17

Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of
Page 2: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

32

This catalog provides the latest information for Hamamatsu ruggedized high temperature photomultiplier tubes ranging in diameter from 13 mm (1/2") to 51 mm (2"). All listed tubes employ high temperature bialkali photocathode that feature stable operation and long life at temperatures up to 90 °C, 175 °C or 200 °C. The electrode supporting structures have been designed so that tubes can be used in severe environments such as may be found in oil well logging, geological exploration, and aerospace applications.If you do not find the tube that meets your needs in this brochure, we will be pleased to custom produce a tube or assembly for your unique requirements. We offer a wide variety of complete assemblies of tubes, sockets, voltage dividers and tube shields which have been quality tested to assure reliable operation.

Introduction & Application .......................................................... 2Index by Type Number ............................................................... 3Quick Reference ........................................................................ 4Operating Characteristics .......................................................... 5Temperature Test ....................................................................... 6Plateau Test ............................................................................... 8Screening Test ......................................................................... 10Notes & Basing Diagram ......................................................... 1113 mm (1/2") Dia. Types .......................................................... 1219 mm (3/4") Dia. Types .......................................................... 1425 mm (1") Dia. Types ............................................................. 1628 mm (1-1/8") Dia. Types ....................................................... 1838 mm (1-1/2") Dia. Types ....................................................... 1851 mm (2") Dia. Types ............................................................. 20Ceramic Stacked Types ........................................................... 20E678 Series Sockets ............................................................... 22Cautions and Warranty ............................................................ 23

R1288A ................................................................................... 16R1288A-01 .............................................................................. 16R1288A-04 .............................................................................. 16R1288A-06 .............................................................................. 16R1288A-07 .............................................................................. 16R1288A-08 .............................................................................. 16R1288A-14 .............................................................................. 16R1288A-15 .............................................................................. 16R1288A-16 .............................................................................. 16R1288A-27 .............................................................................. 16R1288A-28 .............................................................................. 16R1288A-31 .............................................................................. 16R1317-05 ................................................................................. 20R3991A .................................................................................... 14R3991A-04 .............................................................................. 14R3991A-27 .............................................................................. 14R3991A-28 .............................................................................. 14R3991A-31 .............................................................................. 14R4177 ...................................................................................... 12R4177-01 ................................................................................. 12R4177-27 ................................................................................. 12

R4177-28 ................................................................................. 12R4177-04 ................................................................................. 12R4177-06 ................................................................................. 12R4607-01 ................................................................................. 20R4607-06 ................................................................................. 20R4607-27 ................................................................................. 20R4607-28 ................................................................................. 20R5473-02 ................................................................................. 20R6877A ................................................................................... 18R6877A-04 .............................................................................. 18R6877A-07 .............................................................................. 18R6877A-08 .............................................................................. 18R6877A-27 .............................................................................. 18R6877A-28 .............................................................................. 18R6877A-31 .............................................................................. 18R9722 ...................................................................................... 18R9722-01 ................................................................................ 18R9722-04 ................................................................................ 18R9722-06 ................................................................................ 18R9722-27 ................................................................................ 18R9722-28 ................................................................................ 18

1. Technical Information of Photomultiplier Tubes ............. 241-1 Plateau change with the LLD ......................................... 241-2 Plateau measurement using a blue LED ....................... 251-3 Life characteristics under high temperatures ................ 261-4 Characteristics changes by applying vibrations ............. 261-5 Count rate characteristics ............................................ 26

2. Technical Information of Photomultiplier Tube Assemblies .... 282-1 Using with positive high voltage input ............................ 282-2 Using with negative high voltage input .......................... 282-3 Soldering ....................................................................... 292-4 Handling the cable ......................................................... 302-5 Protecting the photomultiplier tube internal structure .... 302-6 Coupling to the scintillator ............................................. 31

Oil well logging (Wireline and MWD)Geological explorationGauge meterAerospace research

Introduction Contents

Index by Type Number

Application

Introduction Contents

Index by Type Number

Application

Page 3: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

54

10-1700400300200

102

100

101

WAVELENGTH (nm)

CA

TH

OD

E R

AD

IAN

T S

EN

SIT

IVIT

Y (

mA

/W)

QU

AN

TU

M E

FF

ICIE

NC

Y (

%)

600500

CATHODERADIANTSENSITIVITY

QUANTUMEFFICIENCY

(at 25 °C)TPMHB0061EA TPMHB0062EB

25 50 100 150 175 200

AMBIENT TEMPERATURE (°C)

AN

OD

E D

AR

K C

UR

RE

NT

(A

)

10-10

10-9

10-8

10-7

10-6

10-5

175 °CType

200 °C Type

90 °C Type

90

SUPPLY VOLTAGE=1500 V

TPMHB0063ED TPMHB0064EC

SUPPLY VOLTAGE (V)

GA

IN

(at 25 °C)

101

102

103

104

105

106

107

R4177, R9722, R4607-01

R1288A, R3991A,R6877A

500 600 700 800 1000 1500 1800

SUPPLY VOLTAGE (V)

GA

IN

1000 1500 2000 2500 3000

(at 25 °C)

R5473-02R1317-05

102

103

104

105

106

107

108

Quick ReferenceQuick Reference

are suitable for MWD application.

Figure 1: Typical Spectral Response of 175 °C Version Photomultiplier Tubes

Figure 2: R1288A Typical Dark Current Characteristics as a Function of Temperature

Figure 3: Typical Gain Figure 4: Typical Gain

Type No.

AssemblyTemporary baseDiameter Page MaximumTemperature Button stem

13 mm(1/2") 10

90 °C

90 °C

90 °C

90 °C

90 °C

90 °C

175 °C

175 °C

175 °C

175 °C

175 °C

175 °C

175 °C

175 °C

200 °C

12

14

18

18

20

20

20

19 mm(3/4")

25 mm(1")

28 mm(1-1/8")

38 mm(1-1/2")

51 mm(2")

25 mm(1")

34 mm(1-3/8")

R4177-04 R4177-06 R4177-28

R1288A-14 R1288A-15 R1288A-16

R9722-04 R9722-06 R9722-28

R9722 R9722-01 R9722-27

R4607-06 R4607-28

R4607-01 R4607-27

R1288A-04 R1288A-06R1288A-08R1288A-28

R6877A-04R6877A-08R6877A-28

R1288A R1288A-01R1288A-07R1288A-27

R4177 R4177-01 R4177-27

R3991A-04 R3991A-28

R3991AR3991A-27R3991A-31

R1288A-31

R6877AR6877A-07R6877A-27R6877A-31

R5473-02

R1317-05

Standard Types

Ceramic Stacked Types

Page 4: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

76

Figure 8: Temperature Test Block Diagram

Figure 9: An Example of the Temperature Cycling Test Chart

Figure 5: Typical Fatigue Characteristics with Continuous Operation (R1288A)

Figure 6: Typical Pulse Height as a Function of Temperature (R1288A, R3991A)

Figure 7: Typical Pulse Height Resolution as a Function of Temperature (R1288A, R3991A)

Figure 5 shows the variations of anode output with continuous operation at the temperature stated in the figure.Applied voltages are 1500 V.Initial anode outputs are adjusted to 1 µA with direct current mode using a tungsten filament lamp.

Figure 6 shows the variations of P.H. (pulse height) and Figure 7 shows P.H.R. (pulse height resolution) as a function of the ambient temperature.These degradations are due to performance changes in the tube and efficiency losses in the crystal at high temperature.Both parameters recover their initial values when tubes are returned to room temperature.P.H.R. (pulse height resolution) characteristic of a PMT may be changed by the emission efficiency of scintillator used.

