

A. match rocks of the same age in different regions.B. determine the exact age of rocks.C. identify organisms that did not leave fossil evidence behind.D. determine why some organisms became extinct.

Answer: A

Earth Science Assessments – May 2009 34

Page 35: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 2(6): 3—Plate Tectonics and Volcanoes/1-Organizing Principles of Earth Science

E3.3A: Explain how plate tectonics accounts for the features and processes (sea floor spreading, mid-ocean ridges, subduction zones, earthquakes and volcanoes, mountain ranges) that occur on or near the Earth’s surface.

1. The following map shows the position of Earth’s continents today. Which piece of evidence would provide the strongest support for the hypothesis that Earth’s continents were once joined?

A. Modern crops grown in region E can also be grown in region F.

B. Fossilized sediments found in region A resemble those found in region B.

C. Modern marine mammals found in location C are also found in location D.

D. Fossilized land invertebrates found in location E are also found in location F.

Answer: D

2. About 300 million years ago, the land of Earth was a single mass known as Pangaea, as shown in Figure A. About 150 million years ago, Pangaea broke up into the land masses shown in Figure B.

Based on the diagrams, which of the following were more likely to survive on continent X after the breakup of Pangaea than before it broke apart?

A. Organisms that lived in fresh waterB. Organisms that required warm conditionsC. Organisms that hibernated for long periodsD. Organisms that traveled great distances during migrations

Answer: B

Earth Science Assessments – May 2009 35

Page 36: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. Which of the following is most responsible for the formation of new crust at the edge of a tectonic plate?

A. Mountain building at a continent-continent convergent boundary. B. Magma rising up from the mantle at a divergent boundary. C. Two tectonic plates sliding past one another at a transform boundary. D. Subduction of one oceanic plate under another at a convergent boundary .

Answer: B

4. A rift valley is evidence of which kind of plate boundary?

A. ConvergentB. DivergentC. TransformD. Uniform

Answer: B

E3.2C Describe the differences between oceanic and continental crust (including density, age, composition).

1. The youngest part of the ocean floor is found

A. along deep sea trenches.B. where ocean sediments are thickest.C. near ocean ridges.D. where Earth’s magnetic field changes polarity.

Answer: C 2. The continental crust has the average composition of

A. gneiss.B. granite.C. basalt.D. limestone.

Answer: B

Earth Science Assessments – May 2009 36

Page 37: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. A major difference between continental crust and oceanic crust is

A. density.B. gravity.C. pressure.D. temperature.

Answer: A

4. The oceanic crust is primarily composed of

A. basalt and gabbro.B. granite and gneiss.C. limestone and dolostone.D. sandstone and shale.

Answer: A

E2.2C Describe natural processes in which heat transfer in the Earth occurs by conduction, convection, and radiation.

1. Convection currents transfer thermal energy

A. between continents.B. from cooler regions to warmer regions.C. from warmer regions to cooler regions.D. as a result of buoyancy.

Answer: C 2. The downward part of a convection current causes a sinking force that

A. pulls tectonic plates toward one another.B. moves plates apart from one another.C. lifts and splits the lithosphere.D. creates a divergent boundary.

Answer: A

3. The driving forces of tectonic plates are related to convection currents in Earth’s

A. crust.B. mantle.C. inner core.D. outer core.

Answer: B

Earth Science Assessments – May 2009 37

Page 38: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. The main source of downward convection flow in the mantle is called

A. ridge-pull.B. slab-pull.C. slab-push.D. ridge-push.

Answer: B

E3.3B Explain why tectonic plates move using the concept of heat flowing through mantle convection, coupled with the cooling and sinking of aging ocean plates that results from their increased density.

1. Scientists believe that forces in Earth’s mantle move Earth’s crustal plates. What do the arrows in the diagram represent?

A. Ocean currentsB. GravityC. Convection currentsD. Wind patterns

Answer: C 2. Heat from deep in Earth’s interior is transferred to its crust by which of the following?

A. Conduction in the oceanB. Convection in the mantleC. Radiation from the solid coreD. Evaporation at mid-ocean ridges

Answer: B

3. Which area of the diagram shows the subduction zone?

A. 1B. 2C. 3D. 4

Answer: C

Earth Science Assessments – May 2009 38

Page 39: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. What is the process shown in the diagram by which molten material moves through Earth’s mantle?

A. RadiationB. ConvectionC. Plate faultingD. Continental drift

Answer: B

5. One theory for the driving force for Plate Tectonics is what?

A. Heat convection in the MantleB. Heat convection in the AtmosphereC. Lunar tidal forcesD. Continental glaciers

Answer: A

E3.3C Describe the motion history of geologic features (e.g., plates, Hawaii) using equations relating rate, time, and distance.

1. According to the theory of plate tectonics, the movement of plates can form mountain ranges and valleys. Within the next 100 million years, the Great Rift Valley in Africa will most likely become a

A. folded mountain range.B. flat eroded plain.C. desert covered with lava.D. wider and deeper valley.

Answer: D

2. The lithospheric plates move an average of

A. 5 inches per year.B. 50 inches per year.C. 5 centimeters per year.D. 50 centimeters per year.

Answer: C

Earth Science Assessments – May 2009 39

Page 40: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. If the Atlantic Ocean is widening at a rate of 3 cm per year how far (in kilometers) will it spread in a million years?

A. 300 kilometersB. 30 kilometersC. 30 milesD. 3 kilometers

Answer: B

4. The Hawaiian Islands were formed when the Pacific Plate moved over

A. a subduction zone.B. an ocean ridge.C. the Aleutian Plate.D. a hot spot.

Answer: D

E3.3d Distinguish plate boundaries by the pattern of depth and magnitude of earthquakes.

Base your answer to questions 1 and 2 on the map below. Dots on the map show the distribution of major earthquake epicenters. The shaded circle labeled A represents a location on Earth’s surface.

1. Which conclusion can best be inferred from the data shown on this map?

A. Earthquakes generally are evenly distributed over the surface of Earth.B. Most earthquakes occur west of the Prime Meridian and north of the Equator.C. Most earthquakes are concentrated in zones along plate boundaries.D. Most earthquakes occur on continents.

Answer: C

Earth Science Assessments – May 2009 40

Page 41: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

2. Location A is best described as an area that is

A. within a rift valley at a mid-ocean ridge.B. at the boundary between two diverging plates.C. within a deep-sea trench between two converging plates.D. above a mantle hot spot near the center of a crustal plate.

Answer: D

3. The location of seismic belts are determined by plotting

A. earthquake epicenters.B. seismic gaps.C. earthquake foci.D. epicentral distances.

Answer: A

4. The North American Plate is bounded by ________ plate boundaries.

A. convergentB. divergentC. transformD. convergent, divergent, and transform

Answer: D

E3.r3e Predict the temperature distribution of the lithosphere as a function of distance from the mid-ocean ridge and how it relates to ocean depth.

1. New oceanic lithosphere forms at

A. divergent plate boundaries.B. convergent plate boundaries.C. transform plate boundaries.D. all of the above.

Answer: A

2. Which of the following increases with distance from a mid-ocean ridge?

A. The age of oceanic lithosphereB. The depth to the sea floorC. The thickness of the lithosphereD. All of the above

Answer: D

Earth Science Assessments – May 2009 41

Page 42: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.r3f Describe how the direction and rate of movement for the North American plate has affected the local climate over the last 600 million years.

1. Evidence about ancient climates indicates that

A. glacial ice once covered much of what is now India and Australia.B. continents in the Northern Hemisphere today were once centered over the South Pole.C. continents in the Southern Hemisphere today were once centered over the North Pole.D. no continents occupied the Southern Hemisphere.

