215
Quingdao Quingdao 09.05. 09.05.- 15.05.2011 15.05.2011 Werner Werner Obrecht Obrecht The The attached attached files files of of my my lecture lecture are are my my personal personal property property. For . For the the exclusive exclusive personal personal use use, an , an elctronic elctronic copy copy of of the the files files will will be be made made available available to to the the participants participants of of the the lecture lecture. . It It is is prohibited prohibited to to make make copies copies or or multiply multiply the the files files for for commercial commercial use use. . Chemistry and Technology of Rubbers Chemistry and Technology of Rubbers” 1. Overview on Rubbers, Definitions, Market, Properties, Production and Applications 2.1. Natural Rubber 2.2. Synthetic Polyisoprene 3. Overview on Emulsion Rubbers 3.1. Emulsion-Styrene/Butadiene-Rubber 3.2. Polychloroprene 3.3. Nitrile Rubber 4. Overview on Solution Rubbers 4.1. Overview on Polybutadiene 4.2. Li-Polybutadiene and Solution-Styrene/Butadiene-Rubber with an Emphasis on Integral Rubber 4.3. Chemistry and Production Technology of High cis-1,4-BR with a Special Emphasis on Nd-BR 4.4. Ethylene/Propene-Co- und Terpolymers 4.5. Butyl- and Halobutyl Rubber 5. High Performance Rubbers 5.1. Fluoro Rubber 5.2. Silicon Rubber 5.3. Hydrogenated Nitrile Rubber 5.4. Ethylene/Vinylacetate-Copolymers 6. Thermoplastic Elastomers 7. Test Questions Chemistry Chemistry and Technology of Rubbers and Technology of Rubbers

Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

QuingdaoQuingdao

09.05.09.05.--15.05.201115.05.2011

Werner Werner ObrechtObrecht

TheThe attachedattached filesfiles of of mymy lecturelecture areare mymy personal personal propertyproperty. For . For thethe exclusiveexclusive

personal personal useuse, an , an elctronicelctronic copycopy of of thethe filesfiles will will bebe mademade availableavailable to to thethe

participantsparticipants of of thethe lecturelecture. . ItIt isis prohibitedprohibited to to makemake copiescopies oror multiplymultiply thethe filesfiles

forfor commercialcommercial useuse. .

““Chemistry and Technology of RubbersChemistry and Technology of Rubbers””

1. Overview on Rubbers, Definitions, Market, Properties, Production and Applications

2.1. Natural Rubber2.2. Synthetic Polyisoprene

3. Overview on Emulsion Rubbers3.1. Emulsion-Styrene/Butadiene-Rubber3.2. Polychloroprene3.3. Nitrile Rubber

4. Overview on Solution Rubbers 4.1. Overview on Polybutadiene4.2. Li-Polybutadiene and Solution-Styrene/Butadiene-Rubber with an Emphasis on

Integral Rubber4.3. Chemistry and Production Technology of High cis-1,4-BR with a Special Emphasis on

Nd-BR4.4. Ethylene/Propene-Co- und Terpolymers4.5. Butyl- and Halobutyl Rubber

5. High Performance Rubbers5.1. Fluoro Rubber5.2. Silicon Rubber 5.3. Hydrogenated Nitrile Rubber 5.4. Ethylene/Vinylacetate-Copolymers

6. Thermoplastic Elastomers

7. Test Questions

ChemistryChemistry and Technology of Rubbersand Technology of Rubbers

Page 2: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

1. 1. OverviewOverview on Rubbers, on Rubbers, DefinitionsDefinitions, Market, , Market, PropertiesProperties, , ProductionProduction, and , and ApplicationsApplications

• Definition of the Terms “Rubber“, “Elastomer“ and “Thermoplastic Elastomer“

• Nomenclature

• Market

• Important Rubbers and Property Profiles

• Rubber Producers

• Production Technologies

• Producers of Synthetic Rubber and Production Capacities

• Available Vulcanization Methods and Network Properties

Standard Standard TerminologyTerminology RelatingRelating to Rubberto Rubber(ASTM D 1566 (ASTM D 1566 -- 98 )98 )

DISCUSSION - A rubber in itsmodified state, free of diluents, retracts within 1 min to less than 1,5 times its original length after beingstretched at room temperature (18 to 29°C) to twice its length and held for 1 min before release. Elongation [%]

100

Str

ess [

MP

a]

0 50

5

0

10

15

20

25

301 min

rubber, n-a material that is capable of recovering from large deformationsquickly and forcibly, and can be, oralready is modified to a state in whichit is essentially insoluble (but canswell) in boiling solvent, such as benzene, methyl ethyl ketone, orethanol toluene azeotrope.

rubber

1 min

Page 3: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ε =ε residual

ComparisonComparison of Materials of Materials AccordingAccording to ASTM D 1566to ASTM D 1566

NR/BR based tyre treadNR gum stock

Elongation (εεεε) [%]

300

Resid

ual

Elo

ng

ati

on

[%]

0 100 2000

100

200

300

Definition of „Rubber“according to ASTM D 1566 - 98

SBS

TPO

TPV Thermoplastic

Elastomers

In English, the term „Rubber“ is ambiguous as this term refers to unvulcanizedas well as to vulcanized rubber:

• rubber tree• natural rubber

• rubber boot

My personal Definition of My personal Definition of ““UnvulcanizedUnvulcanized RubberRubber““, , ““Vulcanized RubberVulcanized Rubber““, , ““ElastomerElastomer““, and , and ““TPETPE““

Unvulcanized Rubber is an uncrosslinked, amorphous or partiallycrystalline polymer (synthetic or natural) with a Tg < temperature of use

Vulcanized Rubber (or: „Crosslinked Rubber“ or „Elastomer“) is obtainedby chemically crosslinking (vulcanization) of unvulcanized rubber

Thermoplastic Elastomers (TPE) are physically crosslinked rubbers

Thermoplasts are unvulcanized polymers (synthetic or natural) with a softeningtemperature (Tg oder Tm) > temperature of use

Thermoset resins (or duroplasts) are highly crosslinked polymers which do not soften withincreasing temperature, but will deteriorate at high temperatures

unvulcanized (=uncrosslinked) rubber

vulcanized (=crosslinked) rubber

Page 4: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

TgsTgs of Polymers of Polymers withwith a a SaturatedSaturated CC--C Main ChainC Main Chain

O

O

CH3

O

CH3

OO

O

CH3

O

CH3

O

O

CH3

O

O

CH3

O

O

CH3

O

O

CH3

SiO

SiO

SiO

SiO

SiO

SiO

SiO

Polyethylene

Polypropylene(atactic / amorphous)

Polyvinylacetate

Polystyrene(ataktisch / amorph)

Silicon Rubber

~ -130°C

-18°C

+30°C

+100°C

-120°C

TgsTgs of Polymers of Polymers withwith an an UnsaturatedUnsaturated C=C Main ChainC=C Main Chain

Cl

Cl

Cl

Cl

CN

CN

Polybutadiene

Polyisoprene

Polychloroprene

Nitrile Rubber

-115°C (100% 1,4-cis)

-75°C (100% 1,4-cis)

-45°C (100% 1,4-trans)

-50°C bis -5°C (depending on ACN-content)

Page 5: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

InfluenceInfluence of of TgTg on Rebound of on Rebound of VulcanizedVulcanized Rubbers Rubbers ((50 50 phrphr carboncarbon blackblack, , withoutwithout plasticizerplasticizer))

• With increasing temperature rebound elasticity passes throug a minimum• The temperature at the rebound minimum correlates with Tg, except for butyl rubber• The temperature at the rebound minimum is significantly higher than the Tg of the respective rubber• In this respect, butyl rubber performs different from the other rubbers

Source: Butyl And Halobutyl Compounding Guide For Non-Tyre Applications, 12/92 Bayer AG -KA

20

40

0

60

80

IIR

EPDM

NBRSBR

NR

1,4-cis BR

Reb

ou

nd

[%

]

-75 -50 -25 0 25 50 75 100

Temperature [°C]

0,1

1

10

100

1000

10000

-150 -100 -50 0 50 100 150 200

Temperature [°C]

Sh

ear

Mo

du

lus [

MP

a]

NR (raw rubber)

NR/5 phr DCP

Polystyrene

SchematicSchematic PresentationPresentation of of thethe DependenceDependence of of thetheShearShear ModulusModulus on on TemperatureTemperature

Page 6: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Class- Chemical Description ExamplesDesignation

M Rubbers with fully saturated main chain CM, CSM, EAM, ACM, (polymethylene type rubbers) EPM, EPDM,

N Nitrogen containing rubbers NBR, HNBR

O Rubbers with oxygen in the main chain CO, ECO, GPO(Polyether type rubbers)

Q rubbers with a polysiloxane main chain MQ, MVQ, PMVQ, FMQ

R Rubbers with an unsaturated main chain NR, SBR, BR, NBR, (double bond containing rubbers) CR, IIR

T Rubbers with sulfur in the main chain OT, EOT(Polythioether type rubbers)

U Rubbers which contain carbon, nitrogen AU, EUand oxygen in the main chain(polyurethane type rubbers)

Z Rubbers with phosphorus and oxygen in FZthe main chain (polyphosphazenes)

Designation of Rubbers (DIN/ISO 1629)Designation of Rubbers (DIN/ISO 1629)

Butadiene-Rubber

Chloroprene Rubber

Chlorinated Polyethylene

Chlorosufonated Polyethylene

Ethylene/Propylene-Rubber

Ethylene/Propylene/Diene-Rubber

Epoxidised Natural Rubber

Synthetic Polyisoprene

Butyl rubber

Natural Rubber

Nitrile-Butadiene-Rubber

Styrene-Butadiene-Rubber (E-SBR und S-SBR)

Fluoro Rubber (DIN / ISO 1629)

Fluoro Rubber (ASTM D-1418)

AbbreviationsAbbreviations (DIN / ISO 1629) and (DIN / ISO 1629) and ExamplesExamples

BR

CR

CM

CSM

EPM

EPDM

ENR

IR

IIR

NR

NBR

SBR

FPM

FKM

Page 7: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

AnnualAnnual ConsumptionConsumption of NR and of NR and SyntheticSynthetic RubberRubber

0

2000

4000

6000

8000

10000

12000

14000

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

An

nu

al C

on

su

mp

tio

n [

10

00

me

tric

to

ns

] Natural Rubber

Synthetic Rubber (Solid + Latex)

Sources:•IRSG (International Rubber Study Group, Rubber Statistical Bulletin, Wembley, different editions•Outlook for Elastomers 1996-97 (Wembley 1998)•Rubber World, 21916 (1999) 13-14•European Rubber Journal (Quotation of IISRP Statistics), various editions•LMC International Ltd, Rubber March 2005: Verbrauch 2001-2005

ApplicationApplication AreasAreas of Solid Rubber of Solid Rubber ((rubberrubber latexlatex notnot includedincluded))