TPMHC0184EB

TPMHC0185EB

1 10 100 1000

OPERATION TIME (hours)

RE

LAT

IVE

AN

OD

E O

UT

PU

T (

%)

10

100

500

50

0.1

SUPPLY VOLTAGE = 1500 VINITIAL ANODE CURRENT=1 µA

25 °C 90 °C

150 °C200 °C(R1288A-14) 175 °C

TPMHB0065EE

TPMHB0749EA TPMHB0750EA

6

8

25 50 75 100 125

AMBIENT TEMPERATURE (°C)

PU

LSE

HE

IGH

T R

ES

OLU

TIO

N (

%)

150 175 200

10

12

14

16

18

20

22

R3991A

R1288A-14

R1288A

RADIATION SOURCE: 137CsSCINTILLATOR: 1"×2" NaI(TI): R1288A 0.75"×1.5" NaI(TI): R3991ASUPPLY VOLTAGE: 1500 V

0

20

25 50 75 100 125

AMBIENT TEMPERATURE (°C)

RE

LAT

IVE

PU

LSE

HE

IGH

T

150 175 200

40

60

80

100

120

R1288A

R3991A

R1288A-14

RADIATION SOURCE: 137CsSCINTILLATOR: 1"×2" NaI(TI): R1288A 0.75"×1.5" NaI(TI): R3991ASUPPLY VOLTAGE: 1500 V

PULSEGENERATOR

BLUELED

TEMP.CONTROLLER

PMT

VOLTAGEDIVIDER

NETWORK

TEMPERATURECONTROLCHAMBER

LIGHTGUIDE

LIGHT SOURCE BOX

HIGHVOLTAGEPOWERSUPPLY

MULTICHANNELANALYZER

PRE AMP.

1

: MEASURING POINT

TEMPERATURECYCLING

PMT OUTPUT

175 °C

50 °C

2 3 4 5 6

B

16 h 16 h8 h 16 h

A

C

NOTE: 1 Temperature cycling tests are performed for all 175 °C and 200 °C type tubes.

2 Temperature rise/down condition 3 °C/min. Max.

3 PMT output: < 10 %(B-A)A

4 PMT noise edge < 60 keV (Measured at C of PMT OUTPUT)

Page 5: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

98

Figure 13: Plateau Test Block Diagram

Figure 10: Typical Plateau Characteristics (R1288A)

Figure 11: Typical Plateau Characteristics (R3991A)

TPMHC0186EB

TPMHB0751EA

Figure 12: Typical Plateau Characteristics (R5473-02)

SUPPLY VOLTAGE (kV)

CO

UN

T R

AT

E (

s-1 )

LOWER LEVEL DISCRIM.=1.5 pCRADIATION SOURCE: 137Cs (662 keV)SCINTILLATOR: Nal (Tl) ( 1" × 2")

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5200

400

600

800

1000

1200

1400

1600

1800

PLATEAU LENGTH at 175 °C (± 5 % WINDOW): 200 V

25 °C

175 °C 150 °C

TPMHB0068ECTPMHB0067ED

PMT

NaI(Tl)SCINTILLATOR137Cs

RADIOISOTOPE

TEMPERATURECONTROLLER

VOLTAGEDIVIDER

NETWORK

TEMPERATURECONTROLCHAMBER

HIGHVOLTAGEPOWERSUPPLY

LINEARAMP.

PREAMP.

SINGLECHANNELANALYZER

COUNTER

COMPUTER

200

SUPPLY VOLTAGE (kV)

CO

UN

T R

AT

E (

s-1 )

25 °C

LOWER LEVEL DISCRIM.=1.5 pCRADIATION SOURCE: 137Cs (662 keV)SCINTILLATOR: Nal (Tl) ( 1" × 2")

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

175 °C 150 °C

400

600

800

1000

1200

1400

1600

1800

PLATEAU LENGTH at 175 °C ( ±5 % WINDOW): 200 V

200

SUPPLY VOLTAGE (kV)

CO

UN

T R

AT

E (

s-1 )

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

400

600

800

1000

1200

1400

1600

1800

175 °C 150 °C

PLATEAU LENGTH at 175 °C ( ±5 % WINDOW): 200 V

25 °C

LOWER LEVEL DISCRIM.=1.5 pCRADIATION SOURCE: 137Cs (662 keV)SCINTILLATOR: Nal (Tl) ( 0.75" × 1.5")

Page 6: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

1110

Figure 14: Screening Test Block Diagram for R1288A-31, R3991A-31

Figure 15: An Example Test Data (Recorder chart of the screening test)

TUBE AXIS

TPMHC0106EB

TPMHB0220EA

TACCC0043EB

TPMHC0105EA

TPMOC0068EC

DC POWERSUPPLY

HIGH VOLTAGEPOWER SUPPLY

LED PMT

SHAKER

VIBRATIONCONTROL

UNITRECORDER

µ-METAL WRAPPING

<Screening Condition>Vibration : Sine 200 m/s2 (20 g's), 50 Hz to 2000 Hz,

1 oct. per minute, 1 sweep per axis (3 axes)Sweep time : 10 minutes per axisSupply voltage : -1500 VAnode output current : Approx. 2 µA (DC)

<Judgement>Anode output variation during the screening test less than 5 %

50 2000 50

FREQUENCY (Hz)

X-axis

VA

RIA

TIO

N O

FA

NO

DE

OU

TP

UT

(2

%/d

iv.)

10 %

5 min.

50 2000 50

FREQUENCY (Hz)

Y-axis

VA

RIA

TIO

N O

FA

NO

DE

OU

TP

UT

(2

%/d

iv.)

10 %

5 min.

50 2000 50

FREQUENCY (Hz)

Z-axis

VA

RIA

TIO

N O

FA

NO

DE

OU

TP

UT

(2

%/d

iv.)

10 %

5 min.

Note 1q Temperature cycling tests are performed for all 175 °C and 200 °C type tubes.w A socket will be supplied with a tube. (Assembly type is excluded)e Only initial production tubes are tested for these Shock tests. Conditions are as follows; 3 impact shocks per direction (6 directions)r Only initial production tubes are tested for these sine vibration tests. Conditions are as follows; 1 oct. per minute, 50 Hz to 2000 Hz 3

sweeps per axis (3 axes)t Screening tests are performed all R1288A-31, R3991A-31 tubes. See Figure 14 and Figure 15 on page 10.y The voltage distribution ratios are shown in the bottom table of each page.u Averaged over any interval of 30 seconds maximum.i The light source is a tungsten filament lamp operated at a distribution temperature of 2856K.

The light input is 0.01 lumen and 150 volts are applied between the cathode and all other electrodes connected together as anode.In the case of blue sensitivity, a blue filter of Corning CS 5-58 polished to 1/2 stock thickness is interposed between the light source and the tube.

o These voltages are applied when the anode sensitivity and characteristics are measured.!0 The light source is a tungsten filament lamp operated at a distribution temperature of 2856K.!1 Measured after 30 min. storage in darkness.

Note 2In use of this assembly at +HV potential, the load resistor (RL) and the capacitor (C) must be wired as follows :

SIGNAL

P

DY

K

DY

+H.V

RECOMMENDED VALUERLC

: 100 kΩ to 1 MΩ: 0.005 µF, 3 kV to 5 kV

RL

C

DY1

DY2

Y-axis

Z-axis

X-axis

: Dynode: Grid (Focusing Electrode): Photocathode: Anode: Internal Connection (Do not use)

DYG(F)KPIC

Short IndexPin

FlyingLead

Key

Pin

BASING DIAGRAM SYMBOLSAll base diagrams show terminals viewed from the base end of the tube.

Page 7: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

1312

MaximumTemperature

(°C)

Type No.

R4177-04

R4177-06

R4177-28

R4177

R4177-01

R4177-27

R4177-04

R4177-06

R4177-28

R4177

R4177-01

R4177-27

Temporary base

Button stem

Assembly (S/S Case)

Temporary base

Button stem

Assembly (S/S Case)

S/S: Stainless Steel

E678-12R

E678-13E

1R=2 MΩ

E678-12R

E678-13E

1R=2 MΩ

Linear Focused/10 1800

A

B

A

B

0.02

0.02

0.01

0.02

0.02

0.01

250

250

20

20

30

40

3.0

4.0

4.5

6.0

1500

1500

20

20

6

10

15

20

0.5

0.5

10

10

5 (90 °C)

1000

5.0 × 106

5000 m/s2

(500 g)

0.5 ms

200 m/s2

(20 g)

90

175

Type No.Base Configration

Socketor

ResistorValue

Dynode Structure

No. of Stages

MWDAppl.