Answer: A

2. How does the Mesosaurus fossil evidence support the continental drift theory?

A. It’s unlikely that the Mesosaurus existed on both continents.B. It’s unlikely that the Mesosaurus could swim between continents.C. The Mesosaurus fossil evidence does not support the continental drift theory.D. The Mesosaurus lived millions of years ago, when scientists believe the continents

began to drift.

Answer: B

3. Which of the following was not used by Wegener as evidence of continental drift?

A. Fossils that were common to many continentsB. Evidence of glaciation on widely separated continentsC. The geometric fit of the continentsD. Magnetic anomalies on the seafloor

Answer: D

4. The existence of coal beds in Antarctica indicates that the continent once had

A. been part of Africa.B. a temperate, rainy climate.C. a cold, dry climate.D. been farther from the equator.

Answer: B

Earth Science Assessments – May 2009 42

Page 43: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 3(7): 2—Earthquakes and Earth’s Interior

E3.4A Use the distribution of earthquakes and volcanoes to locate and determine the types of plate boundaries.

Base your answer to the following question on the map below. Dots on the map show the distribution of major earthquake epicenters. The shaded circle labeled A represents a location on Earth’s surface.

1. Which conclusion can best be inferred from the data shown on this map?

A. Earthquakes generally are evenly distributed over the surface of Earth.B. Most earthquakes occur west of the Prime Meridian and north of the Equator.C. Most earthquakes are concentrated in zones along plate boundaries.D. Most earthquakes occur on continents.

Answer: C

2. The locations of seismic belts are determined by plotting

A. earthquake epicenters.B. seismic gaps.C. earthquake foci.D. epicentral distances.

Answer: A

Earth Science Assessments – May 2009 43

Page 44: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

3. Most volcanoes occur

A. along convergent boundaries.B. far from tectonic plate boundaries.C. along divergent boundaries.D. randomly.

Answer: A

4. On the map, dark circles indicate the positions of volcanoes in the “Ring of Fire” in and around the Pacific Ocean. Dark lines indicate tectonic plate boundaries of Earth’s crust.

According to this map, which of the following describes where volcanoes are most likely to form in the Ring of Fire?

A. Volcanoes form in the middle of a tectonic plate.

B. Volcanoes form below the surface of tectonic plates.

C. Volcanoes form where tectonic plates meet other plates.

D. Volcanoes form where earthquakes are least likely to occur.

Answer: C

5. Each dot on the diagram marks the origin of an earthquake. The area with the highest concentration of earthquake origins marks_________________.

A. a seam of soft rock, such as limestoneB. a line of Earth’s magnetic fieldC. the location of a developing igneous

intrusionD. the path of the subducting tectonic plate

Answer: D

Earth Science Assessments – May 2009 44

Page 45: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.4B Describe how the sizes of earthquakes and volcanoes are measured or characterized.

1. Which of the following is NOT a factor affecting how violently or quietly a volcano erupts?

A. Magma’s compositionB. Magma’s temperatureC. Composition of dissolved gases in the magmaD. Size of the volcano’s cone

Answer: D

2. Highly explosive volcanoes tend to have what type of magma?

A. Magma with high silica, high viscosity, and higher gas content.B. Magma with low silica, low viscosity, and lower gas content.C. Magma with low silica, high viscosity, and lower gas content.D. Magma with no silica, high viscosity, and no gas content.

Answer: A

3. Seismic waves generated by an earthquake at point R are recorded at locations W and X. Which pair of seismographs is more accurate?

A.    B.   

 C.   D.

Answer: C

Earth Science Assessments – May 2009 45

Page 46: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. The scale most widely used by scientists for measuring earthquakes is the

A. seismic scale.B. Richter scale.C. moment magnitude scale.D. epicenter magnitude scale.

Answer: C

E3.4C Describe the effects of earthquakes and volcanic eruptions on humans.

1. The table lists the gases coming from a modern Hawaiian volcano. If ancient volcanoes gave off the same gases, which gas would have been most helpful in the development of early life-forms that could carry out photosynthesis?

A. N2

B. SO2

C. CO2

D. Cl2

Answer: C

2. Why do earthquakes often cause damaging fires?

A. Lightning strikes are common during earthquakes.B. Earthquake vibrations can break gas lines, water lines, and electrical lines.C. Tsunamis from earthquakes generate enough heat to start fires.D. Magma from deep underground escapes through faults.

Answer: B

3. In which of the following areas would the damage from an earthquake measuring 6.8 likely be the greatest?

A. Lightly populated rural areaB. Area with older brick structuresC. Area with modern steel-framed structuresD. Area with wood-framed structures

Answer: B

Earth Science Assessments – May 2009 46

Analysis of Gases from a Hawaiian VolcanoGas Amount

H2O (steam) 79%CO2 12%SO2 6.5%N2 1.5%H2, CO, Cl2, and Ar trace

Page 47: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. Which of the following areas would most likely be the safest during a major earthquake?

A. Area with granite bedrockB. Area with loosely consolidated soilC. Area with structures built on a landfillD. Area with steep slopes of unconsolidated sediments

Answer: A

E3.4d Explain how the chemical composition of magmas relates to plate tectonics and affects the geometry, structure, and explosivity of volcanoes.

1. Which type of volcano would be the least explosive?

A. Cinder coneB. StratovolcanoC. Shield volcanoD. Composite cone

Answer: C

2. Which list places the magma types in order of decreasing viscosity (most viscous listed first)?

A. Basaltic, andesitic, rhyoliticB. Rhyolitic, andesitic, basalticC. Andesitic, basaltic, rhyoliticD. Basaltic, rhyolitic, andesitic

Answer: B

3. Highly explosive volcanoes tend to have what type of magma?

A. Magma with high silica, high viscosity, and higher gas contentB. Magma with low silica, low viscosity, and lower gas contentC. Magma with low silica, high viscosity, and lower gas contentD. Magma with no silica, high viscosity, and no gas content

Answer: A

Earth Science Assessments – May 2009 47

Page 48: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. Explosive volcanic eruptions commonly produce what type of texture?

A. PorphyriticB. PyroclasticC. PhaneriticD. Aphanitic

Answer: B

E2.2C Describe natural processes in which heat transfer in the Earth occurs by conduction, convection, and radiation.

1. Convection currents transfer thermal energy

A. between continents.B. from cooler regions to warmer regions.C. from warmer regions to cooler regions.D. as a result of buoyancy.

Answer: C 2. The downward part of a convection current causes a sinking force that

A. pulls tectonic plates toward one another.B. moves plates apart from one another.C. lifts and splits the lithosphere.D. creates a divergent boundary.

Answer: A

3. The driving forces of tectonic plates are related to convection currents in Earth’s

A. crust.B. mantle.C. inner core.D. outer core.

Answer: B

4. The main source of downward convection flow in the mantle is called

A. ridge-pull.B. slab-pull.C. slab-push.D. ridge-push.

Answer: B

Earth Science Assessments – May 2009 48

Page 49: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.4e Explain how volcanoes change the atmosphere, hydrosphere, and other Earth systems.

1. The following is NOT expected to occur soon after a volcano erupts shooting large amounts of ash and gases into the atmosphere:

A. contaminated groundwater.B. typhoons.C. changes in the weather.D. health problems in nearby humans.

Answer: B

2. A volcanic eruption can affect the atmosphere by _________________________

A. reducing the amount of water vapor in the atmosphere.B. adding large quantities of several gases, such as sulfur dioxide, to the atmosphere.C. clearing away nearby clouds, increasing the amount of sunshine.D increasing the amount of oxygen due to escaping gases.

Answer: B

3. Choose the best example of an interaction between the hydrosphere and the biosphere.

A. Ash from a volcanic eruption dissolves in clouds and contaminates a river rain.B. Ash from a volcanic eruption contaminates a river from which humans drink.C. Ash from a volcanic eruption dissolves in clouds and when it rains increases soil

fertility.D. Ash from a volcanic eruption contaminates the stratosphere and changes global

weather patterns.