Modification

of Plastics

14%

Automotive

15%

Others

15%

Machine

building

5%

Construction

3%

Tyres

45%

Cable and

Wire

3%

Page 8: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Price and Price and VolumeVolume of Rubbers (of Rubbers (withoutwithout Latex) Latex)

CR (0.3 Mio t)

NBR (0.32 Mio t)

IIR/X-IIR (0.5 Mio t)

EPM/EPDM (0.9 Mio t)

FZ

FQ

FKM

HNBR Q

AU/EU EVM

Volume

Pri

ce

General PurposeRubbers

High Performance Rubbers

SpecialRubbers

BR (2,8 Mio t)

SBR (2,7 Mio t)

NR (6.7 Mio t)

Source: Rubber World, 21916 (1999) 13-14

Special Rubbers

17%

High Performance Rubbers 1%

General Purpose Rubbers: 82%

Volume Shares

Special Rubbers 30%

High Performance Rubbers 10%

General Purpose Rubbers: 60%

Shares in Turnover

Oil Oil –– and and TemperatureTemperature ResistanceResistance of of VulcanizatesVulcanizates AccordingAccording to ASTM D 2000to ASTM D 2000

0 20 40 60 80 100 120 140

Degree of Swelling in ASTM-Oil Nr. 3 [Vol %]

ma

x. se

rvic

ete

mp

era

ture

[°C

]

100

125

150

175

200

225

250

75

50

FKM

FMVQ

FZ

EU

CMCSM

no requirement

NRAU

CR SBR BR

EPDM(H)IIR

EVM

MVQ

CO/ECO

ACMHNBR

40 % VAc

18 % ACN

44 % ACN NBR

80 % VAc

AEM

General Purpose RubbersSpecial RubbersHigh Performance Rubbers

General Purpose RubbersSpecial RubbersHigh Performance Rubbers

Page 9: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Evaluation of Evaluation of VulcanizateVulcanizate PropertiesProperties

Criteria of Evaluation:

• Maximal Service Temperature

• Low Temperature Flexibility

• Oil Swell

• Mechanical Properties

• Ozone Resistance

Improvement

1 2 3 4 5 6 7 8 9 10

Evaluation of Evaluation of VulcanizateVulcanizate Performance*Performance*

Rubber Low

temperature

performance

Max. Service

Temperature

Mechanical

Properties

Oil Swell

(ASTM 2000-90)

Ozone

Resistance

Price Performance

Index

Tg Rating T max. Rating Tear

Resistance

Rating Rating Rating Rating

[°C] [°C] [MPa] [Vol.%] [€/kg]

NR -72 8 80 1 25 10 >140 (70) 1 1 1,1 21

SBR ca. -40 6 95 3 22 7 130 2 1 1,1 19

BR -120 10 85 2 20 6 >140 1 1 1,3 20

EPDM -60 5 145 6 24 8 >140 1 8 2,2 28

IIR -60 6 135 5 15 3 >140 1 6 2,7 21

NBR -40 5 125 5 22 7 20 bis 50 7 6 2,5 30

CR -39 4 115 4 22 7 55 bis 65 3 2 3,4 20

CM -25 3 140 6 15 4 80 4 5 3,1 22

CSM -25 3 135 5 16 4 80 4 9 3,8 25

EVM -35 4 170 8 14 3 20 bis 100 6 9 3,8 30

AEM -35 4 170 8 15 4 50 5 9 6,9 30

ECO -50 5 130 5 15 4 30 6 8 6,9 28

AU -30 4 80 1 25 10 3 bis 25 7 9 7,5 31

VMQ -120 8 250 10 10 1 30 bis 50 6 10 7,5 35

ACM -35 4 170 8 14 3 20 bis 40 7 9 9,4 31

HNBR -26 3 160 6 25 10 15 bis 40 8 9 28,1 36

FKM -20 2 250 10 14 3 5 9 10 43,8 34

FMVQ -70 8 215 9 10 1 10 9 10 125 37

FZ -65 8 180 8 16 4 10 9 10 500 39

*Ullmann‘s Encyclopedia of Industrial Chemistry, VCH Weinheim 1993, Vol. A23, Rubber 3. Synthetic; W. Obrecht „Introduction“

E-SBR and S-SBR may not be evaluated according to these criteria as SBR is designed for high Tgs (improvement of wet skid)

Page 10: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CorrelationCorrelation of Rubber Price and of Rubber Price and VulcanizateVulcanizatePerformancePerformance

0

5

10

15

20

25

30

35

40

45

0,1 1 10 100 1000

Price of Rubber [€/kg]

Perf

orm

an

ce In

dex

NRBRSBR

EVM AUNBR

ECO

CMIIR

CR

EPDMAEM

CSM

HNBRMVQ FKM

FZFMVQ

ACM

Ranking of Top 10 Tyre Ranking of Top 10 Tyre ProducersProducers

Source: European Rubber Journal, vol. 184, no. 10, Oktober 2002, S. 28-30

Rank Company Sales of Tyres Share

of

Tyres

Return

on

Sales

[%]

Market

Shares

in

Tyres

[Mio US $] [%] [%] [%]

1 Michelin 13.425,0 95,0 6,6 19,6

2 Bridgestone 12.950,0 74,0 5,5 18,9

3 Goodyear * 12.470,0 86,7 2,4 18,2

4 Continental 4.901,0 49,0 -4,2 7,2

5 Sumitomo** 2.598,2 72,7 7,7 3,8

6 Pirelli 2.534,5 39,0 6,1 3,7

7 Yokohama 2.272,2 71,0 5,7 3,3

8 Cooper Tire 1.705,3 54,0 3,4 2,5

9 Toyo 1.247,6 61,5 2,1 1,8

10 Kumho 1.246,5 60,3 -13,1 1,8

11 Hankook 118,9 88,9 8,5 0,2

Sums: 81,0

Total Sales: 100,0

55.469,2

68.500,0 * Dunlop is not included** Goodyear und Sumitomo operate in NA und WE in 75/25 joint ventures (Dunlop)

Bri

dg

es

ton

e

Mic

he

lin

Go

od

ye

ar

Co

nti

ne

nta

l

0

5

10

15

20

Capitalization of SharesSales

Source: FAZ 18.08.2003

Page 11: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Ranking of Top 22 Ranking of Top 22 ProducersProducers of of TechnicalTechnical Rubber Rubber ProductsProducts((withoutwithout TyresTyres))

Rank Company Company Sales 2001 Return on Sales

Site [Mio US$] [%]

1 Hutchinson SA France 2156 *)

2 Bridgestone Corp. Japan 2065 0,8

3 Freudenberg Group Germany 2060 3,7

4 Tomkins plc. UK 1855 5,7

5 Parker Hannifin US 1500 5,7

6 Cooper Tire & Rubber US 1477 2

7 Trelleborg AB Sweden 1446 2,9

8 Continental AG Germany 1270 *)

9 Federal Mogul Corp. US 1160 *)

10 Goodyear Tire & Rubber US 1122 *)

11 NOK Inc. Japan 1120 *)

12 Tokai Rubber Industries Ltd. Japan 987 2,7

13 Metzeler Automotive Profile Syst. Germany 900 *)

14 Toyoda Gosei Co. Ltd. Japan 897 1,3

15 Mark IV Automotive US 812 *)

16 GenCorp. Inc. US 808 8,6

17 Ansell Ltd. Australia 759 *)

18 Sumitomo Rubber Ind. Japan 750 *)

19 Yokohama Rubber Co Ltd. Japan 703 1,8

20 Dana Corp. US 695 *)

21 Toyo Tire Rubber Co. Ltd. Japan 670 1,3

22 Phoenix AG Germany 662 *)

*) not availableSource: European Rubber Journal 184,9 September 2002

Lanxess 8.7%

Exxon Mobil 5.7%

Goodyear 5.3%

JSR Corporation 5.2%

Sinopec 5.2%

Sibur 5.1%

Korea Kumho 4.8%

Dow 4.5%Polimeri 4.2%

Petro-China3.6%

Michelin 3.3%Petroflex 3.3%

Zeon Corporation 3.2%

Nizhnekamskneftekhim Inc. 3.1

Bridgestone/Firestone 2.8%ISP Elastomers 2.2%

Others30%

Total:

12,097 KMT

Source:

R. J. Chang; SRI Consulting; IISRP 49th AGM Moscow 2008„Globalization of Synthetic Rubber Industry“

ProducersProducers of of SyntheticSynthetic Rubber and Rubber and CapacitiesCapacities

Page 12: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Chemical and Chemical and TechnologicalTechnological Features of Features of Rubber Rubber ManufacturingManufacturing ProcessesProcesses

Chemical Aspects

RadicalPolymerization

Ziegler/Natta-Polymerization

AnionicPolymerization

Cationicolymerization

Polyaddition and Polycondensation

Polymer Modification

Technological Features

Emulsion Solution Dispersion Bulk Gas-Phase

E-SBR, CR, NBR, E-BR, ACM, FKM, EVM

EVM EVMAEMEVM

G-EPMG-EPDM

G-BR**

BR, EPM, EPDM

BR, L-SBR. IR

CIIR, BIIR, CM, CSM, H-NBR, FZ

ECO, CO

AU, EU

IIR

EU

CM, CSM,

H-NBR*

EPM, EPDM

Q

Q

AU Q

BR*

* Technology not established (only patents for the hydrogenation of NBR-latex)** Technology not established (only patents for the gas phase polymerization of butadiene)

FlowFlow Diagram of an EPDM Solution Diagram of an EPDM Solution ProcessProcess

Purification

Modifier

VOCl3

Wrapper

EASC

Reactivator

External

cooler

Baler

Waste Water

Waste

water

Abwasser

Waste Air

steam

PH-

Control

Stripping

aid

Antioxydant

Oil

Stripper

Reactor

Dewatering

screw

Expeller

Air bed

Dryer

Settler

Azeotropic-

Destillation

Water

Temperature: 35-65°C

Pressure: 5-10 bar

Residence Time: 30 min

Solids Content: 10 -12 wt.%

Moisture Content: < 3 ppm

Temperature: 35-65°C

Pressure: 5-10 bar

Residence Time: 30 min

Solids Content: 10 -12 wt.%

Moisture Content: < 3 ppm

Condenser

Condenser

Hexane

Flash

Vessel

Propene

Dryer

Ethene

ENBHexane

Purification/

Drying

Dryer

Purification

Purification/

Drying

Page 13: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Evaluation of Rubber Evaluation of Rubber ManufacturingManufacturing ProcessesProcesses

Aspect

Viscosity

Heat Removal

max. Solids Cont.

