2
Quaternions Quaternions are hyper complex numbers composed of a realand a vector parts Q q q 9 1 9 It 9 e It 9 de Vector part reator scalar part The quaternion algebra states that ii É É 1 II E II The multiplicationorder matters Multiplication table X I I I I I I I I I I I I E I I I I I it I I I I Given that the multiplication of two quaternions yield Q E TU Q E e q Q Q E M Ect Nr E E t MM t I E Na E 14 1 EmIr E e E car It day It EezII think t I E Na E En En EnEn E e Eu1 Eu Eu Eu Cry I ExleyEu Endátlenday Eu Cadet Nhat NEALE Ei Ez EFE Q Q N Na EIE q E a NE EFE Real part Vector part Hence the result of quaternion multiplication is identical to the result of rotation composition using the Euler symmetric parameters Thus we can use quaternions to rotate reference systems to changebasis Notei The quaternion multiplicative inverse is the conjugatequaternion É 1 E Q É Me E 4 E p Etc NE µ E É 1 a Assuming thatthe µ quaternionnorm is 1 Q OI it 191 1 1

Quaternions · Quaternions Quaternions are hypercomplexnumbers composedof a realand a vector parts Q q q 9 1 9 It 9e It 9 de Vectorpart reatorscalarpart Thequaternionalgebrastates

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quaternions · Quaternions Quaternions are hypercomplexnumbers composedof a realand a vector parts Q q q 9 1 9 It 9e It 9 de Vectorpart reatorscalarpart Thequaternionalgebrastates

Quaternions

Quaternions are hypercomplexnumbers composed of a realand a vector parts

Q q q 9 1 9 It 9e It 9deVectorpart reatorscalarpart

Thequaternion algebrastates that

ii É É 1

II E IIThemultiplicationordermatters

Multiplication table

X I I I II I I I II I I E II I I IitI I I I

Giventhatthemultiplication oftwoquaternionsyield

Q E TUQ Ee qQQ E M EctNrE E t MM t I E NaE14 1 EmIr EeE car It dayItEezII think t I E NaEEn En EnEn EeEu1 EuEu EuCryI ExleyEuEndátlendayEuCadetNhatNEALE

EiEz EFEQQ NNa EIE q Ea NE EFE

Realpart VectorpartHence theresultof quaternion multiplication is identical totheresult of rotationcompositionusingtheEulersymmetric parameters Thus wecanusequaternions torotate referencesystems

tochangebasisNotei Thequaternionmultiplicativeinverse is theconjugatequaternion É 1 E

QÉ MeE 4 E p Etc NE µ EÉ 1 aAssumingthattheµ quaternionnorm is 1Q OI it 191 1 1

Page 2: Quaternions · Quaternions Quaternions are hypercomplexnumbers composedof a realand a vector parts Q q q 9 1 9 It 9e It 9 de Vectorpart reatorscalarpart Thequaternionalgebrastates

Basistransformation using quaternions

let Iaand Isbetwo referencesystem relatedbytheEulersymmetricparameters1411 letI bea vector in whichitsrepresentation in Ia isknown Ya Wewanttofind Is usingquaternions

Considerthefollowingoperation s a Ia QLotta Quaternionwithrealpartoandvectorpartva

a YaQ 1 ELotta q E 4 E loq v.atE t 0 E que VÁE11 E I YEE Na VÁE

vector

VÍ E Et µ até E MIMVatv.ae VÍ E E El year Ya E1Iate YETIa E aíE viva VáE KATEE Ela EVÁEVEIA t 1 a E Ia Ia EIa t E EIa LEYa Ia

Aaté EÉ fvá EE I e EE EEEsyYa 21ÉYa 1 EEtta E EIa ETEIaq ÉE Ya t 2 EEtta 2ME IaIII EE t 2E É 21E Ia

Thus

QYaQ IM EtE 2E É 21E Ia NoteTherealpartofthequaternionÉYaE willalwaysbe 0CbaQYaQ ÉYaQ Csala Ib

Ib ÉYaQRotationcompositionusingquaternions

Letesabethequaternionthattransforms Iainto Is andQasbethe quaternionthattransformsEsmto E Thus thequaternion thattransforms IaintoFecanbecomputedusingYb ÉbalaQue Y y CRsIc EcbIbEcb

Yc ÀcbÉbaIa QbaQdoHowever Ia QcalaÉca Sincethisresultisvalid TI ER then

Eca QsaQas Notice thatthemultiplicationorderis inverseofthatoftheDCMs