Answer: B

4. Oxygen ____________________

A. has not always been a part of Earth’s atmosphere.B. has been in Earth’s atmosphere for the past 4.6 billion years.C. is released by volcanic eruptions in large quantities.D. was used up by early life-forms during photosynthesis.

Answer: A

Earth Science Assessments – May 2009 49

Page 50: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.1C Explain, using specific examples, how a change in one system affects other Earth systems.

1. Which of the following can be impacted by El Nino?

A. Fishing industryB. ClimateC. Farming industryD. All of the above

Answer: D

2. Shifts in Earth’s continents most likely caused a change in Earth’s

A. climatic regions.B. mass.C. orbital velocity.D. atmospheric temperature.

Answer: A

3. A volcanic eruption can affect the atmosphere by

A. adding large quantities of several gases, such as sulfur dioxide, to the atmosphere.B. increasing the amount of oxygen due to escaping gases.C. clearing away nearby clouds, increasing the amount of sunshine.D. reducing the amount of water vapor in the atmosphere.

Answer: A

4. Which of the following is NOT true of the relationship between vegetation and climate?

A. Vegetation influences ocean currents.B. Vegetation influences cloud formation.C. Vegetation influences rates of solar absorption.D. Vegetation influences regional precipitation patterns.

Answer: A

Earth Science Assessments – May 2009 50

Page 51: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.4f Explain why fences are offset after an earthquake, using the elastic rebound theory.

1. Which of the following causes earthquakes?

A. Elastic reboundB. Richter scaleC. Release of heatD. Frictional heating

Answer: A 2. The hypothesis that explains the release of energy during an earthquake is called the

A. Richter hypothesis.B. moment magnitude hypothesis.C. vibration hypothesis.D. elastic rebound hypothesis.

Answer: D

3. During an earthquake, the ground surface ______

A. moves only in a horizontal direction.B moves only in a vertical direction.C. can move in any direction.D. does not move.

Answer: C

4. According to the elastic rebound theory

A. rocks will bend before they break.B. rocks will snap back into their original shape after faulting.C. rocks will break when their capacity to store energy of deformation has been

exceeded.D. All of the above.

Answer: D

Earth Science Assessments – May 2009 51

Page 52: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 7(8): 6-Severe Weather

E4.3A Describe the various conditions of formation associated with severe weather (thunderstorms, tornadoes, hurricanes, floods, waves, and drought).

1. According to the map, most hurricanes occur where ___________________.

A. the oceans are warmest

B. the landmasses are largest

C. the atmosphere is driest

D. areas of greatest population exist

Answer: A

2. ________________ are often associated with very severe thunderstorms called supercells.

A. TornadoesB. Sea breezesC. HurricanesD. Heat waves

Answer: A

3. What causes a hurricane to lose energy when it moves onto land?

A. FrictionB. Lack of warm, moist airC. Heating from below by landD. Both a and b

Answer: D

4. Violent storms can occur along ______ fronts.

A. occludedB. warmC. stationaryD. cold

Answer: D

Earth Science Assessments – May 2009 52

Page 53: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E4.3B Describe the damage resulting from, and the social impact of thunderstorms, tornadoes, hurricanes, and floods.

1. Which of the following conditions does NOT contribute to the formation of hail?

A. The ability of water droplets to exist in a liquid state in parts of a cloud where the temperature is below freezing.

B. The encounter between supercooled water droplets and ice pellets.C. The dissipation of warm, moist air at the Earth’s surface by downdrafts.D. The existence of strong updrafts and downdrafts side by side within a cloud.

Answer: C 2. During a rainstorm, when is surface runoff least likely to occur?

A. When the permeability rate of the soil equals the rainfall rate.B. When the pore spaces of the ground are saturated with water.C. When rainfall rate exceeds the permeability rate of the soil.D. When the slope of the surface is too great for infiltration to occur.

Answer: A

3. What creates a wind shear?

A. A difference in wind direction and speedB. Similar wind speeds and directionsC. Increasing rainfallD. Thunder

Answer: A

*4. Around a home, during a hurricane, what is one of the most frequent points of structural failure from high winds?

A. WindowsB. Garage doorsC. Roof deckingD. Siding

Answer: B (because they are segmented)

Earth Science Assessments – May 2009 53

Page 54: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

*5. Which of the following are dangers of severe thunderstorms?

A. Lightning causes fires, deaths, and injuries.B. High winds cause property damage.C. Hail damages crops.D. All of the above.

Answer: D

E4.3C Describe severe weather and flood safety and mitigation.

1. The greatest number of thunderstorms occur in the

A. middle latitudes.B tropics.C. mountains.D. high latitudes.

Answer: B 2. For people living along the coast, what is a hurricane’s greatest threat?

A. High windsB. Storm surgeC. TornadoesD. Rain

Answer: B

3. If you are caught by a hurricane, unable to evacuate, where is the safest place to be?

A. In a shelterB. An interior room of your houseC. In your carD. Near a window in your house

Answer: B

*4. Tornadoes can travel in any direction. Which direction is most common in the United States?

A. South to northB. Southwest to northeastC. Northeast to southwestD. East to west

Answer: B

Earth Science Assessments – May 2009 54

Page 55: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E4.3D Describe the seasonal variations in severe weather.

1. Lake-effect snow is associated with which air mass?

A. Maritime tropicalB. Continental polarC. Maritime polarD. Continental tropical

Answer: B

2. Tornadoes are most frequent from

A. January to MarchB. April to JuneC. October to DecemberD. July to August

Answer: B

*3. The phenomenon in which the effects of cold air are worsened by wind is called

A. a cold front.B. a warm front.C. the wind chill factor.D. a blizzard.

Answer: C

*4. When are hurricanes most likely to form in the Atlantic Ocean?

A. January – AprilB. March – JuneC. July – SeptemberD. November – December

Answer: C

Earth Science Assessments – May 2009 55

Page 56: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E4.3E Describe conditions associated with frontal boundaries that result in severe weather (thunderstorms, tornadoes, and hurricanes).

1. What is the cause of the strong winds associated with thunderstorms?

A. Weak updrafts of warm, moist airB. Strong updrafts of dry airC. Rain-cooled airD. Strong updrafts of warm, moist air and sinking, rain-cooled air

Answer: D

2. The graph shows the outdoor temperature at a certain location during a 24-hour period. What possible occurrence happened at 2 p.m.?

A. Daylight-savings timeB. Eclipse of the moonC. Solar stormD. Thunderstorm passes

Answer: D

3. Which of these effects generally occur as the result of a warm air mass and a cooler air mass converging at Earth’s surface?

A. The sky becomes clear.B. Winds die down.C. Cloud formation decreases.D. Stormy weather patterns develop.

Answer: D

4. Which of these has the LEAST influence on an area’s climate?        

A. LatitudeB. ElevationC. Soil conditionsD. Adjacent large bodies of water

Answer: C

Earth Science Assessments – May 2009 56

Page 57: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

5. On weather maps, there are lines with tiny triangles on one side. This represents__________

A. warm air moving opposite the direction the triangles point.

B. cold air moving in the direction the triangles point.

C. cold air moving opposite the direction the triangles point.

D. warm air moving in the direction the triangles point.

Answer: B

E4.3F Describe how mountains, frontal wedging (including dry lines), convection, and convergence form clouds and precipitation.

1. In orographic lifting, clouds form when moist winds __________.

A. flow over the seaB. become drierC. encounter mountainsD. warm up the ground

Answer: C

2. Which of the following is NOT a process that lifts air?

A. ConvergenceB. Orographic liftingC. DivergenceD. Frontal wedging

Answer: C

3. What is the first sign of an approaching warm front?

A. Stratus cloudsB. Cirrus cloudsC. Nimbostratus cloudsD. Cumulus clouds

Answer: B

Earth Science Assessments – May 2009 57

Page 58: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. When the temperature reaches its ____________, snow, rain, or hail is likely to form.