SineVariation

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toLast

DynodeVoltage

(V)

Anode toCathodeVoltage

Gainat 25 °C

(V)

AppliedForce to

Faceplate(N)

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blueat 25 °C

(kgf) (µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Luminous

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.

(µA/lm-b)

Min.

(µA/lm-b)

Typ. Typ.

(V)

q w t i

o !0 !1e r y u

13 mm (1/2") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R4177-01, -06 R4177, -04

Number ofStages

A

B

K

1

1

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.01)

Dy9

1

1

(0.01)

Dy10

1

1

(0.01)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

DY10

765

4

89

10

11

1213

3

21

DY8P

DY6

DY4

DY2

IC

K

DY9

DY7

DY5

DY3

DY1

SHORT PIN

14.5 ± 0.7

FACEPLATE

PHOTOCATHODE

61 ±

213

MA

X.

10 MIN.

13 PIN BASE

TPMHA0006EA TPMHA0007EA

10 MIN.FACEPLATE

PHOTOCATHODE

SEMIFLEXIBLELEADS 0.5 MAX.

13 M

AX

.

33 M

IN.

61 ±

2

14.5 ± 0.7

37.3 ± 0.5

12 PIN BASEJEDEC No. B12-43

DY1

DY3

DY5

DY7

DY9

P

12

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

DY2

K

DY1

DY3

DY5

DY7

P

DY9 DY6

DY4

DY2

K1

2

3

4

56

9

10

11

13

7 8

DY10DY8

A TEMPORARY BASEREMOVED

B BOTTOM VIEW

A

B

R4177-27, -28 (See Note 2 on page 11)

TPMHA0032EC

100

± 1

PHOTOCATHODE

FACEPLATE

10 MIN.

GND/+H.V: AWG22 (RED)

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)GND/+H.V: AWG22 (RED)R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1 to R11:C1 to C3:

2 MΩ0.01 µF

18.0 ± 0.2

1 M

AX

.20

3 M

IN.

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

STAINLESSSTEEL CASE

14.5 ± 0.7

µ-M

ET

AL

WR

AP

PIN

G

Page 8: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

1514

MaximumTemperature

(°C)

Type No.

R3991A-04

R3991A-28

R3991A

R3991A-27

R3991A-31

R3991A-04

R3991A-28

R3991A

R3991A-27

R3991A-31

Temporary base

Assembly (S/S Case)

Temporary base

Assembly (S/S Case)

Assembly (S/S Case)

E678-12R

1R=2 MΩ

E678-12R

1R=2 MΩ

1R=2 MΩ

Linear Focused 1800

C

D

C

D

0.02

0.01

0.02

0.01

0.01

250

250

20

20

20

20

20

30

40

3.0

4.0

4.5

6.0

1500

1500

5

5

10

15

0.1

0.1

10

10

10 (90 °C)

1000

3.3 × 105

3.8 × 105

10 000 m/s2

(1000 g)

0.5 ms

YES

3000 m/s2

(30 g)

90

175

Type No.Base Configration

Socketor

ResistorValue

Dynode Structure

No. of Stages

MWDAppl.

SineVariation

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toLast

DynodeVoltage

(V)

Anode toCathodeVoltage

Gainat 25 °C

(V)

AppliedForce to

Faceplate(N)

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blueat 25 °C

(kgf) (µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Luminous

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.

(µA/lm-b)

Min.

(µA/lm-b)

Typ. Typ.

(V)

q w t i

o !0 !1e r y u

19 mm (3/4") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R3991A, -04 R3991A-27, -28, -31 (See Note 2 on page 11)

Number ofStages

C

D

K

3

3

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.01)

Dy9

1

1

(0.01)

Dy10

1

1

(0.01)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0361EA TPMHA0350EB

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

B Bottom View

A Temporary Base Removed 18.6 ± 0.7

15 MIN.

13 M

AX

.

28.0

± 1

.545

MIN

.

FACEPLATE

PHOTOCATHODE

SEMIFLEXIBLELEADS 0.7 MAX.

12 PIN BASEJEDECNo. B12-43

A

B

37.3 ± 0.5

DY1

DY3

DY5

DY7

P

DY9 DY10

DY8

DY6

12

3

4

56

9

10

11

1314

12DY4

K DY2

203

MIN

.46

.0 ±

0.2

5

23.0 ± 0.25

15 MIN.

0.5

± 0.

3

1

FACEPLATE

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY2

DY3

DY1

ANODE OUTPUT: AWG 22 (VIOLTET)

GND/+H.V: AWG 22 (RED)

-H.V/GND: AWG22 (BLACK)

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

: 6 MΩ: 2 MΩ: 0.01 µF

R1R2 to R11

C1 to C3

PHOTOCATHODE

STAINLESSSTEEL CASE

18.6 ± 0.7

µ-M

ET

AL

WR

AP

PIN

G

S/S: Stainless Steel

Page 9: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

1716

MaximumTemperature

(°C)

Type No.

R1288A-04

R1288A-06

R1288A-08

R1288A-28

R1288A

R1288A-01

R1288A-07

R1288A-27

R1288A-31

R1288A-14

R1288A-15

R1288A-16

R1288A-04

R1288A-06

R1288A-08

R1288A-28

R1288A

R1288A-01

R1288A-07

R1288A-27

R1288A-31

R1288A-14

R1288A-15

R1288A-16

Temporary base

Button stem

Assembly

Assembly (S/S Case)

Temporary base

Button stem

Assembly

Assembly (S/S Case)

Assembly (S/S Case)

Temporary base

Button stem

Assembly

S/S: Stainless Steel

E678-12R

E678-14T

1R=2 MΩ

1R=2 MΩ

E678-12R

E678-14T

1R=2 MΩ

1R=2 MΩ

1R=2 MΩ

E678-12R

E678-14T

1R=2 MΩ

Linear Focused/10

YES

1800

C

E

C

E

C

E

0.02

0.02

0.01

0.01

0.02

0.02

0.01

0.01

0.01

0.02

0.02

0.01

250

250

250

10

20

10

20

20

10

20

20

20

30

40

40

3.0

4.0

5.0

4.5

6.0

6.0

1500

1500

1500

5

8

10

10

15

20

0.1

0.1

0.1

10

10

0.5

20 (90 °C)

1000

400

3.3 × 105

3.8 × 105

5.0 × 105

10 000 m/s2

(1000 g)

0.5 ms

3000 m/s2

(30 g)

90

175

200

Type No.Base Configration

Socketor

ResistorValue

Dynode Structure

No. of Stages

MWDAppl.

SineVariation

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toLast

DynodeVoltage

(V)

Anode toCathodeVoltage

Gainat 25 °C

(V)

AppliedForce to

Faceplate(N)

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blueat 25 °C

(kgf) (µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Luminous

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.

(µA/lm-b)

Min.

(µA/lm-b)

Typ. Typ.

(V)

q w t i

o !0 !1e r y u

25 mm (1") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R1288A, -04, -14 R1288A-01, -06, -15

Number ofStages

C

E

K

3

3

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.022)

Dy9

1

1

(0.022)

Dy10

1

1

(0.022)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0363EB TPMHA0362EB

*R1288A-07, -08, -16 (See Note 2 on page 11) R1288A-27, -28, -31 (See Note 2 on page 11)

TPMHA0029EE TPMHA0351EB

17

A Temporary Base Removed

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

B Bottom View

25.4 ± 0.5

22 MIN.

13 M

AX

.

43.0

± 1

.550

MIN

.

FACEPLATE

PHOTOCATHODE

SEMIFLEXIBLELEADS 0.7 MAX.

12 PIN BASEJEDECNo. B12-43

A

B

37.3 ± 0.5

DY1

DY3

DY5

DY7

PDY9DY10

DY8

DY6

DY4

DY2

3

4

56

10

11

12

13

14

K

2

8

12

3

4

56

7 89

10

11

12

1314

KDY1

DY6

DY5

DY7

DY9P IC

IC

DY10

DY8

DY3

DY4DY2

SHORT PIN

25.4 ± 0.5

22 MIN.13

MA

X.