Stereoregularität

Waste Water

Waste Air

Sum

Polymerization Process

Emulsion Solution Dispersion Bulk Gas-Phase

Slurry

8

10

5

0

0

5

28

2

3

2

10

5

5

27

8

8

5

10

5

5

41

1

3

9

8

10

8

39

10

5

5

10

10

5

45

Ranking: (Gas-Phase) > Dispersion > Bulk >> Emulsion > SolutionPrerequistes: comparable running times

AvailableAvailable VulcanizationVulcanization MethodsMethods forfor thetheDifferent Different TypesTypes of Rubber of Rubber

Example Method of Vulcanization

Sulfur Peroxide Resin Other

“R“- Rubbers

“M“-Rubbers

Other

Rubbers

NR BR CRSBRNBRHNBRIIRXIIR

EPDMEPM FKM CM

MVQ

XX--X

(X)

XXXXXXX X

XX

X--

X

(X)

(X)-

XXX

XX

XXXXXXXX

XXXXXXXXXXXXX

-X -

(X)X

XX-

XX

X(X) (X)(X)(X)(X)XXXX

(X) (X)XX(X)(X)(X)(X)XX

Page 14: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Ten

sil

eS

tren

gth

[MP

a]

Reciprocal chain length 1/Mc x 10-4

0,2

0

10

30

20

0,4 0,6 0,8 1,0 1,2 1,4

InfluenceInfluence of of VulcanizationVulcanization MethodMethod and and CrosslinkingCrosslinkingDensityDensity on on TensileTensile StrengthStrength ((unfilledunfilled NRNR--VulcanisatesVulcanisates))

• For high moduli and high tensile strength the vulcanization method and the length of rubberchains between two crosslinking sites are decisive factors

• There is an optimum in tensile strength for Mc ~10.000 g/mol• The tensile strength of rubber vulcanizates is only 1/100 - 1/1000 of the theoretical values

Sx accelerated sulfur cureS1 TMTD-cure

C C peroxide cureC C high energy radiation cure

Sources: R. Houwink, H. K. de Dekker „Elasticity, Plasticity and Structure of Matter“ University Press, Oxford 3. Auflage (1971)K. Dinges, Kautschuk und Gummi. Kapitel 2 in H. Batzer „Polymere Werkstoffe“Georg Thieme Verlag Stuttgart, New York (1984)

SchematicSchematic PresentationPresentation of of thethe Deformation of a Deformation of a Rubber Rubber NetworkNetwork

TSexpt. = 1/100 - 1/1000 TStheor.

Type of Bond BondEnergy[ KJ/Mol]

C-C 350

C-O 350

C-N 282

C-S-C 272

C-S-S-C 266

-S-S-S-S- < 266

Type of Bond BondEnergy[KJ/Mol]

covalent 260 - 350

physical 10 - 20

Page 15: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

•Oil Resistance•Low temperature flexibility•Resistance to heat- and ageing•Adhesion to cord, fibres and fabrics•Covulcanisation of layers•Tensile Strength•Elongation at break•Static and dynamic moduli•Shore A Hardness•Abrasion Resistance•Compression Set •Cut growth Resistance during dynamic stress•Heat-buid-up•Electical conductivity• …….•……..•……..•…….

InfluenceInfluence of Compound of Compound IngredientsIngredients on on VulcanizateVulcanizatePerformancePerformance

Rubber

Filler

VulcanizationMethod

Page 16: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

2.1. 2.1. NaturalNatural RubberRubber

• Microstructure and Property Profile• NR-Market

–Designation of Grades and Glossary–Development of Market and Price–NR-Production, Areas of Application and Important Grades

• NR-Production–NR-Latex and Latex Finishing–General Features of NR and Hevea brasiliensis–NR Grades and Specifications

• Chemical and Physical Properties of NR–Solution Fractionation of NR–Mastication of NR–Crystallization (Spontaneous-and Strain induced)

• Chemically Modified NR-Grades–CV-Grades–SP-Grades–ENR-Grades

• Vulcanization of NR

NR: NR: MicrostructureMicrostructure and Property Profileand Property Profile

C CH

CH2

CH3

CH2

1

2 3

4

5

Physical Properties:Tg: -72°C1,4-cis-content ~ 97%Tm (equilibrium): + 30 °Cmax. rate of crystallization: -25°Cmax. degree of crystallinity: ~ 30 %Strain induced crystallization

Positive:• Low price and good ratio of price versus performance• Standardized NR-grades• High level of mechanical properties

(Tensile Strength, Modulus Abrasion)• Good Dispersability of Fillers

(due to high viscosities at the start of the mixing cycle)• Low rolling resistance (truck tyres)• High abrasion resistance (truck tyres)• Slow spontaneous crystallization• Significant strain induced crystallization

Negative:• Poor resistance to swelling with hydrocarbons

(fuels, oils and grease)• Need for mastication prior to compounding• bad wet skid performance• Poor resistance to heat ageing

Page 17: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: Designation of Grades and NR: Designation of Grades and GlossaryGlossary

General Purpose Grades:TSR Technically Specified Rubber (TSR 10, TSR 20, TSR 50)SMR Standard Malysian Rubber (SMR 5, SMR 10, SMR 20, SMR 50)SCR Standard Chinese Rubber (SCR 5, SCR 10, SCR 20, SCR 50) GP General Purpose GradeADS Air Dried SheetRSS Ribbed Smoked Sheet

Special Grades:OENR Oil Extended NRL-Grades „Light“ Grades (with colour specification) produced by the

selection of latices and removal of carotinoids by latex creaming,addition of Na-HSO3, and intenisve wash etc.

SP-Grades „Superior Processing“ (Sol/Gel-Blends)CV-Grades „Constant Viscosity“ NR

obtained by the addition of hydroxyl amin prior to latex finishingENR Epoxidized NR

NR: NR: AnnualAnnual ConsumptionConsumption (incl. Latex)(incl. Latex)

Source:• IRSG (International Rubber Study Group, Rubber Statistical Bulletin, Wembley, different editions• Outlook for Elastomers 1996-97 (Wembley 1998)• Rubber World, 21916 (1999) 13-14• European Rubber Journal (Quotation of IISRP Statistics), different editions• Consumption 2001-2005: LMC international Ltd. „Rubber, March 2005“

0

2

4

6

8

10

12

14

1880 1900 1920 1940 1960 1980 2000 2020

Mio

to

ns

Naturkautschuk

Synthesekautschuk (Fest + Latex)

Page 18: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Source: European Rubber Journal, January/February 2011, 16

NR: NR: ProductionProduction

0

500

1000

1500

2000

2500

3000

3500

1980 1985 1990 1995 2000 2005

x 1

000 m

etr

ic t

on

s

MalaysiaIndonesiaThailandothers

Sources:• K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591• LMC International Ltd; Rubber April 2005

Thailand 1.934 31,90% 2.988 34,50% India 570 9,40% 741 8,60% Ivory coast 87 1,40%

Indonesia 1.530 25,20% 1.942 22,40% China 400 6,60% 585 6,70% Philippines 60 1,00%

Malysia 1.070 17,60% 1.175 13,58% Sri Lanka 113 1,90% 92 1,10% Camerun 56 0,90%

Vietnam 110 1,80% 423 4,90% Cambodsha 49 0,80%

Brasil 35 0,60%

Liberia 25 0,40%

Burma 21 0,40%

Nigeria 13 0,20%

Total 4.534 75% 6.105 70% 1.193 20% 1.841 21% 346 5,7%

19971997 2004 1997 2004

Source: Römpp Lexikon Chemie; Version 1.5; Stuttgart/New York Thieme-Verlag 1998LMC International Ltd; Rubber April 2005

Page 19: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: NR: ApplicationApplication AreasAreas

None automotive

5%

Shoes

4%

Automotive

(other than tyre)

2%

Others

7%

Latex-Products

11%

Tyres

71%

Source:K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-OthmerEncyclopedia of Chemical Technology, vol 21, 4th ed., 562-591

UseUse of NR in Truck of NR in Truck TyresTyres

Year Tread [wt.%] Side Wall [wt.%] Carcass [wt.%]NR SBR BR NR SBR BR NR SBR BR

1974 45 21 34 48 37 15 71 20 9

1981 60 12 28 44 19 37 84 11 4

1983 77 7 16 58 6 36 100

1985 86 5 9 62 38 100

1990 86 5 9 75 25 100

1994 100 60 40 100

Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-OthmerEncyclopedia of Chemical Technology, vol 21, 4th ed., 562-591

The major application of NR is in truck tyres

Page 20: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: NR: ProductionProduction

As of today, only Bridgestone, Michelin und Goodyear run NR-plantations

NR-Production by smallholders:Area cultivated per smallholder: 1,25 ha;Number of trees: 625 trees in total; 520 trees under tapAnnual tappings per tree: 180/aTotal number of tappings per year: 95.000 tappings for 625 trees/aAnnual yield: 850 kg/aAnnual earnings: ca. 250 €/a (0,30 €/kg)Earnings/different source*: 1020 €/a (1,2 €/kg)

Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591*Broadcast in German TV (ZDF) “Mission“ about Charles Goodyear on 17.10.2004

Share of smallholdersin rubber production:Thailand 95%Indonesia 83% India 83%Malaysia 81%Brasil 70%Sri Lanka 33%Ivory Coast 29%Source: International Rubber Study Group

Source: http://www.therubbereconomist.com

Features of Features of thethe Rubber Rubber TreeTree ((HeveaHevea BrasiliensisBrasiliensis))

• Botanical Family: Euphorbiaceae• Habitat: Equator + 15°

–Height: < 300 m–Temperature: 25-30°C–Humidity: > 70%–Rain fall: 1800-2000 mm/year–Soil: good drainage (not at the bottom of vallleys)

• max. age of tree: 30-40 Jahre (plantation), 100 Jahre (rain forest)• Height of tree: 20 m (plantation), 40 m (rain forest)• tapping age of tree: 5-7 years•Tappings: every 2nd day = 180 days/year• Yield per tree: 1-2 kg/a• Yield per tap: 5-11g• density of trees: 500/ha• Rubber yields: 400-1.200 kg/ha

–Plantation: 1.000 kg/ha –Maximum yield: 3.000 kg/ha –Smallholder: 850 kg/ha

• Fungal infection: Dothidella Ulei (Yellow leaf blythe) • Spread of fungus: so far, endemic and restricted to Brasil

Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer, Encyclopedia of Chemical

Technology, vol 21, 4th ed., 562-591

Page 21: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Features of NRFeatures of NR--LatexLatex• Total solids concentration:(25) 30-40 wt. % (dependent on many parameters) • Rubber content: 90 - 95 wt. % of total solids• Particle diameter: 150-3000 nm (dependent on many parameters)• Gel content: dependent on many parameters (latex age, finishing method)• Molar mass: 105-107 g/mol (not constant, dependent on many parmaters) • Latex stability without the addition of additives (NH3, formaldehyde, boric acid,

phenolates, Na2SO3 (0,05 Gew.%), etc.) latex coagulation occursas a consequence of encymatic decay