A. relative humidityB. dew pointC. saturation pointD. evaporation point

Answer: B

E4.3g Explain the process of adiabatic cooling and adiabatic temperature changes to the formation of clouds.

1. Which of the following refers to the energy that is stored or released during a change of state of water?

A. Caloric heatB. Ultraviolet heatC. Latent heatD. Evaporation heat

Answer: C

2. What is the dry adiabatic rate?

A. 3.0oC/100 metersB. 1oC/100 metersC. 10oC/1000 metersD. 0.5oC/1000 meters

Answer: C

3. The wet adiabatic rate of cooling is less than the dry rate because __________

A. wet air is unsaturated.B. dry air is less dense.C. of the release of latent heat.D. of the dew point.

Answer: C

Earth Science Assessments – May 2009 58

Page 59: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. If an air parcel has cooled adiabatically so that its air temperature equals its dew point temperature, what always happens?

A. PrecipitationB. CondensationC. SaturationD. All of the above

Answer: C

Earth Science Assessments – May 2009 59

Page 60: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 11(9): 8—Climate Change

E2.2D Identify the main sources of energy to the climate system.

1. What form of energy transfer heats Earth?

A. RadiationB. ConductionC. ConventionD. Recycling

Answer: A

2. The driving force behind the weather on Earth is the

A. sun.B. wind.C. difference in air temperatures.D. dew point.

Answer: A

3. How is the troposphere warmed?

A. The troposphere absorbs sunlight directly.B. The gases in the troposphere absorb heat from the Sun.C. The stratosphere warms it.D. The Sun warms Earth’s surface, which warms the air above it.

Answer: D

4. Heat flows from

A. low to high temperature.B. same temperature to same temperature.C. medium to high temperature.D. high to low temperature.

Answer: D

Earth Science Assessments – May 2009 60

Page 61: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.4A Explain the natural mechanism of the greenhouse effect including comparisons of the major greenhouse gases (water vapor, carbon dioxide, methane, nitrous oxide, and ozone).

1. What is the name of the gas in car exhaust that helps heat up our atmosphere?

A. Carbon dioxideB. OxygenC. Water vaporD. Hydrogen

Answer: A

2. Greenhouse gases are

A. always bad for the environment.B. in perfect amount on Earth.C. necessary to keep Earth warm.D. beneficial in large amounts.

Answer: C

3. A direct result of global warming, as opposed to an indirect result, is

A. melting glaciers.B. increased global temperatures.C. coral bleaching.D. increased flooding.

Answer: B

4. What two chemicals combine with moisture in the air to make acids?

A. Sulfur oxides and carbon dioxideB. Nitrogen oxides and ozoneC. Sulfur oxides and nitrogen oxidesD. Carbon dioxide and ozone

Answer: A

Earth Science Assessments – May 2009 61

Page 62: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.4B Describe natural mechanisms that could result in significant changes in climate (e.g., major volcanic eruptions, changes in sunlight received by the Earth, and meteorite impacts).

1. During periods of increased global temperatures, which of the following is likely to occur?

A. A decrease in atmospheric CO2

B. An increase in atmospheric CO2

C. A decrease in earthquakesD. An increase in earthquakes

Answer: B

*2. Studies indicate that periods of low sunspot activity, like the _____, correspond to unusually cold climate conditions.

A. Maunder MinimumB. Maunder Ice AgeC. Maunder DivideD. Maunder Maximum

Answer: A

3. Life on land did not develop on Earth in abundance until the sun’s radiation was reduced. When did this happen?

A. When human beings built machines that burn fossil fuels.B. When ozone had been absorbed out of the upper atmosphere.C. When plants had an opportunity to live with animals.D. When enough ozone had built up in the upper atmosphere.

Answer: D

4. Which one of the following is NOT a significant natural cause of climate change?

A. Solar variabilityB. Plate tectonicsC. Volcanic activityD. Erosion of the land

Answer: D

Earth Science Assessments – May 2009 62

Page 63: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.4C Analyze the empirical relationship between the emission of carbon dioxide, atmospheric carbon dioxide levels, and the average global temperature over the past 150 years.

1. Which of these could increase average global temperatures?

A. Increased use of fossil fuelB. Increased ocean algal bloomsC. Decreased carbon dioxide emissionsD. Increased number of animal species

Answer: A

2. Which statement best explains why from about 1800 until today, carbon dioxide levels have changed?

A. More CO2 has been produced than removed from the air.B. Less CO2 has been produced than removed from the air.C. Earth has added atmosphere and it is now thicker than it was.D. CO2 has been produced by humans and animals.

Answer: A

3. The most likely cause of the overall change in the level of carbon dioxide from 1960 to 1990 is an increase in the

A. number of violent storms. B. number of volcanic eruptions. C. use of nuclear power.D. use of fossil fuels.

Answer: D

4. How have humans altered the composition of Earth’s atmosphere?

A. They have polluted it with carbon dioxide gas.B. They have polluted it with excess ozone.C. They have made the atmospheric temperature drop.D. They have made the atmospheric pressure drop.

Answer: A

Earth Science Assessments – May 2009 63

Page 64: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.4D Based on evidence of observable changes in recent history and climate change models, explain the consequences of warmer oceans (including the results of increased evaporation, shoreline and estuarine impacts, oceanic algae growth, and coral bleaching) and changing climatic zones (including the adaptive capacity of the biosphere).

1. Scientists are concerned that as oceans warm, the carbon dioxide dissolved in the water will be released. Why are they concerned?

A. Plant life in the ocean will grow in an out-of-control way without CO2.

B. Ocean water without carbon dioxide will harm fish populations.C. Global warming is linked to high carbon dioxide concentrations.D. Scientists are always concerned about things they cannot measure.

Answer: C

2. Some ocean species like otters and whales may actually benefit from climate change because

A. they like to bask in the sunlight.B. there will be more open water so they can have access to more food.C. rising ocean levels will give them significantly more habitat.D. it will be easier for them to find a mate.

Answer: B

3. Climate change may cause the water levels of the ocean to rise because

A. climate change causes tides to occur.B. more people enjoy swimming in a warmer ocean, which will cause the water level to

rise.C. glaciers and polar ice caps are melting, which adds more water to the oceans.D. all of the above.

Answer: C

4. A direct result of global warming, as opposed to an indirect result, is

A. melting glaciers.B. increased global temperatures.C. coral bleaching.D. increased flooding.

Answer: B

Earth Science Assessments – May 2009 64

Page 65: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.4e Based on evidence from historical climate research (e.g., fossils, varves, ice core data) and climate change models, explain how the current melting of polar ice caps can impact the climate system.

1. The photographs below show how a change in climate is affecting the size of Grinnell Glacier in Glacier National Park. Which of the following best explains the change in the glacier between 1910 and 1997?

A. Higher average temperaturesB. Higher frequency of earthquakesC. Higher total precipitationD. Higher rates of wind erosion

Answer: A

2. Dramatic variations in the polar ice caps most likely suggest changes in_______________.

A. the Moon’s orbitB. Earth’s climateC. ebb and flow of tidesD global water consumption

Answer: B

3. During the most recent ice age, what percentage of Earth’s surface was covered by glaciers?

A. 90%B. 30%C. 75%D. 10%

Answer: B

Earth Science Assessments – May 2009 65

Page 66: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. Glaciers have been found to be shrinking in most parts of the world. What do most scientists link the melting glaciers to?