43.0

± 1

.5FACEPLATE

PHOTOCATHODE

14 PIN BASE

* CAUTION: These tubes have open ends potted with silicon.Do not apply to this potted portion, or do not fill any additional potting material. Either could damage the voltage divider built in.

203

MIN

.

MAGNETICSHIELD CASE

71.5

± 0

.50.

5 M

AX

.

22 MIN.

27.0 ± 0.6

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

FACEPLATE

PHOTOCATHODE

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

GND/+H.V: AWG22 (RED)

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11

C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

25.4 ± 0.5

203

MIN

.71

.5 ±

0.5

30.0 ± 0.25

22 MIN.

0.5

± 0.

3

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

FACEPLATE

PHOTOCATHODE

STAINLESS STEEL CASE

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

GND/+H.V: AWG22 (RED)

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

DY10

25.4 ± 0.5

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

Page 10: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

1918

MaximumTemperature

(°C)

Type No.

R6877A-04

R6877A-08

R6877A-28

R6877A

R6877A-07

R6877A-27

R6877A-31

R6877A-04

R6877A-08

R6877A-28

R6877A

R6877A-07

R6877A-27

R6877A-31

Temporary base

Assembly

Assembly (S/S Case)

Temporary base

Assembly

Assembly (S/S Case)

Assembly (S/S Case)

E678-12R

1R=2 MΩ

1R=2 MΩ

E678-12R

1R=2 MΩ

1R=2 MΩ

1R=2 MΩ

Linear Focused/10

YES

1800

C

E

C

E

0.02

0.01

0.01

0.02

0.01

0.01

0.01

250

250

10

20

10

20

20

20

40

30

40

3.0

4.0

4.5

6.0

1500

1500

5

8

10

15

0.2

0.2

20

10

30 (90 °C)

1400

3.3 × 105

5.0 × 105

1000 m/s2

(100 g)

11 ms

200 m/s2

(20 g)

90

175

Type No.Base Configration

Socketor

ResistorValue

Dynode Structure

No. of Stages

MWDAppl.

SineVariation

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toLast

DynodeVoltage

(V)

Anode toCathodeVoltage

Gainat 25 °C

(V)

AppliedForce to

Faceplate(N)

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blueat 25 °C

(kgf) (µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Luminous

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.

(µA/lm-b)

Min.

(µA/lm-b)

Typ. Typ.

(V)

q w t i

o !0 !1e r y u

28 mm (1-1/8") Dia. Types

R9722-04

R9722-06

R9722-28

R9722

R9722-01

R9722-27

R9722-04

R9722-06

R9722-28

R9722

R9722-01

R9722-27

Temporary base

Button stem

Assembly (S/S Case)

Temporary base

Button stem

Assembly (S/S Case)

E678-12R

E678-14T

1R=2 MΩ

E678-12R

E678-14T

1R=2 MΩ

Circular Cage/10 1800

F

G

F

G

0.02

0.02

0.01

0.02

0.02

0.01

250

250

20

20

20

20

30

40

3.0

4.0

4.5

6.0

1500

1500

5

5

10

20

0.5

0.5

10

10

30 (90 °C)

4000

3.3 × 105

5.0 × 105

1000 m/s2

(100 g)

11 ms

200 m/s2

(20 g)

90

175

38 mm (1-1/2") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R6877A, -04 R6877A-07, -08

Number ofStages

C

E

F

G

K

3

3

2

2

Dy1

1

1

1

1

Dy2

1

1

1

1

Dy3

1

1

1

1

Dy4

1

1

1

1

Dy5

1

1

1

1

Dy6

1

1

1

1

Dy7

1

1

1

1

Dy8

1

1

(0.022)

1

1

(0.022)

Dy9

1

1

(0.022)

1

1

(0.022)

Dy10

1

1

(0.022)

1

1

(0.022)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0451EA TPMHA0452EB

R6877A-27, -28, -31 R9722, -04 R9722-01, -06 R9722-27, -28

TPMHA0042EB TPMHA0043EA TPMHA0517EA

17

TEMPORARY BASEREMOVED

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

28.5 ± 0.5

25 MIN.

13 M

AX

. 43.0

± 1

.550

MIN

.

FACEPLATE

PHOTOCATHODE

SEMIFLEXIBLELEADS

DY1

DY3

DY5

DY7

PDY9 DY10

DY8

DY6

DY4

DY2

3

4

56 10

11

12

13

14

K

2

8

12 PIN BASEJEDECNo. B12-43

TPMHA0518EA

DY1

DY3

DY5

DY7

P

DY9

DY10DY8

DY6

DY4

DY23

4

5

6 10

11

12

13

151K

A Temporary Base Removed

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

B Bottom View

2

9

38.0 ± 0.7

34 MIN.

69.0

± 1

.5

13 M

AX

.

FACEPLATE

PHOTOCATHODE

70 M

IN.

12 PIN BASEJEDECNo. B12-43

A

B

37.3 ± 0.5

SEMI-FLEXIBLELEADS 0.7 MAX.

S/S: Stainless Steel

203

MIN

.65

.5 ±

0.5

31.5 ± 0.3

0.5

MA

X.

MAGNETICSHIELDCASE

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11

C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

DY10

25 MIN.

28.5 ± 0.5

ANODE OUTPUT: AWG22 (VIOLET)GND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

PHOTOCATHODE

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

203

MIN

.65

.5 ±

0.5

34.0 ± 0.25

0.5

± 0.

3

STAINLESSSTEEL CASE

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11

C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

DY10

25 MIN.

28.5 ±0.5

ANODE OUTPUT: AWG22 (VIOLET)GND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

PHOTOCATHODE

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

203

MIN

.96

.0 ±

0.8

44.0 ± 0.5

0.5

± 0.

3

STAINLESSSTEELCASE DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11

C1 to C3

: 4 MΩ: 2 MΩ: 0.022 µF

DY10

34 MIN.

38.0 ± 0.7

PHOTO-CATHODE

SHIELD: AWG26 (BLACK/WHITE)

GND/+HV: AWG22 (RED)

SIGNAL OUTPUT: COAX. RG-316/U

-HV/GND: AWG22 (BLACK)

SHIELD: AWG26 (BLK/WHT)

OUTPUT RG-316/UGND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G12

3

4

56

7 89

10

11

12

1314

KDY1

DY6

DY5

DY7

DY9P IC

IC

DY10

DY8

DY3

DY4DY2

SHORT PIN

38.0 ± 0.7

34 MIN.

69.0

± 1

.513

MA

X.

FACEPLATE

PHOTOCATHODE

14 PIN BASE

Page 11: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

2120

MaximumTemperature

(°C)

Type No.

R4607-06

R4607-01

R4607-27

R4607-06

R4607-01

R4607-27

Button stem

Button stem

Assembly (S/S Case)

E678-15B

E678-15B

1R=2 MΩ

Circular Cage/10 1800F

G

0.02

0.02

0.01

250

20

30

40

3.0

4.0

4.5

6.01500 5

10

203 50

10 (90 °C)

1500

3.3 × 105

5.0 × 105

5000 m/s2

(500 g)

0.5 ms

—2000 m/s2

(20 g)

90

175

Type No.Base Configration

Socketor

ResistorValue

Dynode Structure

No. of Stages

MWDAppl.

SineVariation

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toLast

DynodeVoltage

(V)

Anode toCathodeVoltage

Gainat 25 °C

(V)

AppliedForce to

Faceplate(N)

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blueat 25 °C

(kgf) (µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Luminous

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.

(µA/lm-b)

Min.

(µA/lm-b)

Typ. Typ.