• Dilution of the latex to 15-20 wt. % solids• Removal of heavy impurities such as sand by sedimentation• Removal of impurities such as wood, leafs, insects, etc. by filtration• Latex fractionation for the removal of carotinoids for „L“ (light = colourless) grades• Addition of:

• Na2SO3 (0,15 wt.%) for pale-crepe-grades

• [HONH3]2 SO4 for CV- grades (“Constant Viscosity“)

• Discontinuous latex coagulation with formic or acetic acid (5 wt. %) in pH-range 5,0 - 5,2• Completion of coagulation by maturing for 12-16 h• Mechanical water removal by riffle mills (6-9 passes)• Drying in smoke at 60°C/1 week for RSS-production (“RSS” = Ribbed Smoked Sheet)• Drying in air at 40°C/2 months (“ADS“ = Air Dried Sheet)

Latex Latex FinishingFinishing

Latex- Acid Coagulation Acid Coagulation Naturalconcentration (factory) (Plantation/Smallholder Coagulation of latex

„Cup lump“

„Smallholder‘slump“

Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591

SMR 5

60% 40%

Sales latex SMR L SMR CV 50 SMR GP SMR 10 SMR 20 (60 wt. % solids) SMR CV 60

centrifugation, creaming,

evaporation of water

Sheet-Material(RSS, ADS)

Baled or Crumb wet and dry field gradesRubber blending processes

Comminution Process: multi-stage wet blending process with mechanical generation of

crumbs, crumb blending and washing with subsequent crumb drying at 100-120°C/4-5 h is

used for the homogenization and purification of cup lumps

NR: Range of GradesNR: Range of Grades

Page 22: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: NR: SMRSMR--GradesGrades und und SpecificationsSpecifications

Besides NR purity, price is also an important factor for the selection of an appropriate NR grade. As a consequence of price and quality, theranking of NR grades for tyre building is as follows:

SMR 20 > SMR 10 > SMR GP > SMR 5 > RSS

0,500,200,100,100,05Strainer Residue [wt.%]

(mesh width: 45 mm)

SMR 50SMR 20SMR 10SMR GPSMR 5NR Grade

• The content of none rubber like residues is an important qualitycriterium for NR

• As a consequence, the content of impurities is a feature in thedesignation of NR grades

NR: NR: VulcaniaztionVulcaniaztion of Different of Different SMRSMR--GradesGrades

Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical

Technology, vol 21, 4th ed., 562-591 (ISO 1658: Natural Rubber - Test Recipes and Vulcanization Characteristics,

International Organization for Standardization, Geneva, Switzerland, 1973

ACS 1- CompoundNR 100 phrStearic Acid 0,5 phrZnO 6,0 phrSulfur: 3,5 phrMBT 0,5 phr

Typ Monsanto-Rheometer (160°C)Delta F [J/cm2] TS 2 [min] t90 [min]

SMR CV 29,4 2,2 11,6

SMR L 33,9 1,8 9,7

SMR 5 37,2 1,5 7,8

SMR 10 40 1,3 6,8

SMR 20 41,1 1,2 6,8Imp

uri

tyL

eve

l

With increasing impurity level, the followingfeatures are observed:• reduction of scorch time• reduction of vulcanization time• Increase of crosslinking density

The impurities in NR perform like a vulcanization accelerator

Page 23: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

FractionNr.:

bale123456

Soluble portion

Chemical and Chemical and PhysicalPhysical CompositionComposition of NRof NR

Solution fractionation of NR by sequential coagulation:1. Preparation of a NR solution in toluene2. Incremental addition of methanol

share

[wt.%]10024,419,715,58,0

12,912,86,7

1,2-content

[%]0,60,60,50,50,70,60,5-

• NR has a broad distribution of molar masses (“polydispersity“ or “physical inhomogenity“)• The polydispersity increases with the age of the tree• NR fractions with a low molar mass have a higher content of 1,4-trans moietiesthan the fractions with a higher molar mass (“chemical inhomogenity“)

Source: Rubber Chem. Technol. 57, 104 (1984)

Viscosity(toluene/25°C)

[dl/g]11,57,73,91,91,160,620,3-

1,4-transcontent

[%]2,22,02,02,03,44,05,0-

Source: Rubber Chem. Technol. 82, 283-314

NR (TSR 5, Defo 700) [phr] Carbon black/Corax N 2200 [phr]Stearic Acid [phr]Zinc oxide [phr]Antilux 654 [phr]IPPD (Vulkanox® 4010 NA) [phr]TMQ (Vulkanox® HS/LG) [phr]Mineral oil/Enerthene 1849 [phr]Sulfur [phr]TBBS (Vulkacit® NZ) [phr] Desmodur® TT [phr]

100-33

1,5113

1,610

100-33

1,5113

1,610

100-33

1,5113

1,6115

100-33

1,5113

1,6125

1005033

1,5113

1,610

1005033

1,5113

1,6110

NNNNNNNN

OOOO

OOOO NNNN CCCC OOOO

CCCC HHHH3333

OOOO CCCC NNNN

CCCCHHHH3333NNNN HHHH CCCC HHHH

CCCC HHHH3333

CCCC HHHH3333

NNNN HHHHSSSS

NNNNSSSS NNNN HHHH

CCCC HHHH3333

CCCC HHHH3333

CCCC HHHH3333

NR: NR: VulcanizationVulcanization withwith MultifunctinalMultifunctinal IsocyantesIsocyantes

First Hint on NR-Vulcanization with Diisocyanates from O. Bayer, Angew. Chemie 59 (1947) 9, 257-272

IPPD (Vulkanox® 4010 NA) TBBS (Vulkanox® NZ) Desmodur® TT (TDI Uretdione)

Page 24: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

1005010

1,7836,260,347,479,07

25,24801,93,18,0

14,4

75-

--

133

NR (masticated TSR 5)Carbon black (Corax N 220)Desmodur TT

Fmin [dNm]Fmax-Fmin [dNm]t10 [min]t80 [min]t90 [min]

Tensile Strength [MPa]Elongation at break [%]M50 [MPa]M100 [MPa]M200 [MPa]M300 [MPa]

Shore A Härte/23°CShore A Härte/70°C

Rebound/23°C [%]Rebound/70°C [%]

DIN-Abrasion [mm3]

NR: NR: VulcanizationVulcanization withwith MultifunctionalMultifunctional IsocyantesIsocyantes

10000

0,307,414,346,217,53

17,86050,60,91,42,2

4345

7481

183

10000

0,186,304,826,778,24

15,36500,40,60,71,2

4038

6978

327

1000

15

0,5424,200,74

15,2317,60

25,76351,52,02,95,0

66-

59-

155

1000

25

0,9620,060,71

15,5619,08

21,85651,82,43,76,0

6865

5560

123

100500

1,0615,941,964,224,99

27,85401,52,77,3

13,4

66-

--

102

NR contains polymer bound functional groups (-NH2, -COOH, -OH, -CONH2) which react with isocyanates

MasticationMastication of NRof NR

• At low temperatures (<120°C) mechanical chainscission prevails

• At temperatures >120°C thermo-oxidative chainscission prevails

• In the temperature range 100-130°C the masticationeffect shows a minimum

C**C

184 kJ/mol 343 kJ/mol

C* *C

Cl

Cl

Cl

Cl

Cl

SH

NH

O

S S

NH

O

Pentachlorothiophenol 2,2'-Dibenzamidodiphenyl-Disulfide (DBD)

• By the use of mastication additives the mastication of NR is accelerated (oxidation catalysts and radical scavengers)

• Pentachlorothiophenol is an effective mastication aid; it isbanned in WE

• Today, disulfides as well as Fe-complexes are used for theacceleration of NR mastication

Deg

ree

of

Masti

cati

on

Temperature [°C]0 100 200

Source:

C. Clarke, M. Hensel, Rubber World, November 2009, 28-31

„Improved natural rubber processing and physical properties

by use of selected compounding additives“

Page 25: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: NR: CrystallizationCrystallization at at --2525°°CC

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

time [h]

Cry

sta

llin

ity

[%

]

Pale Crepe

pale crepe after acetone extraction

• The Shore A Hardness of NR increases due to crystallization during storage at low temperatures• NR can only be processed in the uncrystallized state• Decrystallization can be achieved by storage at elevated temperatures (40°C-50°C)• The decrystallization in the interior of bales needs 2 weeks at 30°C• The maximum degree of crystallinity of unvulcanized NR is ~ 30%• NR contains impurities which accelerate the speed of crystallization• The crystallization accelerators can be removed by acetone extraction (e.g. stearic acid)

NR: NR: DependenceDependence of of CrystallizationCrystallization Rate and Rate and CrystalliteCrystallite Melting Melting TemperatureTemperature on on StorageStorage TemperatureTemperature

1

10

100

1000

-50 -30 -10 10

storage temperature [°C]

ha

lf t

ime

[h

]

Source:U. Eisele Intorduction to Polymer Physics, Springer-Verlag 1990

Source:

K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Naturalin Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 21, 4th ed., 562-591

-40

-30

-20

-10

0

10

20

30

40

-50 -30 -10 10 30

storage temperature [°C]

me

ltin

g t

em

pe

ratu

re [

°C]

Page 26: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Stress/StrainStress/Strain--PerformancePerformance of of UnfilledUnfilled NRNR-- and and SBRSBR--VulcanizatesVulcanizates ((gumgum stocksstocks))

0

5

10

15

20

25

30

0 200 400 600 800 1000

strain [%]

str

es

s [

MP

a]

NR

SBRStrain induced crystallization

DependenceDependence of Tack on of Tack on TestingTesting TemperatureTemperature((UnvulcanizedUnvulcanized NRNR-- and and SBRSBR--CompoundsCompounds))

0

5

10

15

20

25

0 20 40 60 80 100 120

temperature [°C]

Ta

ck

-In

de

x

NR

SBR

Page 27: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ChemicallyChemically ModifiedModified NRNR--Grades Grades

Source:

K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591

Improved oil resistance

Improved wet skid

Improved silica interaction

Epoxydation (ENR)

Improved processability of NR-compoundsBlend with NR-gel (“SP”-Grades)

improved compounding, no mastication required

Hydroxyl amine (“CV”-Grades)

ApplicationModification

NR: CVNR: CV--GradesGrades

• During storage at ambient and elevated temperatures, the viscosity of NR increases to

a greater extent than for synthetic IR (storge hardening)

• It is assumed that the viscosity increase of NR is caused by the chemical reaction of

polymer bound –NH2 and polymer bound –CH=O groups

• By the addition of hydroxylamine to the NR latex prior to latex coagulation –CH=O

groups are chemically eliminated

•CV-Grades (“Constant Viscosity“) exhibit an improved storage stability

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

storage time [days]

Mo

on

ey

- In

cre

as

e [

MU

]

SMR 20

IR/Natsyn 2200 (IR / Ti)

O

HH

N

HH

H

NH2

H

- H2O

+

Page 28: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: CVNR: CV--GradesGrades