A. A decrease in the biodiversity of the microscopic organisms living in glacial ice.B. An increase of ocean height that washes the glaciers out to sea.C. An increase in human oil production on the shelves of the Arctic ocean.D. An increase of global temperatures associated with rising carbon dioxide levels.

Answer: D

E5.4f Describe geological evidence that implies climates were significantly colder at times in the geologic record (e.g., geomorphology, striations, and fossils).

1. Scientists have found fossils of tropical plants in Antarctica. How could tropical plants have grown in Antarctica?

A. At one time, Earth’s entire surface was a tropical rain forest. B. At one time, Antarctica was located closer to the equator. C. The rotation of Earth has increased, causing cooling of the atmosphere. D. Catastrophic volcanic eruptions melted the ice and exposed the soil to sunlight.

Answer: B

2. The graph shows the number of species becoming extinct over time. What statement best summarizes the graph?

A. Mass extinctions are very rare and are only happening now.

B. Mass extinctions happen on a regular basis in geologic time.

C. Most extinctions happen over a thousand year time span.

D. Little is known about extinctions in the past.

Answer: B

3. What evidence shows extinctions have happened millions of years ago?

A. Human documentsB. The fossil recordC. Graphs of extinctionD. Evidence from space

Answer: B

Earth Science Assessments – May 2009 66

Page 67: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. Evidence about ancient climates indicates that

A. glacial ice once covered much of what is now India and Australia.B. continents in the Northern Hemisphere today were once centered over the South Pole.C. continents in the Southern Hemisphere today were once centered over the North Pole.D. no continents occupied the Southern Hemisphere.

Answer: A

E5.4g Compare and contrast the heat-trapping mechanisms of the major greenhouse gases resulting from emissions (carbon dioxide, methane, nitrous oxide, fluorocarbons) as well as their abundance and heat-trapping capacity.

1. Which of these could increase average global temperatures?

A. Increased use of fossil fuels B. Increased ocean algal blooms C. Decreased carbon dioxide emissions D. Increased numbers of animal species

Answer: A

2. Global warming is partly the result of an increased concentration of greenhouse gases, especially

A. hydrogen.B. ozone.C. carbon dioxide.D. oxygen.

Answer: C

3. Chlorofluorocarbons rise to the stratosphere and

A. react directly with stratospheric ozone to destroy it.B. after interacting with UV energy, become free radicals, which destroy ozone.C. become free radicals that react with oxygen to create ozone.D. react with free radicals to remove carbon dioxide.

Answer: B

Earth Science Assessments – May 2009 67

Page 68: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

4. Greenhouse gases in the Earth’s atmosphere are transparent to

A. heat (infrared) but they absorb light.B. light but they absorb heat (infrared).C. heat (infrared) and light.D. neither light nor heat (infrared).

Answer: B

Earth Science Assessments – May 2009 68

Page 69: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 6(10): 7-Oceans and Climates

E4.2A Describe the major causes for the ocean’s surface and deep water currents, including the prevailing winds, the Coriolis effect, unequal heating of the Earth, changes in water temperature and salinity in high latitudes, and basin shape.

1. The ocean water near the equator absorbs more heat throughout the year than ocean water near the North Pole. Which of the following best explains this difference?

A. The equator is closer to the Sun.B. The equator has higher sea levels.C. The equator receives more direct sunlight.D. The equator rotates more quickly on Earth’s axis.

Answer: C

*2. The energy that drives surface ocean currents such as the Gulf Stream comes from

A. salinity variations.B. density differences.C. Coriolis force.D. prevailing winds.

Answer: D

3. Ocean currents that move toward the poles are

A. warm.B. cold.C. warm in the Northern Hemisphere and cold in the Southern Hemisphere.D. cold in the Northern Hemisphere and warm in the Southern Hemisphere.

Answer: A

E4.2B Explain how interactions between the oceans and the atmosphere influence global and regional climate. Include the major concepts of heat transfer by ocean currents, thermohaline circulation, boundary currents, evaporation, precipitation, climatic zones, and the ocean as a major CO2 reservoir.

1. The highest salinity would be found in which of the following areas?

A. An area with high rates of precipitationB. An area with high rates of evaporationC. An area with plenty of runoffD. All of the above

Answer: B

Earth Science Assessments – May 2009 69

Page 70: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

2. The Gulf Stream affects the climate of

A. California.B. Great Britain.C. Alaska.D. Africa.

Answer: B

3. Warm surface currents affect the water temperature along the ____ coast of continents.

A. northB. southC. westD. east

Answer: D

4. Why are towns near an ocean often warmer in winter and cooler in summer than towns at the same latitude but located far from an ocean?

A. The ocean maintains a more stable temperature all year than air.B. The air over an ocean moves rapidly and the wind creates a feeling of warmth.C. The ocean changes temperatures very rapidly and the air above them changes.D. The air over the town that is inland does not move and gets stuck in one place.

Answer: A

E4.2c Explain the dynamics (including ocean-atmosphere interactions) of the El Niño-Southern Oscillation (ENSO) and its effect on continental climates.

1. What is the El Niño-Southern Oscillation’s (ENSO) affect on continental climates?

A. The average temperature increases.B. The average temperature decreases.C. The average temperature remains the same.D. The temperature is not affected.

Answer: A

Earth Science Assessments – May 2009 70

Page 71: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

2. What important functions do currents, waves, and El Niño provide for living things in the sea? El Niño

A. provides a way for living things to move around.B. brings nutrients up from deeper water.C. mixes land and sea organisms.D. allows Earth to have weather.

Answer: B

3. Which of the following was not a result of El Nino?

A. Less rain in Indonesia.B. More rain in South America.C. Stronger equatorial winds blowing currents Westward.D. Less upwelling of nutrient-rich water of the coast of South America.

Answer: C

4. What creates an El Nino condition?

A. The prevailing winds do not blow normally.B. The ocean currents flow in opposite directions.C. The shape of the coast changes and fish populations decline.D. Storms and other weather events create it.

Answer: A

E4.2d Identify factors affecting seawater density and salinity and describe how density affects oceanic layering and currents.

1. Seawater is typically denser than freshwater due to seawater’s _______________.

A. higher salinityB. lower freezing pointC. smaller massD. greater depth

Answer: A

Earth Science Assessments – May 2009 71

Page 72: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

2. Which of the following water masses would be the most dense?

A. Warm water with a high salinityB. Cold water with a high salinityC. Cold water with a low salinityD. Warm water with a low salinity

Answer: B

3. Which of the following can cause in increase in the density of ocean water?

A. A decrease in temperatureB. An increase in salinityC. A decrease in ocean circulationD. Both a and b

Answer: D

4. How does the formation of sea ice raise the density of nearby water?

A. The water is chilled under the forming ice.B. Salt ions are concentrated in the water under the ice.C. Salty water migrates toward the forming ice.D. The growing ice sheet puts downward pressure on the water.

Answer: B

E4.2e Explain the differences between maritime and continental climates with regard to oceanic currents.

1. The influence of cold currents is mostly felt in the______________.

A. middle latitudes during winterB. higher latitudes during springC. higher latitudes during winterD. tropics

Answer: D

Earth Science Assessments – May 2009 72

Page 73: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

2. Which of the following is NOT an area where maritime tropical air masses that affect North America originate?

A. Gulf of MexicoB. Caribbean SeaC. Hudson BayD. Atlantic Ocean

Answer: C

3. Large bodies of water can cause areas to be _______ in the winter and _____ in the summer.

A. warmer, coolerB. cooler, warmerC. cooler, humidD. warmer, cloudier

Answer: A

4. Why do warm currents begin near the equator?

A. All currents, warm and cool, begin near the equator.B. Scientists are still unsure.C. The equator receives the most direct sunlight.D. Cool air rises and warm air falls.

Answer: C

E4.2f Explain how the Coriolis effect controls oceanic circulation.