(V)

q w t i

o !0 !1e r y u

51 mm (2") Dia. Types

R5473-02

R1317-05

R5473-02

R1317-05

1" Assembly

1-3/8" Assembly

1R=4 MΩ

1R=2 MΩVenetian Blind/12 3000

H

I0.01 —

20

20

2020 40 4.0 6.0 2000 5 20 0.5 10 40005.0 × 105

10 000 m/s2

(1000 g)0.5 ms

YES

YES

5000 m/s2

(50 g)175

Ceramic Stacked Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R4607-01, -06 R4607-27

Number ofStages

G

F

H

I

K

K

2

2

2

2

Dy1

G

1

1

1

0.08

Dy2

Dy1

1

1

1

1

Dy3

Dy2

1

1

1

1

Dy4

Dy3

1

1

1

1

Dy5

Dy4

1

1

1

1

Dy6

Dy5

1

1

1

1

Dy7

Dy6

1

1

1

1

Dy8

Dy7

1

(0.022)

1

1

1

Dy9

Dy8

1

(0.022)

1

1

1

Dy10

Dy9

1

(0.022)

1

1

1

1

(0.01)

1

(0.01)

1

(0.01)

1

(0.01)

1

(0.01)

1

(0.01)

P

Dy10 Dy11 Dy12 P

10

12

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0003ED TPMHA0453EB

R1317-05 (See Note 2 on page 11)

TPMHA0026ED

R5473-02 (See Note 2 on page 11)

TPMHA0349EC

52 ± 1

46 MIN.FACEPLATE

PHOTOCATHODE

80 ±

213

MA

X.

15 PIN BASE

DY1

DY3

DY5

DY7

DY9

P

IC IC DY10

DY8

DY6

DY4

DY2

IC

K

12

3

4

56

7 8 910

11

12

1314

15

SHORT PIN

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY4

DY5

DY3

DY1

DY2

ANODE OUTPUT: AWG 22 (RED)GND/+H.V: AWG22 (WHITE)

-HV/GND: AWG22 (BLACK)

P

K

G

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

: 8 MΩ: 4 MΩ: 0.01 µF

R1R2 to R14

C1 to C3

GLASS FIBERCASE

PHOTO-CATHODE

FACEPLATE

203

MIN

.92

.2 ±

0.4

-HV/GND: AWG22 (BLACK)

GND/+H.V: AWG22 (WHITE)

ANODE OUTPUT: AWG22 (RED)

26.0 ± 0.4

20 MIN.

0.5

MA

X.

ANODE OUTPUT: AWG22 (RED)

GND/+H.V: AWG22 (WHITE)

P

GLASS FIBERCASE

PHOTO-CATHODE

FACEPLATE

107.

5 ±

0.76

-H.V/GND: AWG22 (BLACK)

GND/+H.V: AWG22 (WHITE)

ANODE OUTPUT: AWG22 (RED)

27 MIN.

C3

-H.V/GND: AWG22 (BLACK)

DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

G

K

C2

C1

DY12R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R14

R2

R1

R1R2

R3 to R14C1 to C3

::::

4 MΩ150 kΩ2 MΩ0.01 µF

34.5 ± 0.5

0.5

MA

X.

203

MIN

.

203

MIN

.11

0 ±

1 52.0 ± 1.0

0.7

± 0.

3

SHIELD: AWG26 (BLACK/WHITE)

GND/+HV: AWG22 (RED)

SIGNAL OUTPUT: COAX. RG-316/U

-HV/GND: AWG22 (BLACK)

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 4 MΩ: 2 MΩ: 0.022 µF

DY10

58.0 ± 0.5

46 MIN.

SHIELD: AWG26 (BLACK/WHITE)

ANODE OUTPUT RG-316/UGND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

PHOTOCATHODE

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

STAINLESSSTEEL CASE

S/S: Stainless Steel

Page 12: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

2322

Sockets WARNINGDimensional Outlines (Unit: mm)

E678-13E E678-12T E678-14T

TACCA0013EB TACCA0279EA TACCA0184EA

5.5

11

12.4

3

710

.5

E678-12R E678-15B

TACCA0009EB TACCA0185EA

25.2

19.1

27.5

2

9.5

6.5

3.9

24.5

14

1440

47

58

15

17

2- 3.2

34

50

60

40

4

45

26.

5

12

40

5

35

24

28.5

P.C.D. 13

2.

9

360° 13

3 7.5

6.5

18.5

2-R4

2- 3.5

HIGHVOLTAGE

A high voltage used in photomultiplier tube opera-tion may present a shock hazard. Photomultiplier tubes should be installed and handled only by qualified personnel that have been instructed in

handling of high voltages. Designs of equipment utilizing these devices should incorporate appropriate interlocks to protect the operator and service personnel.

PRECAUTIONS FOR USE

Handle tubes with extreme carePhotomultiplier tubes have evacuated glass envelopes. Al-lowing the glass to be scratched or to be subjected to shock can cause cracks.

Keep faceplate and base cleanDo not touch the faceplate and base with bare hands. Dirt and fingerprints on the faceplate cause loss of transmittance and dirt on the base may cause ohmic leakage. Should they become soiled, wipe it clean using alcohol.

Do not expose to strong lightDirect sunlight and other strong illumination may cause dam-age to the photocathode. They must not be allowed to strike the photocathode, even when the tube is not operated.

Handling of tubes with a glass baseA glass base (also called button stem) is less rugged than a

plastic base, so care should be taken in handling this type of tube. For example, when fabricating the voltage-divider cir-cuit, solder the divider resistors to socket lugs while the tube is inserted in the socket.

Low temperature storage or operationDo not leave the tube assembly having a voltage divider in the environment under -20 °C even in storage. A bare tube can withstand down to -80 °C.

Data and specifications listed in this catalog are subject to change due to product improvement and other factors. Before specifying any of the types in your production equipment, please consult our sales office.

WARRANTY

All Hamamatsu photomultiplier tubes and related products are warranted to the original purchaser for a period of 12 months following the date of shipment. The warranty is limit-ed to repair or replacement of any defective material due to defects in workmanship or materials used in manufacture.

A: Any claim for damage of shipment must be made directly to the delivering carrier within five days.

B: Customers must inspect and test all photomultiplier tubes within 30 days after shipment. Failure to accomplish said incoming inspection shall limit all claims to 75 % of value.

C: No credit will be issued for broken detectors unless in the opinion of Hamamatsu the damage is due to a bulb crack traceable to a manufacturing defect.

D: No credit will be issued for any photomultiplier tube which, in the judgement of Hamamatsu, has been damaged, abused, modified or whose serial number or type number has been obliterated or defaced.

E: No photomultiplier tube will be accepted for return unless permission has been obtained from Hamamatsu in writing, the shipment has been returned prepaid and insured, the photomultiplier tube is packed in its original box, is accom-panied by the original datasheet furnished to the customer with the tube and a full written explanation of the reason for each return.

F: When photomultiplier tubes are used at a condition which exceeds the specified maximum ratings or which could hardly be anticipated, Hamamatsu will not be the guaran-tor of photomultiplier tubes.

Take sufficient care to avoid an electric shock hazard

Page 13: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

2524

1700

1600

1500

1400

1300

12000 1 2 3

R1288A

PLA

TE

AU

CE

NT

ER

VO

LTA

GE

(V

)

LLD (pC)

150 °C

175 °C

1700

1600

1500

1400

1300

12000 1 2 3

LLD (pC)

R3991A

PLA

TE

AU

CE

NT

ER

VO

LTA

GE

(V

)

150 °C

175 °C

1500

1400

1450

1300

1200

1350

1250

0 1 2 3

PLA

TE

AU

ST

AR

T V

OLT

AG

E (

V)

R1288A

LLD (pC)

150 °C

175 °C

1550

1500

1450

1400

1350

1300

12500 1 2 3

LLD (pC)

R3991A

PLA

TE

AU

ST

AR

T V

OLT

AG

E (

V)

150 °C

175 °C

400

300

350

200

100

250

150

50

00 1 2 3

LLD (pC)

PLA

TE

AU

LE

NG

TH

(V

)

R1288A

150 °C

175 °C

250

200

150

100

50

00 1 2 3

LLD (pC)

R3991A

PLA

TE

AU

LE

NG

TH

(V

)

150 °C

175 °C

1-1 Plateau change with the LLDGraphs in Figures 1(a) to (c) show the plateau center voltage, plateau start voltage and plateau length characteristics for the R1288A and R3991A photomultiplier tubes. Each graph was plotted while changing the LLD (low level discrimination) from 0.8 pC to 1.5 pC and to 2.8 pC with a sampling window of ±5 % specified during plateau measurements using a 137Cs radiation source and an NaI(Tl) scintillator. As (a) and (b) of these figures show, the plateau voltage lowers as the LLD is set to smaller points, because signal pulses with low pulse height are also counted so that the signals appear at low supply voltages.In contrast, when the LLD is set to larger points, the plateau voltage shifts to the higher voltage side. If the LLD is set too high, the plateau voltage may exceed the maximum rating. So it is important that the LLD be adjusted to obtain a plateau volt-age within the rated voltage.