50

60

70

80

90

100

110

120

130

140

0 0,02 0,04 0,06 0,08

Hexanediamine [mol/kg]

Mo

on

ey-V

isco

sit

y M

L1+4

(100°C

)

before hot air ageingafter hot air ageing

Grade Ml 1+4 (100°C)

CV 50CV 60CV 70LV 50

Minimum45556554

Maximum55657555

Specification of CV-Grades

O

HH NH

2

NH2

O

HH

NN

HH

HH

- 2 H2O

+ +

0

10

20

30

40

50

60

70

0 0,05 0,1 0,15 0,2

hydroxyl amine [wt. %]

Inc

rea

se

of

Mo

on

ey

Vis

co

sit

y [

%]

NR CV-Grades (“Constant Viscosity“) are obtained by the addition of hydroxylammonium chloride to the latex prior to latex finishing

C

O

H

H NH2OH

C

N

H

H

OH

+

- H2O

NR: CVNR: CV--GradesGrades

Page 29: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ENR: ENR: DependenceDependence of of PropertiesProperties on on thethe DegreeDegree of of EpoxidationEpoxidation

Source: Ullmann‘s Encyclopedia of technical Chemistry

O

O

O

Epoxidation with peracids in the latex stage

-80

-60

-40

-20

0

20

40

0 20 40 60 80 100

Degree of Epoxidation [%]

Tg

[°C

]

Epoxydation of NR has the following effects:

• Increase of polarity (Reduction of the swelling in oil)

• Increase of Tg (Improvement of wet skid and reduction of gas permeation)

• Resistance to ageing is unchanged (as bad as for unmodified NR)

• Processability is reduced (supposedly this problem has been solved)

NR [phr]ENR 25 (Degree of Epoxidation: 25%) [phr]ENR 50 (Degree of Epoxidation: 50%) [phr]Carbon black (N 220) [phr]

Shore A Härte/23°C M300 [MPa]Tensile Strength [MPa]Elongation at break [%]Elasticity/23°C [%]Goodrich HBU [°C]CS/24h/70°C [%]

Volume Swell (70h/70°C)ASTM-Oil No. 1 [%]ASTM-Oil No. 2 [%]ASTM Oil No. 3 [%]

Air permeability/23°C [1018 x m4/s.N]

ENR: ENR: DependenceDependence of of VulcanizateVulcanizate PropertiesProperties on on thetheDegreeDegree of of EpxidationEpxidation

100--

30

597,8

27,1550784417

66114191

27,0

-100

-30

566,9

25,9590256046

7328

108

8,0

--

10030

598,8

27,8560155217

-56

21

2,0

Page 30: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: SPNR: SP--GradesGrades

Grade Precrosslinked

NR

Uncrosslinked

NR

Oil

[wt.%] [wt.%] [phr]

SP 20 20 80 0

SP 21 40 60 0

SP 22 50 50 0

SP 23 80 20 40

SP 24 80 20 0

• SP-Grades (“Superior Processing“) are obained by blending crosslinked NR with uncrosslinked NR in the latex stage.

• The crosslinked NR-latex (NR-gel) is obtained by sulfur cure in the latex

• The SP-series of grades comprises different blend ratios of ucrosslinkedand unrosslinked NR as well as oil extended grades

Source: BP 880739; Natural Rubber Producers‘ Association, Appl.: 28.03.1957, Inv.: B. C. Sekhar „Improvement in the Preparation of Superior Processing Rubbers“

SP-grades have the following advantageous properties:• reduced die-swell• Increased extrusion out-put• Reduced roughness on surface and edges

NR (SMR 5) [phr]N 330 [phr]Oil [phr]ZnO [phr]Stearic Acid [phr]Sulfur [phr]TBBS [phr] CBS [phr]TMTD [phr]Santoflex 13 [phr]TMQ [phr]DCP [phr]Novor 924 [phr] Caloxol [phr]ZDMC [phr]ZMBT [phr]

NR: Impact of NR: Impact of VulcanizationVulcanization Systems on Systems on VulcanizateVulcanizatePropertiesProperties

Schwefel(conv.)

10050,04,05,03,02,50,5--

2,0------

Sulfur(Semi EV)

10050,04,03,52,51,2-

0,80,42,0------

Sulfur(EV)

10050,04,05,02,0

0,33-

0,80,42,0------

Peroxide

10050,03,05,0------

2,02,5----

CappedDi-Iso-

Cyanate

10050,03,05,0------

2,0-

6,75,02,02,0

Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591

Page 31: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NR: NR: VulcanizationVulcanization withwith A A CappedCapped DiisocyanateDiisocyanate ((NovorNovor 924)924)

O N ON

N

NH NH

N

O

O

O

O

O

O

O N O H ONOH

N

N N

N

O

OC CO O

O N OHONO H

N O N

N

NH NH

N

O

O

O O

O

HH

Thermal Cleavage

Tautomerization Tautomerization

- H2O- H2O

•F. Barlow „Rubber Compounding“ 2nd edition, Marcel Dekker, Inc. Chapter 7, page 96-98

• Vulcanization with Novor 924, NR Technical Bulletin, MRPRA, Brickendonbury, England

• Novor Application Data Sheet, Solid Tyres, ADS-5H, Rubber Consultants, Brickendonbury, England

• C. S. L. Baker, Novor Vulcanizing Systems: Their Technical Development and Application Areas, Rubber Manufacture and Technology Seminar, P. R. I.

(Malaysian Section), Kuala Lumpur, July 21-23-1981

Novor 924: TDI based diisocyanate

Novor 950: MDI based diisocyanate

Due to health and safety reasons Novor

924 has been replaced by Novor 950

Sources:

Shore A Hardness/23°C M100 [MPa]Tensile Strength [MPa]Elongation at break [%]Rebound/23°C [%]Fatigue to Failure [kZ]Goodrich HBU [°C]CS/24h/70°C [%]∆ ∆ ∆ ∆ TS (7d/100°C) [%]

NR: NR: DependenceDependence of of VulcanizateVulcanizate PropertiesProperties on on VulcanizationVulcanization SystemSystem

Sulfur(konv.)

652,0828,851570

223292773

Sulfur(Semi EV)

652,2230,148577

106321454

Sulfur(EV)

672,3424,23906768361024

Peroxide

612,2821,43107251341149

CappedDi-Iso-

cyanate

702,6024,04606690--

30

Page 32: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

2.2. 2.2. SyntheticSynthetic PolyisoprenePolyisoprene (IR)(IR)

Contents:• Differences between IR and NR• IR-Grades, Catalysts and Microstructures• Price, Producers, and Production Capacities• Comparison of Unvulcanized NR- and IR- Properties• Vulcanizate properties of NR and IR• Compound and Vulcanizate Properties of Poly-3,4-Isoprene

Li Ti Nd

cis-1,4-content [mol %] 98 93 97 99

Need for Mooney adjustment before use yes

Gel yes - - -

functional groups yes - - -

IR

no mastication needed

NR

IR grades and chemical differences between NR und IR:

2.2. 2.2. SyntheticSynthetic PolyisoprenePolyisoprene (IR)(IR)

C2

C3

C1

C4

CH3

Poly-3,4-Isoprene

Poly-cis-1,4-Isoprene Poly-trans-1,4-Isoprene

Isoprene

Type of IR Catalyst Solvent Microstructure

Trade Name cis-1,4 trans-1,4 1,2- 3,4-

Cariflex IR-3091)

Li unpolar (benzene) 93 0 0 7

Natsyn 2001)

Ti unpolar hydrocarbon 97 0 0 3

Vestogrip2)

Li Hexane/Additive 60

IR3)

Nd unpolar hydrocarbon 99 - - -

Sources:1) E. Schoenberg, H. A. Marsh, S. J. Walters, W. M. Saltman, Polyisoprene, Rubber Chemistry and Technology, Vol 52, S. 526-6042) Data sheet of Hüls AG: “Vestogrip“ (Production by Karbochem / South Africa: ca. 3.000t)3) WO 02/38635 A1 (Michelin), Erf.: P. Laubry, Prior.: 13.11.20003) WO 02/48218 A1 (Michelin), Erf.: P. Laubry, Prior.: 28.11.2001

Page 33: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

IR: IR: DevelopmentDevelopment of Prices, of Prices, ProducersProducers and and ProductionProductionCapacitiesCapacities

Source: R.J. Chang; SRI Consulting; IISRP 49th AGM Moscow 2008 „Globalization of Synthetic Rubber Industry“

Company Plant Location Capacity [kt]

Goodyear Beaumont/Texas/USA 90

Kraton Polymers Rotterdam-Pernis/Nederland 25

Kauchuk Sterlitamak Sterlitamak/Russia 100

Nishnekamskneftekhim Nishnekamsk /Russia 200

Togliattikauchuk Togliatti 130

JSR Corporation Kashima / Ibaraki Pref. 36

Zeon Corporation Mitzushima / Okayama Pref. 40

Karbochem Newcastle / Natal /South Africa 3

Total Capacity [kt] 624

0

0,5

1

1,5

2

2,5

3

1980 1985 1990 1995 2000 2005 2010

Pri

ce [

US

$ /

kg

]IR

NR (RSS)

ComparisonComparison of NR and IR: of NR and IR: Stress/StrainStress/Strain--CurvesCurves of of UnvulcanizedUnvulcanizedPolyisoprenePolyisoprene CompoundsCompounds

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500

Strain [%]

Str

ess [

MP

a]

NR (SMR 5)High cis-IR/Ti (97%)Low cis-IR/Li (93%)

Page 34: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Evaluation of CompoundEvaluation of Compound-- and and VulcanizateVulcanizate PropertiesProperties of of NR and IRNR and IR

Li Ti Nd

Mastication - + + +

Mixing cycle - + + +

Die swell - + + +

Tack + - - +

Green strength + - - +

IR NR

Li Ti Nd

Modulus + - - +

Tensile Strength + - - +

Cut growth resistance + - - +

Rebound Elastivity + - - +

Abrasion resistance + - - +

IR NR

Compound Properties

Vulcanizate Properties

Compound PropertiesML 1+4(100°C) [MU]t10/150°C [min]t90/150°C [min]

Vulcanization (30 min/150°C)Shore A Härte (22°C)Shore A Härte (75°C)M 100 [MPa]M 300 [MPa]TS [MPa]εεεεb [%]

Cut growth resistance [N/mm]Residual elongation [%]

Rebound / 22°C [%]Rebound / 75°C [%]

tan δδδδ/25°Ctan δδδδ/75°C

7713,827,5

67522,18,414,7510

2520

244

0,260,11

PolyPoly--3,43,4--Isoprene: Compound and Isoprene: Compound and VulcanizateVulcanizate PropertiesProperties