1. Because of the Coriolis effect, ocean currents in the Northern Hemisphere are deflected to the

A. right.B. left.C. north.D. south.

Answer: A

Earth Science Assessments – May 2009 73

Page 74: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

2. The Coriolis effect is due to the __________ of the Earth.

A. revolutionB. rotationC. shapeD. density

Answer: B

3. Which of the following correctly describes the cause and effect of the Coriolis effect?

A. Cause: rotation of the earth effect: deflection of wind into gyresB. Cause: tilt of the Earth’s axis effect: change of seasonsC. Cause: change in distance to sun effect: change of seasonsD. Cause: presence of mountains effect: location of deserts on leeward side

Answer: A

4. What causes surface ocean currents to be deflected?

A. Deep currentsB. The Coriolis effectC. Earth’s revolutionD. Global winds

Answer: B

Earth Science Assessments – May 2009 74

Page 75: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 5(11): 9—Hydrogeology

E4.1A Compare and contrast surface water systems (lakes, rivers, streams, wetlands) and groundwater in regard to their relative sizes as Earth’s freshwater reservoirs and the dynamics of water movement (inputs and outputs, residence times, sustainability).

1. What is the largest drainage basin in the United States?

A. The Mississippi RiverB. The Colorado RiverC. The Snake RiverD. the Missouri River

Answer: A

2. What is a requirement for an area to be a wetland?

A. It must be covered with water throughout the year.B. It must contain lakes.C. It must keep water stored underground.D. It must be covered in water sometime during the year.

Answer: D

3. Along straight stretches of a stream channel, the highest velocities of water are found in what part of the stream?

A. Near the water surface in the center of the stream.B. Near the water surface along the stream banks.C. Along the stream bottom in the center of the stream.D. Along the stream bottom near the stream banks.

Answer: A

*4. In order for rejuvenation to take place in a stream, what must occur first?

A. Deposition must stop.B. The stream must dry up.C. The land over which the stream flows uplifts.D. The discharge must increase.

Answer: C

Earth Science Assessments – May 2009 75

Page 76: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E4.1B Explain the features and processes of groundwater systems and how the sustainability of North American aquifers has changed in recent history (e.g., the past 100 years) qualitatively using the concepts of recharge, residence time, inputs, and outputs.

1. Groundwater moves _________ water flowing in a stream.

A. faster thanB. at the same speed asC. slower thanD. in the opposite direction of

Answer: C

2. Is there more water on Earth in groundwater systems or river systems?

A. River systemsB. Groundwater systemsC. They are the sameD. Sometimes groundwater systems, other times river systems

Answer: B

3. Permeable rock layers or sediments that transmit groundwater freely are called

A. aquifers.B. aquitards.C. caverns.D. springs.

Answer: A

4. The depression often produced in the water table, when water is pumped from a well, is called

A. a perched water table.B. an aquitard.C. the aquifer cone.D. the cone of depression.

Answer: D

Earth Science Assessments – May 2009 76

Page 77: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E4.1C Explain how water quality in both groundwater and surface systems is impacted by land use decisions.

*1. A mine is built near your home. What might be a concern for you?

A. Sewage can seep into the groundwater.B. Road salt will runoff into groundwater.C. The mine probably will practice illegal dumping.D. Mining chemicals can flow into the groundwater.

Answer: D

2. How can a poorly designed septic system be dangerous?

A. Sewage and bacteria can run off into groundwater.B. Raw sewage is dumped directly into streams.C. The system can dry up the groundwater supply.D. Sewage and bacteria can leak into the groundwater.

Answer: D

3. How does bioremediation clean groundwater?

A. Bacteria and fungi consume the pollutants.B. Pollution is burned away.C. Animals dig up the polluted sources.D. Chemicals are introduced to kill all bacteria.

Answer: A

4. An example of point source pollution is

A. automobile fluids washing off the roads and into a stream.B. fertilizer runoff from farms.C. landfills seeping into groundwater.D. dumping used motor oil into a stream.

Answer: D

Earth Science Assessments – May 2009 77

Page 78: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

5. According to the diagram, the water supply will be most consistent in well_______.

A. 4B. 2C. 3D. 1

Answer: C

E2.4B Explain how the impact of human activities on the environment (e.g., deforestation, air pollution, coral reef destruction) can be understood through the analysis of interactions between the four Earth systems.

1. An environmental-science company measured the ozone pollutant levels at two different locations in a metropolitan area. Which statement is best supported by these data?

Ozone Levels for a Metropolitan Area

Date Location High Temperature(°C) Prevailing Wind Ozone Level

(ppm)

1/15/99

Downtown  13 NE 5 mph 0.01

NW Station  11 NE 10 mph Trace

3/15/99

Downtown  22 Calm 0.03

NW Station  21 Calm 0.03

5/15/99

Downtown  30 SE 10 mph 0.05

NW Station  31 SE 5 mph 0.06

7/15/99

Downtown  38 S 5 mph 0.12*

NW Station  38 S 5 mph 0.14*

Earth Science Assessments – May 2009 78

Page 79: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

*Unsafe levels of ozone above 0.10 PPM

A. Lower fuel efficiency and northerly winds in the winter increase ozone pollution the most.

B. Northwest winds in the spring transport ozone pollution into the metropolitan area.C. High summer temperatures and southerly winds contribute to high levels of ozone.D. Heavy use of automobiles changes ozone levels the most.

Answer: C2. Landscaping with native plants improves the environment. Native plants are hardy because

they have adapted to the local conditions. Once established, native plants do not need pesticides, fertilizers, or watering. Not only is this good for the environment, it saves time and money. A native landscape does not need to be mowed like a conventional lawn. This reduces the demand for non-renewable resources and improves the water and air quality. The periodic burning (or mowing when burning is not practical) required for maintenance of a prairie landscape mimics the natural prairie cycle and is much better for the environment. Landscaping with native wildflowers and grasses helps return the area to a healthy ecosystem. Diverse varieties of birds, butterflies and animals, are attracted to the native plants, thus enhancing the biodiversity of the area.

The Environmental Protective Agency would be interested in sharing this information

A. to reduce the number of nonnative plants sold.B. to help conserve nonrenewable resources and protect the environment from harsh

chemicals.C. to provide avid gardeners with new approaches to creating their gardens.D. to identify inexpensive ways of gardening for novice gardeners.

Answer: B

3. How could the building of a dam affect the Earth system?

A. A dam could cause the flooding of a nearby forest.B. A dam could destroy a fish species that needs swiftly moving water.C. A dam could block the migration of spawning fish.D. All of the above

Answer: D

4. Which of the following is NOT an effect of acid rain?

A. Disintegration of buildings, statues, tombstonesB. Death and stunting of treesC. Increase in temperatureD. Loss of aquatic life in rivers and streams

Answer: C

Earth Science Assessments – May 2009 79

Page 80: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

Unit 12: 10—Resources and Environmental Challenges

E2.2B Identify differences in the origin and use of renewable (e.g., solar, wind, water, biomass) and nonrenewable (e.g., fossil fuels, nuclear [U-235]) sources of energy.

1. The chart shows different sources of energy. Which conclusion can be made based on this chart?

A. Fossil fuels make up over three-quarters of our energy consumption.

B. Coal is the main source of energy.C. Use of nuclear power is increasing.D. Renewable energy sources are

predominantly used.

Answer: A

2. What energy source is made possible by the volcanic activity in California?

A. HydroelectricityB. Nuclear powerC. Geothermal energyD. Solar energy

Answer: C

3. Which of the following nonrenewable energy resources is NOT a fossil fuel?

A. OilB. Natural gasC. CoalD. Nuclear

Answer: D

4. Hydroelectric energy is all of the following EXCEPT

A. an inexpensive way to produce electricity.B. produced by turbines that turn generators.C. an example of a nonrenewable energy resource.D. responsible for habitat disruption and destruction.