Figure 1(a): Plateau center voltage vs. LLD for R1288A and R3991A

1-2 Plateau measurement using a blue LEDPlateau measurement is usually performed with a combination of a Cs radiation source and an NaI(Tl) scintillator, which serves as the light source. However, pulsed light from a blue LED can also be used to measure plateau characteristics. Advantages of using a blue LED are that differences in the emission efficiency of NaI(Tl) scintillators and variations over time can be eliminat-ed. In addition, the LED is set outside the temperature-control-led chamber so it is not exposed to high temperatures during measurement.This means that inherent characteristics of photo-multiplier tubes can be measured.Furthermore, plateau measurement using scintillators often re-quires a large number of scintillators and also extra processes for measurement setups. This results in more work and in-creased cost in order to supply customers with plateau meas-urement data. Using blue LEDs allows simultaneous measure-ment of many photomultiplier tubes and supplying data with a minimum cost increase.Figures 2 and 3 show comparisons of plateau length data measured using scintillators and blue LEDs. As can be seen, this data shows a good correlation. The block diagram of the test using a blue LED is also shown in Figure 4.

Figure 2: Plateau characteristics of R3991A measured with scintillator and blue LED

Figure 3: Correlation of plateau length data measured with scintillator and blue LED

Figure 4: Plateau test block diagram

Figure 1(c): Plateau length vs. LLD for R1288A and R3991A

Figure 1(b): Plateau start voltage vs. LLD for R1288A and R3991A1. Technical Information of

Photomultiplier Tubes

TPMHB0632EB TPMHB0633EA

TPMHC0194EB

TPMHB0634EA

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4800 200018001600140012001000

APPLIED VOLTAGE ( V )

RE

LAT

IVE

O

UT

PU

T

CO

UN

T

LIGHT SOURCE: 137Cs+ NaI(TI)LLD : 1.5 pCTEMP. : 175 °C

PLATEAU LENGTH: 176 V

1.4

1.3

1.2

1.1

1.0

0.9

800 200018001600140012001000

APPLIED VOLTAGE ( V )

RE

LAT

IVE

O

UT

PU

T

CO

UN

TS

LIGHT SOURCE: BLUE LEDLLD : 1.5 pCTEMP. : 175 °C

PLATEAU LENGTH: 629 V

0.8

0.7

400100

120

140

160

180

650600550500450

PLATEAU LENGTH MEASURED WITH BLUE LED (V)

PLA

TE

AU

LE

NG

TH

M

EA

SU

RE

D W

ITH

SC

INT

ILLA

TO

R (

V)

HIGH VOLTAGEPOWERSUPPLY

VOLTAGEDIVIDERNETWORK

LINEARAMP.

SINGLECHANNELANALYZER

COUNTER COMPUTER

PRE AMP.

P M T

TEMP.CONT-ROLLER

LIGHTGUIDE

TEMPERATURECONTROL CHAMBER

BLUELED

PULSEGENE-RATOR

LIGHT SOURCEBOX

Page 14: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

2726

1-3 Life characteristics under high temperaturesFigure 5 shows output data for R1288A and R3991A photomul-tiplier tubes obtained by high temperature operation tests at 175 °C and 150 °C. These photomultiplier tubes are manufactured by means of a special activation process to fabricate a photoca-thode that withstands high temperatures. Due to this special process, the service life characteristics under high temperatures vary from type to type, or even tube to tube. Although Figure 5 shows typical data, the R3991A exhibits a slightly larger deterio-ration under high temperatures than the R1288A.

1-5 Count rate characteristicsPower consumption is limited in oil well logging equipment.The voltage divider circuit for operating the photomultiplier tube must have low power consumption. A common method to lower power consumption is to use a high resistance to limit the volt-age divider current. However, using a high resistance to limit the voltage divider current causes fluctuations in photomultiplier tube gain when operated at a high count rate. An active divider circuit is effective in solving this problem. Figure 8 shows count rate characteristics of a R1288A photomultiplier tube measured with active divider circuits of different resistances (1R=100 kΩ, 1R=2 MΩ, 1R=1 MΩ). Active divider circuits are clearly effective in eliminating gain fluctuations while still limiting the voltage di-vider current.If the active divider circuit is required for your application, please contact our sales office nearest you.

Figure 5: High temperature operation test data for R1288A, R3991A and R4607-01

1-4 Characteristics changes by applying vibrations

Figures 6 and 7 show how characteristics of ruggedized photo-multiplier tubes vary when sinusoidal vibrations of 30 G and random vibrations of 20 Grms are applied. Each tube was vi-brated for 30 minutes along each of three orthogonal axes as one cycle of the vibration test, so the total time for applying the vibrations was one hour and 30 minutes. Vibrations were ap-plied three times during this test (3 sweeps per axis), but no sig-nificant problems were found. (If the photomultiplier tube is test-ed by only applying sinusoidalvibrations,then one test cycle is equivalent to the maximum rating of the photomultiplier tube.)

Figure 6: Sinusoidal vibration test data

Figure 8: Count rate characteristics

Figure 7: Random vibration test data

TPMHB0636EA

TPMHB0752EA

TPMHB0635EB

300

250

200

150

100

50

0

Initial After 1st vib. After 2nd vib. After 3rd vib.

PLA

TE

AU

LE

NG

TH

(V

)

TEST CONDITIONSSine 30 G 1 oct./minute50 Hz to 2000 Hz, 3 sweeps/axis

150 °C

175 °C

300

250

200

150

100

50

0

Initial After 1st vib. After 2nd vib. After 3rd vib.

PLA

TE

AU

LE

NG

TH

TEST CONDITIONSRandom 20 Grms30 min./axis

150 °C

175 °C

1000

100

10

11 10 100 1000

TIME (h)

RE

LAT

IVE

AN

OD

E C

UR

RE

NT

(%

)

PMT: R1288ASUPPLY VOLTAGE: 1500 VINITIAL ANODE CURRENT: 10 µA

175 °C

150 °C

1000

100

10

11 10 100 1000

TIME (h)

RE

LAT

IVE

AN

OD

E C

UR

RE

NT

(%

)

PMT: R3991ASUPPLY VOLTAGE: 1500 VINITIAL ANODE CURRENT: 1 µA 150 °C

175 °C

ACTIVE DIVIDER CIRCUIT

Dy1

R

Dy2

R

Dy3

R

Dy4

R

Dy5

R

Dy6

R

Dy7

R

Dy8

R

Dy9

R

P OUTPUT

GND/+HV

-HV/GND

Dy10

ACTIVE DIVIDERCIRCUIT

3R

K

1000

100

10

11 10 100 1000

TIME (h)

RE

LAT

IVE

AN

OD

E C

UR

RE

NT

(%

)

PMT: R4607-01SUPPLY VOLTAGE: 1500 VINITIAL ANODE CURRENT: 10 µA 150 °C

175 °C

0 10 200

5

10

15

20

30

COUNT RATE (k s-1)

DE

VIA

TIO

N (

%)

40 50 60

0 10 200

5

10

15

20

30

COUNT RATE (k s-1)

DE

VIA

TIO

N (

%)

40 50 60

0 10 200

5

10

15

20

30

COUNT RATE (k s-1)

DE

VIA

TIO

N (

%)

40 50 60

1R=2 MΩ

DIVIDER CURRENT1500 V: 58 µA1200 V: 46 µA

RADIATION SOURCE: 137CsSCINTILLATOR: NaI(Tl) 1" × 2"LLD: 60 keV

+1500 V

1R=100 kΩ

DIVIDER CURRENT1500 V: 1150 µA1200 V: 920 µA

RADIATION SOURCE: 137CsSCINTILLATOR: NaI(Tl) 1" × 2"LLD: 60 keV

+1200 V

+1500 V

1R=2 MΩ ACTIVE DIVIDER

DIVIDER CURRENT1500 V: 58 µA1200 V: 46 µA

RADIATION SOURCE: 137CsSCINTILLATOR: NaI(Tl) 1" × 2"LLD: 60 keV

+1200 V

+1500 V

+1200 V

Page 15: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

2928

Figure 10: Dark pulses of R1288A-27 (operated at -1500 V)

2-3 SolderingThe properties of the solder must be taken into account when soldering necessary components onto a printed circuit board or soldering cable connections.