Source: Data sheet of Hüls AG

„Vestogrip

(3,4-Polyisopren-Kautschuk)“

3,4-Polyisoprene 100 phr

CB (Corax N 330) 50 phr

HAR-oil 10 phr

Zinc oxide 3 phr

Stearic acid 2 phr

CBS 1 phr

Sulfur 2 phr

3,4-content (NMR): ca. 60 %

ML 1+4 (100°C): 65 MU

Tg -8°C

Source: P. Roch (Goodyear) KGK 48,6 (1995) 430-434“Compounding for Wet Grip“

Page 35: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

3.0. 3.0. OverviewOverview on on EmulsionsEmulsions RubbersRubbers

• Emulsion Rubbers and Features of the Emulsion Process

• Essentials of the Emulsion Polymerization

• Mechanism of Emulsion Polymerization

• Kinetic Aspects of the Emulsion Polymerization

• Flow Diagram of Continuous Emulsion Polymerization

• Flow Diagram of Latex Finishing

• Finishing of CR-Latex

• Legal Aspects of Water Usage

Emulsion Rubbers and Features of Emulsion Rubbers and Features of thethe ProcessProcess

Application Areas for Rubber Latices:• Carpet backing, paper-, textile- and leather finishing (X-SBR)

• Latex dipping process for improvement of cord adhesion

• Manufacture of dipped articles such as protection gloves etc. (NR, NBR, CR)

Features of the Emulsion Process

Advantages:• high reactor output• good heat removal• low viscosities• high solids• high molar masses• high reproducibility

Disadvantages:• Waste water• Product impurities (residuals from

emulsifier and coagulants)• no water resistant catalysts

available (Stereospecifity)

Emulsion- Latex rubber Coagulation

E-SBR electrolyteNBR electrolyteCR freezingACM electrolyteFKM electrolyte

Page 36: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Wasser

Polymerization

Monomer emulsion Polymer dispersion(Latex or rubber latex)

Initiator

PrinciplesPrinciples of Emulsion of Emulsion PolymerizationPolymerization

Emulsifier

Monomer

MechanismMechanism of of EmulsionsEmulsions PolymerizationPolymerization

Monomer containing emulsifier micelleDiameter: 5-10 nm concentration: 1021 lw

-1

M

M

M

Monomer dropletDiameter: 0,1-10*10 -6 mconcentration: 1013 lw

-1

MMM

MM M

Polymerization occurs only inmonomer loaded micelles andnot in monomer droplets

Literature:• P. E. Lovell, M. S. El-Aasser, Emulsion Polymerization, Wiley 1998• Blackley, Emulsion Polymerization, 1975• H. Gerrens, Advances in Polymer Science, volume 1

M

Latex particleParticle diameter: 10-500 nmconcentration: 1017 lw

-1

M

M

Page 37: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

PhasesPhases in Emulsion in Emulsion PolymerizationPolymerization

Literature: P. E. Lovell, M. S. El-Aasser, Emulsion Polymerisation, Wiley 1998Blackley, Emulsion Polymerisation, 1975H. Gerrens, Fortschritte der Hochpolymerforschung

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Monomer Conversion [%]

Arb

itra

ry U

nit

s

Surface tenisonpressurepolymerization rate

Phase I Phase II Phase III

KineticKinetic AspectsAspects of Emulsion of Emulsion PolymerizationPolymerization

Number of latex particles formed:

NL = k * (E-CMC)x

* I y

Polymerization rate in Phase II:

VBr = NL * kw* [n]* [M]

NL: number of latex particles [lw-1]

E-CMC: effective emulsifier concentration [lw-1]

I: Initiator concentration [lw-1]

kw: propagation rate constant [l * mol-1 * sec-1][n]: average concentration of radicals per particle [without dimension][M]: monomer concentration in latex particle [Mol * l-1]

Phase I: NL and Vbr increase„free“ emulsifier reduces surface tension

Phase II: NL und Vbr remain constantthe monomer concentration in latex particles remains constantthe latex particles grow and soap coverage decreasessurface tenison increases

Phase III: the monomer droplets have disappearedthe monomer contained in latex particles is consumedthe number of latex particles remains constant

Prediction by the Smith Ewart Theory: x = 0,4; y = 0,6

[n]= 0,5

Page 38: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

FlowFlow Diagram of a Diagram of a ContinuousContinuous Emulsion Emulsion PolymerizationPolymerization (E(E--SBR)SBR)

Po

lym

eris

a-t

ion

skess

el

Flash evaporation

Bu

tad

ien

e

Sty

ren

e

Aq

ueo

us

em

uls

ifie

rso

luti

on

Hy

dro

pero

xid

e

Aq

ueo

us

cata

lyst

solu

tio

n

Po

lym

eris

a-t

ion

skess

el

Po

lym

eris

a-t

ion

skess

el

Po

lym

eris

a-t

ion

skess

el

Po

lym

eris

a-t

ion

skess

el

Sh

ort

sto

p

Abstopp-kessel

Strippingcolumn

Brüdenkondensation

Vapourcondensation

Mixer/Settler

Wate watertreatment

Recovered butadiene

Mixer/Settler

Waste water treatment

Recovered styrene

Latex-storage

Va

po

ur

Puffertank

FlowFlow Diagram of Latex Diagram of Latex FinishingFinishing(E(E--SBR, NBR)SBR, NBR)

Dewateringscrew

Mass Balance:

Latex volume : 400.000 tRubber (25%): 100.000 tWater serum (75%): 300.000 tWash water: 100.000 tWaste water: 400.000 t

Baler and packaging

dryer

Wash-tank

Coagulationtank

Co

ag

ula

nts

Ad

dit

ives

(oil

, etc

)

La

tex

AO

Wa

shw

ate

r

Waste water treatment

Page 39: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

FinishingFinishing of CRof CR--LatexLatex

packaging

dryer

Acidic acid

strippedLatex

Waste water treatment

dewatering rolls

Powdering Chopper

Latex-surge

tank

Freezingroll

Wasserhaushaltsgesetz (WHG)“Legislation on the regulation of the water household"

of September 23rd, 1986, BGB1. I, S. 1654

Abwasserabgabegesetz (AbwAG)“Legislation on Charges for the emission of polluted water“

of November 6th, 1990, BGB1. I, S. 2432

Abwasserherkunftsverordnung (AbwHerkV)“Legislation on the provinence of waste water"

Of July 3rd, 1987, BGB1.I, S. 1578

Trinkwasserverordnung (TrinkwV)“Legislation on the quality of drinking water and on water which is used in

food production”

of December, 5th, 1990, BGB1. I, S. 2612

Legal Legal AspectsAspects of Water of Water SurveillanceSurveillance in Germanyin Germany

Source:

W. Guhl und U. Werner; Nachr. Chem. Tech. Lab. 45 (1997) Supplement; Wiley-VCH Verlag GmbH,

D-69469 Weinheim, 1997

Page 40: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

“Legislation on the regulation of the water household“of September 23rd, 1986, BGB1. I, S. 1654

Water is a natural ressource. It has to be used in a sustainablemanner for the benefit of the community as well as for the benefitof individuals. Negative impacts have to be avoided.

Everybody who uses water is obliged under the necessarycircumstances to act in a careful and responsible manner in order to avoid water pollution and negative impacts on the properties of water.

Legal Legal AspectsAspects of Water of Water SurveillanceSurveillance in Germanyin Germany

Source: Nachr. Chem. Tech. Lab. 45 (1997) Supplement; Wiley-VCH Verlag GmbH, D-69469 Weinheim, 1997

Legal Legal AspectsAspects of Water of Water SurveillanceSurveillance in in GermanyGermany

“Legislation on Charges for the emission of polluted water“of November 6th, 1990, BGB1. I, S. 2432

By law, in 1990 one “pollution unit“ was fixed at 70 DM. According tothis law, one pollution unit was defined to correspond to:

Source: Nachr. Chem. Tech. Lab. 45 (1997) Supplement; Wiley-VCH Verlag GmbH, D-69469 Weinheim, 1997

• 50 kg O2 (COD) • 3 kg Phosphorous• 25 kg Nitrogen• 2 g organic halides• 20 g Hg• 100 g Cd• 500 g Cr• 500 g Ni• 500 g Pb• 1 kg Cu• etc.

Page 41: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

1. COD = 0

2. BOD = 0

3. COD = BOD

4. COD < BOD

5. BOD < COD

Which equation does not make sense?

Legal Legal AspectsAspects of Water of Water SurveillanceSurveillance in Germanyin Germany

COD: Chemical Oxygen Demand

BOD: Biological Oxygen Demand

Explanation:

COD = 0 no impurities present which can be chemically

oxidized (very pure water)

BOD = 0 no biologically degradable substances present

(substances which are not biodegradable might

be present)

COD = BOD all impurities are biodegradable

COD < BOD this is not possible

BOD < COD The impurities are only partially biodegradable

Legal Legal AspectsAspects of Water of Water SurveillanceSurveillance in Germanyin Germany

Page 42: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

3.1. 3.1. EmulsionEmulsion--SBRSBR (E(E--SBR)SBR)

• Overview–Microstructure and Property Profile

–Market

–Application Areas, Market, Products and Important Grades

–Producers and Production Capacities

• Polymerisation –Polymerization Recipe („Cold Rubber“)

–Ingredients of a Polymerization Recipe

–Sequence of Reaction Steps

–Copolymerisation of Styrene und Butadiene

–Influence of Chain Modification Agents

• Product Properties–Tg

–Influence of None Polymeric Residues on Compound and

Vulcanizate Properties

MicrostructureMicrostructure of Eof E--SBRSBR

CH3

CH2

CH21

CH2

4

CH2

1

CH2

CH3

CH24

CH2

CH21

CH2 CH

21

CH3

CH

2

4

1,4-cis 1,4-trans Vinyl Styrene

Page 43: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Tyres

72%

mechanical

parts

8%

Others

2%Buildings

5%Shoes

5%Automotive

8%

EE--SBR: Property Profile and SBR: Property Profile and ApplicationApplication AreasAreas

Positive:• good mechanical properties of filled vulcanizates (TS, Modulus, Abrasion

Resistance)• Good wet skid properties (dependent on amount of incorported styrene/Tg)• short sequences of incorportated styrene (low hysteresis losses and low

rolling resistance)• Availability of high Mooney-grades which allow for high loadings of mineral

oil (oil extended grades with reduced price)• Great variety of standardized grades• Many competitors/low price (commodity)

Negative:• poor ageing resistance• poor resistance to swelling in oils• no variation of microstructure• low / no profits / no R&D-activities

Application Areas in Western Europe

EE--SBR: SBR: ProducersProducers and and ProductionProduction CapacitiesCapacitiesProduer Site Country CapacityCopolymer (DSM) Baton Rouge USA 150.000

Goodyear Houston USA 267.000

Ameripol Synpol Port Arthur/Odessa USA 336.000

Bayer Sarnia Can. 20.000

Petroquimica Argentina Pto. Gral, San Martin Argentinia 53.500

Petroflex/Coperbo Duque de Caxias/Triunfo Brasil 255.000

Negromex Altamira Mexico 74.500

Bayer France La Wantzenau France 90.000

Dow Schkopau Germany 120.000

Enichem. Ravenna Italy 295.000

Shell Pernis Netherlands 120.000

Dwory Oswiecim Poland 104.000

Chemopetrol Kralupy Czech Rep. 76.000

HIP Petrohemija Zrenjanin Crotia 40.000

Combinatul Petrochimic Onesti Rumania 100.000

Neftochim Burgas Bulgaria 20.000

JSR Kawasaki Japan 195.000

Mitsubishi Kasei Corp. Yokkaichi Japan 65.000

Zeon Corp. Tokuyama/Kawasaki Japan 200.000

Sumitomo Chemical Comp. Chiba Japan 50.000

Korea Kumho Ulsan Korea 190.000

Hyundai Daesan Korea 60.000

Taiwan Synthetic Kaohsiung Taiwan 105.000

BST Elastomers Mab Ta Phut, Rayong Thailand 60.000

Gadjha Tunggal Indonesia 60.000

Quenos Altona Australia 35.000

Apar und Synthetics &Chemicals Bombay/Bareilly India 75.000

V/O Raznoimport Omsk/Sterlitamak/Togliatti/Voronezh USSR 486.000

SINOPEC und Petro China Lanzhou/JiLin China 200.000

Sum 3.902.000

Market: 2,0 Mio tCapacity: 3,9 Mio tCapacity utilization: 51%

Source: Worldwide Rubber Statistics 2001, IISRP, International Institute of Synthetic Rubber Producers, Inc.