Answer: C

Earth Science Assessments – May 2009 80

Page 81: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.2f Explain how elements exist in different compounds and states as they move from one reservoir to another.

1. In the carbon cycle, how does carbon enter living organisms?

A. Decomposers release carbon dioxideB. Photosynthesis by plantsC. Humans burn coalD. Respiration by animals

Answer: B

2. How is oxygen released into Earth’s atmosphere?

A. Burning fossil fuelsB. Photosynthetic plantsC. Volcanic eruptionsD. Burning forests

Answer: B

3. What is the process by which bacteria convert nitrogen gas in the air to ammonia?

A. Nitrogen fixationB. ExcretionC. DecompositionD. Denitrification

Answer: A

4. How is carbon released from calcium carbonate?

A. By a process of erosionB. Burned as fossil fuelsC. By a process of diffusionD. By decomposition

Answer: A

Earth Science Assessments – May 2009 81

Page 82: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.3A Explain how carbon exists in different forms such as limestone (rock), carbon dioxide (gas), carbonic acid (water), and animals (life) within Earth systems and how those forms can be beneficial or harmful to humans.

1. Carbon in the atmosphere is most often found as which of the following compounds?

A. Stratospheric ozoneB. Fossil fuelC. Carbon monoxideD. Carbon dioxide

Answer: D

2. The release of carbon from limestone reservoirs into the atmosphere is most often accomplished by the

A. abrasion of the limestone by wind-blown sands. B. destruction of limestone by lichens. C. formation of stalagmites and stalactites in limestone caves. D. chemical reaction between limestone and rainwater.

Answer: D

3. How is carbon stored in the biosphere?

A. In the atmosphere as carbon dioxideB. Underground as fossil fuels and calcium carbonate rockC. In the oceans as dissolved carbon dioxideD. All of the above

Answer: D

4. This picture above shows how carbon cycles through the environment. Which of the following statements is true?

A. The cycle ends when dead material is deposited.

B. Carbon dioxide (CO2) is released by respiration.

C. Only plants are involved in the carbon cycle.

D. The cycle prevents diffusion.

Answer: B

Earth Science Assessments – May 2009 82

Page 83: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.3b Explain why small amounts of some chemical forms may be beneficial for life but are poisonous in large quantities (e.g., dead zone in the Gulf of Mexico, Lake Nyos in Africa, fluoride in drinking water).

1. Biogeochemical cycling ensures that

A. human activity will have no effect on elements, chemical compounds, and other forms of matter.

B. living organisms will not become limited in any one nutrient.C. nutrients will be circulated throughout the biosphere.D. many nutrients will not reach toxic concentrations in the biosphere.

Answer: C

2. What effect does a red tide have on humans?

A. All the fish in the area die, causing local fishermen to lose money.B. It is unhealthy to swim in the ocean during a red tide.C. The protists help clean up wastes discharged by local sewage pipes.D. Eating poisoned shellfish from affected waters can cause sickness and death to

humans.

Answer: D

3. After metals are released into water bodies, they

A. disappear immediately.B. remain in the environment for a long time.C. are washed out naturally.D. evaporate within a year.

Answer: B

4. What was the gas that caused widespread death of people and animals near Lake Nyos in 1986?

A. Carbon monoxideB. Carbon dioxideC. Carbon tetrachlorideD. Carbonic acid

Answer: B

Earth Science Assessments – May 2009 83

Page 84: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.3c Explain how the nitrogen cycle is part of the Earth system.

1. Nitrogen fixation is carried out primarily by ______________.

A. bacteriaB. legumesC. decomposersD. all of the above

Answer: D

2. Nitrogen is fixed in the atmosphere by ____________________.

A. CFC’sB. waterC. ozoneD. lightening

Answer: D

3. Why is it difficult to integrate nitrogen gas from the atmosphere into the nitrogen cycle of the biosphere?

A. Nitrogen is not very abundant in the atmosphere.B. Few organisms can directly utilize atmospheric nitrogen gas.C. Most plants do not require organic nitrogen compounds for survival.D. Oceans quickly absorb nitrogen gas.

Answer: B

4. Bacteria drive the ___________ cycle.

A. carbonB. oxygenC. energyD. nitrogen

Answer: D

5. Which of these is part of the nitrogen cycle?

A. Nitrogen is absorbed by plants when they die.B. Nitrogen goes from the atmosphere to the soil.C. Nitrogen is produced by living organisms.D. Nitrogen is removed from soil by animal wastes.

Answer: B

Earth Science Assessments – May 2009 84

Page 85: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.3d Explain how carbon moves through the Earth system (including the geosphere) and how it may benefit (e.g., improve soils for agriculture) or harm (e.g., act as a pollutant) society.

1. Which of these statements is best illustrated by this diagram?

A. Animals under water eat plants.B. Land animals exhale oxygen into water.C. Water-dwelling animals breathe carbon

dioxide.D. Plants can take in carbon dioxide from

air or water.

Answer: D

2. Research shows that limiting the clear-cutting of large tracts of forest can help reduce the greenhouse effect. Which of the following process is most responsible for this?

A. Healthy forests have slow rates of organic breakdown, decreasing the production of methane (CH4).

B. Logging stimulates the activity of microorganisms in the forest litter, raising carbon dioxide production.

C. Forest ecosystems have high levels of photosynthesis, increasing the sequestration of carbon dioxide.

D. Clear-cutting increases the erosion of soils and underlying lithosphere, releasing stored carbon.

Answer: C

3. Which of the following removes CO2 from the atmosphere?

A. Rainforest treesB. CarsC. Burning coalD. Spraying aerosol cans

Answer: A

4. The greenhouse gas carbon dioxide helps to

A. deflect harmful radiation from space.B. increase precipitation in arid areas.C. form clouds in the atmosphere.D. maintain warmth near Earth’s surface.

Answer: D

Earth Science Assessments – May 2009 85

Page 86: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.4A Describe renewable and nonrenewable sources of energy for human consumption (electricity, fuels), compare their effects on the environment, and include overall costs and benefits.

1. Some fuels are classified as nonrenewable because they_____________.

A. produce toxic waste.B. can be easily recycled.C. come from deep within Earth.D. require a long period of time to form.

Answer: D

2. What is the greatest environmental cost of hydroelectric power?

A. Increased flooding downstreamB. Fish kills due to the turbinesC. Decreased species diversity in the new lakeD. Destruction of free-running rivers and their ecosystems _

Answer: D

3. Renewable resources

A. can be replenished over months, years, or decades.B. are all living resources.C. have finite supplies that will one day be used up.D. include iron, natural gas, and copper.

Answer: A

4. Which of the following alternative energy sources is NOT inexhaustible?

A. Tidal energyB. Solar energyC. Geothermal energyD. Wind energy

Answer: C

5. One problem with wind energy as a major source of electricity is

A. it is nonrenewable.B. it causes major air pollution.C. it does not work during the night.D. the expense of large tracts of land in populated areas.

Answer D

Earth Science Assessments – May 2009 86

Page 87: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.4c Explain ozone depletion in the stratosphere and methods to slow human activities to reduce ozone depletion.

1. Which of the following human activities reduces the level of ozone in the atmosphere?

A. Using artificial lighting in scientific polar stations.B. Using large banks of solar cells for energy production. C. Releasing chlorofluorocarbons from aerosol cans. D. Destroying large areas of the equatorial rain forests.

Answer: B

2. Release of CFCs and similar compounds are a possible cause of ______________.

A. destruction of ozone in the upper atmosphere.B. acid rain in the northeast U.S.C. greenhouse gas build-up in the lower atmosphere.D. increase in atmospheric carbon dioxide concentration.