1) Effect of soldering fluxSoldering flux is indispensable for making a good electrical con-nections with solder. However, at high temperatures, flux tends to ooze out from the solder joint. Some types of solder contain chlorine which may cause problems such as corrosion of the circuit board pattern or wiring breaks after long term use.Solder in Japan is classified according to the JIS (Japanese In-

dustrial Standards). If available, use of soldering flux conform-ing to RMA standards (USA) is recommended.

2) Types and compositionThere are many different types of solder, so the operating con-ditions must be considered when selecting the solder. High tem-perature ruggedized photomultiplier tubes are designed for a temperature standard of 175 °C. However, using solder with an operating temperature (liquid-phase temperature) up to at least 220 °C is recommended. Solder is mainly said to be comprised of tin (Sn) and silver (Ag). The effects from impurities contained in the solder are listed below as a reference.

Figure 11: Dark pulse increase (when ground potential metal makes contact with faceplate)

Sb

Bi

Zn

Al

As

P

Cd

Cu

Ni

Adds tensile resistanceAdds tensility

Becomes brittle

Less adhesion

Becomes brittle

Becomes brittle

Becomes brittle

Becomes brittle

Less adhesionWeaker flow properties

Weaker flow propertiesWeaker joint

Weaker flow properties

-–

Weak luster

Weaker flow properties

Less adhesion

Increases electrical resistance

Cracks when cooled

Porous, surface become rough and granular

Prone to oxidation and corrosion

Forms bubbles or needle-like crystals

Corrosion forms on copper

Porous, whitening

Impurities Solderability OthersMechanicalProperties

When coupling capacitors are used under high temperatures, their rated capacitance usually varies and their electrical insula-tion also degrades causing leakage current and noise. It is therefore necessary to check and test the selected components under operating conditions equivalent to those in their actual environment.Since the anode is applied at a high voltage in this positive high voltage operation, be sure to provide good insulation between the anode and external circuits and components. Preferably, in-stall external components in locations as close to the photomul-tiplier tube as possible.

2-2 Using with negative high voltage inputThe negative high voltage operation has an advantage in terms of component cost because the external CR circuit necessary for positive high voltage operation can be eliminated. However, the potential difference between the cathode at a high voltage and the peripheral parts may cause noise, so caution is re-quired when installing the photomultiplier tube. The standard case of photomultiplier tube assemblies listed in our catalog is floating to allow for either positive or negative high voltage oper-ation. So in actual operation, even if the case makes contact with the equipment housing at ground potential when installing the photomultiplier tube assembly, no problem will occur. How-ever, poor contact with the equipment housing may cause the case potential to change between the floating state and ground level. This creates increased noise in the output signal. Photo-multiplier tube assemblies with stainless steel cases must be clamped securely when the external housing is at ground po-tential, but drilling screw holes in the case should be avoided.Photomultiplier tube assemblies with shield cases (magnetic shields) have painted surfaces which do not make good electri-cal contact with the other parts. Here, wrapping capton tape around the case surface to form insulation or other methods will prove effective in minimizing noise. Another point which should be noted is that when the scintillator case at ground level is in direct contact with the photomultiplier tube faceplate, light emis-sion may occur in the photomultiplier tube glass bulb due to the difference in potential between the cathode at a negative high voltage and the scintillator case, resulting in increased noise. Figure 10 shows dark pulses when the R1288A-27 photomulti-plier tube is operated at a high voltage of -1500 V. Dark pulse behavior does not change even when the stainless case is con-nected to ground level. However, as shown in Figure 11, noise pulse height becomes greater when metal at ground potential makes contact with the photomultiplier tube faceplate. So taking the photomultiplier tube and scintillator dimensions as well as possible electrical contact into account is also very important.

TPMHC0195EA

Photomultiplier tube assemblies listed in our catalog for high temperature applications have internal connections which allow operation with either a negative or positive high voltage input. The following explains precautions to be taken when using a photomultiplier tube assembly with a negative or positive high voltage input.

When the output pulse width from the photomultiplier tube is sufficiently short compared to the time constant of the coupling capacitor circuit, the anode output is transmitted to the measur-ing unit without distortion regardless of the capacitor value. However, if the capacitor value does not match the output pulse width, the output will have a differential waveform. In contrast, when the time constant is larger than necessary, a base line shift, in which the ground level during measurement differs from the actual ground level, may occur depending on the count rate. When used with a 137 Cs radiation source and NaI(Tl) scintilla-tor, we recommend selecting a capacitor between 1000 pF and 0.01 µF and a resistor between 100 kΩ to 1 MΩ. In particular, it is important to select a capacitor which has small leakage cur-rent even at high temperatures.Hamamatsu photomultiplier tube assemblies use high-quality capacitors. The voltage rating of these capacitors should be at least 1.5 times the maximum rating voltage of the photomultipli-er tube. The rating for example should be at least 3 kV for the R1288A and R3991A, and at least 5 kV for the R1317 and R5473.

2-1 Using with positive high voltage inputSince a positive high voltage is applied to the anode in this cir-cuit, a coupling capacitor is required for connecting to an exter-nal measuring unit. Figure 9 shows a typical connection. The right component must be selected to transmit the anode output waveform correctly.

Figure 9: Anode high voltage connection (cathode ground)

2. Technical Information ofPhotomultiplier Tube Assemblies

K P

R

C

D y D y D y D y D y

GND +HV INPUT(CATHODE) ( DYNODE END)

POWER SUPPLY

MEASUREMENT UNIT

ANODE OUTPUT

Page 16: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

3130

2-6 Coupling to the scintillatorSoft, flexible material is used in certain internal sections of the photomultiplier tube case in order to protect the body of the photomultiplier tube from expansion forces due to high tempera-tures. This means that the device protecting the photomultiplier tube inside the case may break if excessive force is applied when coupling the scintillator onto the photomultiplier tube face-plate. This causes a condition called "slide back" in which the photomultiplier tube slides further back into the case where it cannot make a satisfactory coupling with the scintillator.

The scintillator case should preferably be larger than the photo-multiplier tube case in order to avoid this slide back problem. If the scintillator case is smaller than the photomultiplier tube, adding an adapter to the housing or taking some other measure is essential. A further item for attention is the faceplate of the photomultiplier tube which protrudes about 0.5 mm from the case. In order to maintain a satisfactory coupling, it is advisable to install a 0.3 mm to 0.5 mm teflon sheet or similar protective material around a stainless steel case which is somewhat larger than the photomultiplier tube. (See Figure 18.)

Figure 16: Applying force to photomultiplier tube case Figure 17: Photomultiplier tube "slideback" (shown at left)

Figure 18: Coupling scintillator to photomultiplier tube faceplate

• Typical installationTo avoid possible problems, a design is needed in which the force from installing the housing is applied to the photomultiplier tube case rather than the potting. Even in this case, the force applied when cou-pling the scintillator must be adequately con-trolled. Maintaining this force within 20 kg is recommended.On the R1288A having a magnetic shield, the silicone potting surface is inner than the case edge. Therefore, do not apply force to the silicone potting but apply to the entire case. (See Figure 16.)