Page 44: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EE--SBR: SBR: ProducersProducers and and CapacitiesCapacities in Europe in Europe ((withoutwithout Latex Latex CapacitiesCapacities): ):

Company Site Country CapacityLanxess France La Wantzenau France 45.000

Dow Schkopau Germany 120.000

Enichem. Ravenna Italy 295.000

Dow (prior owner: Shell) Pernis Netherlands 120.000

Sum 580.000

415.000Dwory Oswiecim Poland 104.000

Chemopetrol Kralupy Czech Republic 76.000

HIP Petrohemija Zrenjanin Croatia 40.000

Combinatul Petrochimic Onesti Rumania 100.000

Neftochim Burgas Bulgaria 20.000

Sum 340.000

0

100

200

300

400

500

600

700

1990 1992 1994 1996 1998 2000 2002

Pro

du

cti

on

[t]

Market Volume in WE: 666 k tCapacities in WE: 415 ktFormal Capacity Utilization in WE: 160 %

Source: Worldwide Rubber Statistics 2001, IISRP, International Institute of Synthetic Rubber Producers, Inc.

Dow Chemical shuts down ESBR-Plant in Pernis/ end of March 2004 (Chemical Week of 24.03.2004)

Lanxess shuts down E-SBR production in La ‚Wantzenau effective by July 2008

Range of ERange of E--SBR Grades SBR Grades

Source: The Synthetic Rubber Manual, 14th edition IISRP (International Institute of Synthetic Rubber Producers, Houston (1999)

Cold Rubber

Hot Rubber

High Styrene Rubber

without

additives

Carbon Black-

Masterbatch

Oil-extension

(<14 phr)

Oil extension

(>14 phr)

1000 - - - - X -

1500 X - - - - -

1600 - X X - - -

1700 - - - X - -

1800 - X - X - -

1900 - - - - - X

Cold Rubbernumber of

grade

assignation

Hot

Rubber

High

styrene

rubber

Page 45: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EE--SBR: SBR: SelectedSelected GradesGrades

Source: The Synthetic Rubber Manual (International Institute of Synthetic Rubber Producers, Houston (1989)

E-SBR

grade

Styrene-

content

[wt.%]

ML 1+4

(100°C)

[MU]

Antioxydant

System

Remarks & Application

Areas

1500 23,5 50-52 S - - - -

General purpose rubber for

tyre treads and for technical

rubber goods

1502 23,5 50-52 NS - - - - uncoloured technical goods

1507 23,5 30-35 NS - - - -

Compounds with good

processability

(calandered and injection

moulded products)

1509 23,5 30-35 NS - - - -

E-SBR with low ash content

and low water swell (cables

and electronic industry)

1707 23,5 49-55 NS NAPH 37,5 - -lught colourd rubber goods

(hoses and profiles)

1712 23,5 49-56 S HAR 37,5 - -

1721 40 50-55 S HAR 37,5 - -

1609 23,5 61-68 S HAR 5 N 110 4Abrasion resistant

compounds für retreading

1808 23,5 48-58 S HAR 47,5 N 330 76tyre treads, dark colured

technical rubber goods

Mineral Oil

grade loading

- [phr]

Carbon Black

grade loading

- [phr]

Tyre treads, transportation

belts, dark colured technical

S: staining

NS: none staining

NAPH: naphthenic oil

HAR: highly aromatic

EE--SBR: SBR: RecipeRecipe forfor Cold Rubber Cold Rubber ProductionProduction

Monomers:

Butadiene

Styrene

Modifier: t-DDM

Reaction medium:

Water

Emulsifier System:

K-salt of disproportionated rosin

Na-salt of methylen-bis-naphthalinsulfonic acid

Initiator-System:

p-Menthylhydroperoxide

FeSO4 * 7 H20

Di-sodium salt of ethylenediaminotetraacetic acid

Na-salt of Formaldehydesulfoxylate

Na3PO4*12 H2O

23,2 wt.%

9,5 wt.%

0,07 wt.%

65,4 wt.%

1,5 wt.%

0,03 wt.%

0,04 wt.%

0,01 wt.%

0,02 wt.%

0,03 wt.%

0,16 wt.%

Page 46: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EE--SBR: SBR: IngredientsIngredients of of PolymerizationPolymerization RecipeRecipe II((EmulsifiersEmulsifiers))

CH3

CH3

COOHH

CH3

CH3

COOHH

CH3

CH3

COOH

H

CH3

CH3

COOH

H

+ +

Abietic Acid

Dehydroabietic Acid Dihydroabietic Acid Tetrahydroabietic Acid

Pd

Disproportionation of Abietic Acid

Na-Salt of Methylene-bis(Naphthalin-sulfonic Acid) (Baykanol PQ(R))

CH2

-SO3

Na

-SO3

Na

2 Na +

EE--SBR: SBR: IngredientsIngredients of of PolymerizationPolymerization RecipeRecipe IIII

CH2

CH2

CH

CH2

CH2

CHCH3

CH3

CH3

O O H

N CH2

CH2

N

CH2

CH2

CH2

CH2

OH

OH

OH

OH

O

OO

O

S

O

O

H

O

H

H Na+

p-Menthanehydroperoxide (p-MHP)

Na-FormaldehydesulfoxylateNa-Hydroxymethanesulfinate

Ethylenedinitrilotetraacetic Acid (EDTA)

Oil soluble hydroperoxide

Reducing agent

Sequestering agent

for Fe-Ions

Page 47: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EE--SBR: SBR: SequenceSequence of of ReactionReaction StepsSteps

Redox Initiation:R-OOH + Fe2+ R-O* + OH- + Fe3+

Fe3+ + Reducing agent Fe2+ + oxydized reducing agentR-O* + Monomer R-O-Mon*

Growth Reaction:R-O-Mon* + n Monomer P*

Regulation of Molar Mass with Mercaptanes:P* + HS - R P - H + R - S*R - S* + n Monomer R - S - Mn*

R - S - Mn* + HS - R R - S - Mn - H + R - S*

Transfer Reaction:P* + R - H R - H + P*

Termination Reaction:P* + P* P - P

EE--SBR: SBR: InfluenceInfluence of of ThiolsThiols

Tert-dodecylmercaptane [phm] Tert-dodecylmercaptane [phm]

Gel

con

ten

t[w

t.%

]

100

80

60

40

20

0

(ML

1+

4 (

100°C

)[M

E]

175

140

105

70

35

0

0 0,2 0,4 0 0,2 0,4

Page 48: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EE--SBR: SBR: Styrene/ButadieneStyrene/Butadiene--CopolymerizationCopolymerization (Differential (Differential StyreneStyrene Incorporation)Incorporation)

0 10 20 30 40 50 60 70 80 90 100

Styrene Content of Monomer Feed [wt. %]

Sty

ren

eC

on

ten

tof

Po

lym

er [

wt.

%]

100

90

80

70

60

50

40

30

20

10

0

Copolymerization Parameters

(Styrene = M1; Butadiene = M2)

r1 = 0,7

r2 = 1,4

As a Consequence of these

copolymerization parameters

there is no azeotropic composition

k11r1 =k12

k22r2 =k21

EE--SBR: SBR: CopolymerizationCopolymerization of of ButadieneButadiene and and StyreneStyrene(Integral (Integral StyreneStyrene Incorporation)Incorporation)

Inte

gra

l S

tyre

ne

Co

nte

nt

[wt.

%]

0 20 40 60 80 100

Monomer Conversion [%]

100

80

60

40

20

0

Polymerization Temperature:

+ 50°C Hot Polymerisation

- 20°C (Cold Polymerisation)

Monomer Feed

Styrene/Butadiene:

30/70

Ideal (random) Copolymerization forMonomer Feed Styrene/Butadiene: 30/70

Copolymerization Parameter:

r1 (Styrene) = 0,78

r2 (Butadiene) = 1,39

Page 49: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EE--SBR: Distribution of SBR: Distribution of StyreneStyrene SequencesSequencesin Ein E--SBR 1502SBR 1502

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Number of Styrene Units

Pro

ba

bil

ity

[%

]

k11r1 =k12

k22r2 =k21

Copolymerization-

parameter

Styrol = M1

Butadien= M2

r1 = 0,7

r2 = 1,4

EE--SBR: SBR: MicrostructureMicrostructure

Source: The Synthetic Rubber Manual (International Institute of Synthetic Rubber Producers, Houston (1989)

Polymerization-

temperature

[°C]

-20

5

50

100

BR-Microstructure

1,4-cis 1,4-trans Vinyl

[%] [%] [%]

0,8 79,6 19,6

7,7 71,5 20,8

14,8 62,0 23,2

27,6 51,4 21,0

Page 50: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EE--SBR: SBR: DependenceDependence of of TgTg on on StyreneStyrene ContentContent

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Styrene Content [Gew.%]

Tg [

°C]

expt. data

Fox-Flory-equation

Fox-Flory-Equation

1 w1 w2= + Tg Tg1 Tg2

Tg: Tg of copolymers in KTg1: Tg of homopolymer 1 in KTg2: Tg of homopolymer 2 in Kwn: weight fraction of copolymers 1 und 2Tg of

E-BR

Source: T. G. Fox, P. J. J. Flory; Appl. Sci., 21,581 (1950)

Tg of atacticpolystyrene

InfluenceInfluence of of NoneNone PolymericPolymeric ResiduesResidues on Compound and on Compound and VulcanizateVulcanizate PropertiesProperties: : AnalyticalAnalytical DataData

Product

Krylene 1500

mod.* Krylene 1500

Krynol 1712

mod.* Krynol 1712

Al

[ppm]

-

-

655

1

water-

extract

[wt.%]

0,33

0,23

0,41

0,20

Ash cont.