Answer: A

3. Is ozone that is near Earth’s surface beneficial or harmful?

A. Beneficial; it cleans the air.B. Harmful; it doesn’t let enough sunlight through.C. Beneficial; it protects Earth from the Sun’s harmful rays.D. Harmful; it is a major component of smog, and can damage sensitive tissues.

Answer: D

4. According to the graph, which air pollutant decreased the most from 1970 to 1991?

A. Carbon monoxideB. LeadC. ParticulatesD. Sulfur oxides

Answers: B

Earth Science Assessments – May 2009 87

Page 88: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E2.4d Describe the life cycle of a product, including the resources, production, packaging, transportation, disposal, and pollution.

1. What process produces pollutants?

A. Refining oilB. Harnessing hydropowerC. Collecting windD. Carpooling

Answer: A

2. What is one thing a company could do to help lessen the impact today’s throwaway culture has on the environment?

A. Reduce packagingB. Build more plantsC. Increase productionD. Lower costs

Answer: A

3. Which of the following explains the high value of recycling aluminum?

A. It will quickly turn to copper if not recycled.B. It has an unstable nucleus, so it decomposes very easily.C. It is very reactive, so it is rarely found in a pure form in nature.D. It is not very reactive, so it is often found in a pure form in nature.

Answer: C

4. Not only does it save resources to recycle metals and glass, it also takes far less _________ to make containers and other products from recycled minerals.

A. energyB. aluminumC. paperD. water

Answer: A

Earth Science Assessments – May 2009 88

Page 89: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

GLCE’s not included in Document

E1.1A Generate new questions that can be investigated in the laboratory or field.

E1.1B Evaluate the uncertainties or validity of scientific conclusions using an understanding of sources of measurement error, the challenges of controlling variables, accuracy of data analysis, logic of argument, logic of experimental design, and/or the dependence on underlying assumptions.

E1.1C Conduct scientific investigations using appropriate tools and techniques (e.g., selecting an instrument that measures the desired quantity—length, volume, weight, time interval, temperature—with the appropriate level of precision).

E1.1D Identify patterns in data and relate them to theoretical models.

E1.1E Describe a reason for a given conclusion using evidence from an investigation.

E1.1f Predict what would happen if the variables, methods, or timing of an investigation were changed.

E1.1g Based on empirical evidence, explain and critique the reasoning used to draw a scientific conclusion or explanation.

E1.1h Design and conduct a systematic scientific investigation that tests a hypothesis. Draw conclusions from data presented in charts or tables.

E1.1i Distinguish between scientific explanations that are regarded as current scientificconsensus and the emerging questions that active researchers investigate.

E1.2A Critique whether or not specific questions can be answered through scientific investigations.

E1.2B Identify and critique arguments about personal or societal issues based on scientificevidence.

Earth Science Assessments – May 2009 89

Page 90: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E1.2C Develop an understanding of a scientific concept by accessing information from multiple sources. Evaluate the scientific accuracy and significance of the information. E1.2D Evaluate scientific explanations in a peer review process or discussion format.

E1.2E Evaluate the future career and occupational prospects of science fields.

E1.2f Critique solutions to problems, given criteria and scientific constraints.

E1.2g Identify scientific tradeoffs in design decisions and choose among alternative solutions.

E1.2h Describe the distinctions between scientific theories, laws, hypotheses, and observations.

E1.2i Explain the progression of ideas and explanations that lead to science theories that are part of the current scientific consensus or core knowledge.

E1.2j Apply science principles or scientific data to anticipate effects of technological design decisions.

E1.2k Analyze how science and society interact from a historical, political, economic, or social perspective.

E2.1B Analyze the interactions between the major systems (geosphere, atmosphere,hydrosphere, biosphere) that make up the Earth.

E2.2e Explain how energy changes form through Earth systems.

E3.p1A Explain the origin of Michigan landforms. Describe and identify surface features using maps and satellite images. (prerequisite)

E3.p1B Explain how physical and chemical weathering leads to erosion and the formation of soils and sediments. (prerequisite)

E3.p1C Describe how coastal features are formed by wave erosion and deposition. (prerequisite)

Earth Science Assessments – May 2009 90

Page 91: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E3.p2A Identify common rock-forming minerals (quartz, feldspar, biotite, calcite, hornblende). (prerequisite)

E3.p2B Identify common igneous (granite, basalt, andesite, obsidian, pumice), metamorphic (schist, gneiss, marble, slate, quartzite), and sedimentary (sandstone, limestone, shale, conglomerate) rocks and describe the processes that change one kind of rock to another. (prerequisite)

E3.p3A Describe geologic, paleontologic, and paleoclimatalogic evidence that indicates Africa and South America were once part of a single continent.

E3.p3B Describe the three types of plate boundaries (divergent, convergent, and transform) and geographic features associated with them (e.g., continental rifts and mid-ocean ridges, volcanic and island arcs, deep-sea trenches, transform faults).

E3.p3C Describe the three major types of volcanoes (shield volcano, stratovolcano, and cinder cones) and their relationship to the Ring of Fire.

E4.p1A Describe that the water cycle includes evaporation, transpiration, condensation, precipitation, infiltration, surface runoff, groundwater, and absorption. (prerequisite)

E4.p1B Analyze the flow of water between the elements of a watershed, including surface features (lakes, streams, rivers, wetlands) and groundwater. (prerequisite)

E4.p1C Describe the river and stream types, features, and process including cycles of flooding, erosion, and deposition as they occur naturally and as they are impacted by land use decisions. (prerequisite)

E4.p1D Explain the types, process, and beneficial functions of wetlands.

E4.p2A Describe the composition and layers of the atmosphere. (prerequisite)

E4.p2B Describe the difference between weather and climate. (prerequisite)

E4.p2C Explain the differences between fog and dew formation and cloud formation. (prerequisite)

Earth Science Assessments – May 2009 91

Page 92: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E4.p2D Describe relative humidity in terms of the moisture content of the air and the moisture capacity of the air and how these depend on the temperature. (prerequisite)

E4.p2E Describe conditions associated with frontal boundaries (cold, warm, stationary, and occluded). (prerequisite)

E4.p2F Describe the characteristics and movement across North America of the major air masses and the jet stream. (prerequisite)

E4.p2G Interpret a weather map and describe present weather conditions and predict changes in weather over 24 hours. (prerequisite)

E4.p2H Explain the primary causes of seasons. (prerequisite)

E4.p2I Identify major global wind belts (trade winds, prevailing westerlies, and polar easterlies) and that their vertical components control the global distribution of rainforests and deserts. (prerequisite)

E4.p3A Describe how glaciers have affected the Michigan landscape and how the resulting landforms impact our state economy. (prerequisite)

E4.p3B Explain what happens to the lithosphere when an ice sheet is removed. (prerequisite)

E4.p3C Explain the formation of the Great Lakes. (prerequisite)

E4.r2g Explain how El Niño affects economies (e.g., in South America). (recommended)

E5.p1A Describe the motions of various celestial bodies and some effects of those motions. (prerequisite)

E5.p1B Explain the primary cause of seasons. (prerequisite)

E5.p1C Explain how a light year can be used as a distance unit. (prerequisite)

Earth Science Assessments – May 2009 92

Page 93: Quarter 1 - Saginaw Valley State University · Web viewData from a Doppler analysis of the sun show a red shift on the west side of the sun and a blue shift on the east side. What

E5.p1D Describe the position and motion of our solar system in our galaxy. (prerequisite)

E5.r4h Use oxygen isotope data to estimate paleotemperature. (recommended)

E5.r4i Explain the causes of short-term climate changes such as catastrophic volcanic eruptions and impact of solar system objects. (recommended)

E5.r4j Predict the global temperature increase by 2100, given data on the annual trends of CO2 concentration increase. (recommended)

Earth Science Assessments – May 2009 93