Mechanical stress is another factor which cannot be ignored un-der high temperature environment. To avoid troubles which may be caused by thermal expansion stress if the photomultiplier tube assemblies are completely fixed mechanically, use springs or elastic materials when securing these assemblies. In this case however, provide space or clearance to relieve possible stress taking account of the spring constant or the thermal ex-pansion of elastic materials.

PRESSURE PRESSURE

R1288A-07, -08, etc.

SILICONE POTTINGCASE

CASE

NG OK

TPMHC0198EB

TPMHC0199EA

CLEARELASTICMATERIAL

OUTER HOUSING

TEFLON SHEET

OR

X'TAL CASE

STAINLESSSTEELCASE

Figure 12: Example of mishandling

Please do not bind the cable.

Figure 13: Cable handling precautions for photomultiplier tube case

Figure 14: Clamping cables

2-4 Handling the cableThe photomultiplier tube potted in a case has in internal strain relief structure to withstand an external pulling force. However improper handling will shorten the product service life and cause malfunctions.

• Cable handling precautions for photomultiplier tube caseThe point where the cable comes out of the photomultiplier tube case has silicone potting or an end cap. However in either case, pulling on the cable should still be avoided. If a load has to be applied, it should still be limited to within 5 kg. The cable should still be kept as straight as possible and bending it should be avoided especially on the end connecting to the photomultiplier tube case. (See Figure 13.)

2) The bent parts of the cable must be kept away from each other when the cables are bundled together. Also do not ran-domly rout photomultiplier tube cables together with other types of cables. Placing them together may shorten the actual bend radius of the cable. When laying out cables together, cover them with a teflon tube shield and secure in place (clamp) from atop this shield as illustrated below.

Caution is needed when laying out cable wiring when vibrations are applied, especially for applications using high temperature photomultiplier tubes.

1) A cable of the correct length should be used. If the cable is too long, wear and conductor fatigue may occur due to vibra-tion. The standard cable length for catalog products is 8 inches. In this case as a general guide, the sway width should be limit-ed to half an inch. Wire breaks may occur if there is no excess to take up strain due to vibration. Take measures such as bun-dling and securing the wiring in place.

TPMHC0196EB

TPMHC0197EA

CLAMPING

SMALL R

CABLES

CLAMPING

CLAMPING

TEFLON TUBE

CLAMPING

CABLES

CABLESCABLES

NG

NG

OK

OK

2-5 Protecting the photomultiplier tube inter-nal structure

A fixed pressure should be applied to maintain the sealing when the photomultiplier tube is used with a scintillator. However an incorrect installation may lead to damage or operating problems with the photomultiplier tube. (Figure 15 shows this example.) In particular, on products where the cable end has been potted, a pressure from the rear side is directly applied internally on the photomultiplier tube so any installation method that applies pressure directly on the potting surface must be avoided.

Figure 15: Warping of photomultiplier tube leads and circuit board damage due to pressure from the rear side

MAGNETIC SHIELD CASE STAINLESS STEEL CASE

CABLE

(R1288A-07, -08, etc.) (R3991A-27, -28, etc.)

CABLE

Page 17: Quick Reference - Digchipapplication-notes.digchip.com/233/233-48649.pdfThe voltage distribution ratios are shown in the bottom table of each page. u Averaged over any interval of

TPMH0003E02JUN. 2006 IPPrinted in Japan

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, JapanTelephone: (81)539/62-5248, Fax: (81)539/62-2205

Main ProductsElectron TubesPhotomultiplier TubesLight SourcesMicrofocus X-ray SourcesImage IntensifiersX-ray Image IntensifiersMicrochannel PlatesFiber Optic Plates

Opto-semiconductorsSi PhotodiodesPhoto ICPSDInGaAs PIN PhotodiodesCompound Semiconductor PhotosensorsImage sensorsLight Emitting DiodesApplication Products and ModulesOptical Communication DevicesHigh Energy Particle/X-ray Detectors

Imaging and Processing SystemsVideo Cameras for MeasurementImage Processing SystemsStreak CamerasOptical Measurement SystemsImaging and Analysis Systems

Sales OfficesASIA:HAMAMATSU PHOTONICS K.K.325-6, Sunayama-cho,Hamamatsu City, 430-8587, JapanTelephone: (81)53-452-2141, Fax: (81)53-456-7889

U.S.A.:HAMAMATSU CORPORATIONMain Office360 Foothill Road, P.O. BOX 6910,Bridgewater, N.J. 08807-0910, U.S.A.Telephone: (1)908-231-0960, Fax: (1)908-231-1218E-mail: [email protected]

Western U.S.A. Office:Suite 110, 2875 Moorpark Avenue San Jose, CA 95128, U.S.A.Telephone: (1)408-261-2022, Fax: (1)408-261-2522E-mail: [email protected]

United Kingdom:HAMAMATSU PHOTONICS UK LIMITEDMain Office2 Howard Court, 10 Tewin Road Welwyn Garden CityHertfordshire AL7 1BW, United KingdomTelephone: 44-(0)1707-294888, Fax: 44-(0)1707-325777E-mail: [email protected]

South Africa Office:PO Box 1112, Buccleuch 2066, Johannesburg, South AfricaTelephone/Fax: (27)11-802-5505

France, Portugal, Belgium, Switzerland, Spain:HAMAMATSU PHOTONICS FRANCE S.A.R.L.19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, FranceTelephone: (33)1 69 53 71 00 Fax: (33)1 69 53 71 10E-mail: [email protected]

Swiss Office:Dornacherplatz 74500 Solothurn, SwitzerlandTelephone: (41)32/625 60 60, Fax: (41)32/625 60 61E-mail: [email protected]

Belgian Office:7, Rue du BosquetB-1348 Louvain-La-Neuve, BelgiumTelephone: (32)10 45 63 34Fax: (32)10 45 63 67E-mail: [email protected]

Spanish Office:Centro de Empresas de Nuevas TecnologiesParque Tecnologico del Valles 08290 CERDANYOLA, (Barcelona) SpainTelephone: (34)93 582 44 30Fax: (34)93 582 44 31E-mail: [email protected]

Germany, Denmark, The Netherlands, Poland:HAMAMATSU PHOTONICS DEUTSCHLAND GmbHArzbergerstr. 10,D-82211 Herrsching am Ammersee, GermanyTelephone: (49)8152-375-0, Fax: (49)8152-2658E-mail: [email protected]

Danish Office:Skovbrynet 3, DK-5610 Assens, DenmarkTelephone: (45)4346/6333, Fax: (45)4346/6350E-mail: [email protected]

The Netherlands Office:PO Box 50.075, 1305 AB Almere NetherlandTelephone: (31)36-5382123, Fax: (31)36-5382124E-mail: [email protected]

Poland Office:02-525 Warsaw, 8 St. A. Boboli Str., PolandTelephone: (48)22-660-8340, Fax: (48)22-660-8352E-mail: [email protected]

North Europe and CIS:HAMAMATSU PHOTONICS NORDEN ABSmidesvägen 12SE-171 41 Solna, SwedenTelephone: (46)8-509-031-00, Fax: (46)8-509-031-01E-mail: [email protected]

Russian Office:Riverside TowersKosmodamianskaya nab. 52/1, 14th floorRU-113054 Moscow, RussiaTelephone/Fax: (7)095 411 51 54E-mail: [email protected]

Italy:HAMAMATSU PHOTONICS ITALIA S.R.L.Strada della Moia, 1/E20020 Arese, (Milano), ItalyTelephone: (39)02-935 81 733, Fax: (39)02-935 81 741E-mail: [email protected]

Rome Office:Viale Cesare Pavese, 435, 00144 Roma, ItalyTelephone: (39)06-50513454, Fax: (39)06-50513460E-mail: [email protected]

Information in this catalog isbelieved to be reliable. However,no responsibility is assumed forpossible inaccuracies or omission.Specifications are subject tochange without notice. No patentrights are granted to any of thecircuits described herein.© 2006 Hamamatsu Photonics K.K.

Quality, technology, and service are part of every product.

REVISED JUN 2006