(850°C)

[wt.%]

0,33

0,23

0,41

0,20

chloride

[ppm]

0,110

0,079

0,230

0,045

Na

[ppm]

1105

910

1502

355

acetone-

extract

[wt.%]

6,9

2,4

32,3

30,1

Product

Krylene 1500

mod. Krylene 1500*

Krylene 1712

mod. Krynol 1712*

Mw

[g/mol]

424.280

429.210

740.170

716.760

Mw/Mn

3,46

3,51

3,69

3,74

ML 1+4

(100°C)

[ME]

45

51

52

54

Tg

[°C]

-51

-53

-50

-50

137,5 phr

of Krynol 1712 contains

37,5 phr oil

==>

27,27 wt.% oil

* Modification of latex finishing (coagulation and crumb wash) in order to obtaina rubber with a reduced content of residues with low molar mass

Page 51: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Krylene 1712 [phr]Krylene 1500 [phr]mod. Krylene 1712* [phr]mod. Krylene 1500* [phr]Carbon black N 339 [phr]Carbon black N 234 [phr]Mineral oil [phr]TMQ [phr]IPPD [phr]DTBD [phr]Stearic acid [phr]Zinc oxide [phr]Sulfur [phr]CBS [phr]DPG [phr]

InfluenceInfluence of of NoneNone PolymericPolymeric ResiduesResidues on Compound and on Compound and VulcanizateVulcanizate PropertiesProperties: Compound : Compound CompositionComposition

68,7550---

8020,00,5

0,750,752,02,51,91,20,3

--

68,7550-

8020,00,50,750,752,02,51,91,20,3

103,1325,0

--

80,0-

10,00,5

0,750,752,52,51,91,1

0,55

--

103,1325,080,0

-10,00,50,750,752,52,51,91,10,55

* Modification of latex finishing (coagulation and crumb wash) in order to obtaina rubber with a reduced content of residues with low molar mass

Krylene 1712 [phr]Krylene 1500 [phr]mod. Krylene 1712* [phr]mod. Krylene 1500* [phr[

Compound-Mooney ML1+4 (100°C) [MU]

Rheometer (160°C)ΜΜΜΜL [dNm]∆∆∆∆ F [dNm]ts1 [min]t50 [min]t90 [min]

Vulcanizate Properties:Tensile Strength [MPa]Elongation at break [%]M100 [MPa]M300 [MPa]Shore A Hardness/23°CShore A Hardness/70°CRebound/23°C [%]Rebound/70°C [%]

InfluenceInfluence of of NoneNone PolymericPolymeric ResiduesResidues on on Compound on Compound on VulcanizateVulcanizate PropertiesProperties

103,1325,0

--

67,0

8,335,34,87,511,2

17,34252,512,669632538

68,7550--

73,5

9,137,34,78,2

12,6

17,94802,3

10,972642233

--

68,7550

77,0

10,139,24,57,9

11,1

18,94702,3

11,871642536

--

103,1325,0

71,0

8,838,24,36,89,3

18,54102,714,371642742

Page 52: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

• Overview

– Property Profile and Application Areas

– Producers and Poroduction Capacities

– Grades and Application Areas

• Manufacturing

– CR-Microstructure

– Monomer Manufacturing Processes

– Basic Features of Polymerization Recipes

• Influence of CR-Microstructure on Chemical and Physical Properties

– Crystallization, Glass Transition Temperature, CR-Vulkanization

• Rubber Grades

– Standard Grades

– Sulfur Grades

– Precrosslinked Grades

• CR-Vulcanization

– Mechanism

• Substitution of CR

3.2. 3.2. PolychloroprenePolychloroprene (CR)(CR)

Sources:- W. Obrecht, Houben Weyl-Müller Makromolekulare Stoffe (1987), volume E20/Teil 2, S. 842-859- P. R. Johnson, Rubber Chem. Technol. 49 (1976) 650-702

CR: Property Profile and CR: Property Profile and ApplicationApplication AreasAreas

Positive Aspects:• High loadability

• gute Vulkanisationsfähigkeit

• Adjustable crystallization rate

• Good vulcanizate properties

• Good dynamic properties

• High weather an ozone resistance

• Good adhesion to metals

• Good resistance against fungi, mould and bacteria

• Fair insulation properties

• Excellent fire resistance

• Low gas permeability

• Broad range of grades

Negative Aspects:• High density (2,5 g/cm3)

• High compound price

• Modest resistance against chemicals and oils

• Crystallization at low temperatures

• poor ageing resistance at elevated temperatures

Page 53: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Source: Various Press Releases

CR: CR: ProducersProducers and and ProductionProduction CapacitiesCapacities (2010)(2010)

X-Chongquing/China28Chonquin Changshou Chemicals

X-Yerewan/Armenia10Nairit Scientific Industrial

360Total

X

X

-

X

X

X

-

Butadiene

-

-

X

-

-

-

X

Acetylene

Kawasaki/Japan20Showa Denko KK

India25Pidilite

Datong/China25Shanxi Syntheic Rubber Co

Nanyo/Japan32Tosoh

Pontchartrin/USA45DuPont

Dormagen/Germany75Lanxess

Omi/Japan100Denki Kagaku Kogyo KK

SiteCapacityProducer

Grenoble/France

Houston/USA

Maydown/N.-Ireland

Louisville/USA

Site

25Polimeri (BP)

25Bayer

30

50

DuPont

CapacityProducer

Plant ClosuresStagnant CR-Consumption in WE and USA

Growing Consumption in South-East Asia

CH CH

CH CH CH2

CH CH CH2

CH2

CHCHCH2 CH

2

Cl Cl

CH CH CH2

CH2

ClCl

CH2

CH

ClCl

CH CH2

CH CH2

Cl

CH2 CH CH CH

2CH

Cl

HCl/CuCl(30-60°C)

2

CuCl/NH4Cl/HCl

Nieuwland

Acetylene Route (1930) Butadiene Route (Gas phase chlorination / 1956)

+

+

+ NaOH - HCl (85°C)

Cl2

CuCl

(ca. 40 %)

Side products: chlorinated C8-Compounds Tetrachlorobutane

(ca. 60 %)

1-Chloroprene (impurity)2-Chloroprene

+

+

DE 1149001; Knapsack AG, Prior.:10.07.1961Erf.: W. Vogt, K. Kaiser, H. Weiden

GB 804254; Distillers Co. Ltd. , Prior.:21.03.1956;Erf.: F. J. Bellringer

Monomer Monomer ManufacturingManufacturing ProcessesProcesses

C CH CH2

Cl

CH2

C C CH2

Cl

CH2

Cl

C CH CH2

Cl

CH2

Cl Cl

+

+ NaOH/85°C - HCl

Cl2

2-Chlorobutadiene-1,3 (Chloroprene)

Only DuPont, Lanxess und Denki

produce DCB

2,3-Dichlorobutadiene 1,3

(DCB)

Page 54: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CR: Grades and CR: Grades and AplicationAplication AreasAreas

DCB-Content of Monomer Feed [phm]

Po

lym

eriz

ati

on

Tem

pera

ture

[°C

]

0 1 2 3 4 5 6 7

Latex Grades Rubber Grades

(Standard Grades, precrosslinked grades

and sulfur grades)

AdhesiveGrades

50

45

40

35

30

25

20

15

10

0

CR Application Areas (2006)

Rubber

Applications

60%

Latex

applications

5%Latex based

adhesives

5%

Solvent

based

adhesives

30%

Application Areas of Rubber Grades

Profiles

11%Hoses

44%

Belts

12%

Cables

21%

Conveyor

Belts

12%

CR: CR: InfluenceInfluence of of PolymerizationPolymerization TemperatureTemperature on on MicrostructureMicrostructure

Polymerization Temperature [°C]

1,4

-tra

ns

-Co

nte

nt

[Mo

l %

]

0 10 20 30 40 50 60 70

Rubber- and Latex GradesAdhesivegrades

95

90

85 80

CH2

C2

C3

CH2

Cl

H

CH2

C2

C3

CH2

Cl

H1,2 3,4

CH2

C C

CH2

Cl

H

CH2

C C

CH2

Cl H

1,4-trans

1,4-cis

Polymerization 1,4-trans- 1,4-cis 1,2 3,4temperature [°C] [%] [%] [%] [%]

+12 94,5 3,8 1,0 0,8+30 93,5 4,5 1,2 1,0+42 93,5 4,5 1,2 1,1+57 91,5 5,8 1,4 1,3+75 88,5 8,4 1,5 1,4

For commercially available CR-grades small differences in thepolymerization temperature and in the 1,4-trans content are an important

factor

Tg [°C] -45 -20

Tm [ °C] 105 70

trans-1,4

> 89%

Microstructure cis-1,4

> 95%

Page 55: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CR: Basic Features of CR: Basic Features of CRCR--PolymerizationPolymerization RecipesRecipes

CH3

CH3

COOHH

CH3

CH3

COOHH

CH3

CH3

COOHH

+ +

Dehydroabietic Acid Dihydroabietic Acid Tetrahydroabietic Acid Na-Methylene-Bis(Naphthalinsulfonate)

(Baykanol PQ R)

CH2

-SO3

Na

-SO3

Na

2 Na +

60 - 85

20-50

-

-

0,0125

0,2-1,0

0,05-0,5

0,3-0,7

0,5-1,0

2,5-5,0

100-200

-

100

Latex grade

70 - 85

30-50

0,1-0,3

-

0,0125

0,2-1,0

0,05-0,5

0,3-0,7

0,5-1,0

2,5-5,0

100-200

-

100

Precrosslinkedgrades

60 - 85

30-50

-

0,3-0,7

0,0125

0,2-1,0

0,05-0,5

0,3-0,7

0,5-1,0

2,5-5,0

100-200

0 - 10

90-100

Sulfurgrades

60 - 85

30-50

-

-

0,0125

0,2-1,0

0,05-0,5

0,3-0,7

0,5-1,0

2,5-5,0

100-200

0 - 10

90-100

Standard grades

-Sulfur

-Dimethacrylates of alkanediols

5 - 20Polymerization temperature [°C]

60 - 85Monomer conversion [%]

0,0125Na-Anthrachinon-2-Sulfonate

0,2-1,0Potassiumpersulfate

0,05-0,5n-dodecylmercaptane

0,3-0,7Na-methylene-bis(naphthalinsulfonate)

0,5-1,0NaOH or KOH

2,5-5,0Disproportionated abietic acid

100-200Water

-2,3-Dichlorobutadiene

100Chloroprene

Adhesivegrade

Recipe Ingredients [wt.-parts]

Dependence of Shore A Hardnesson Crystallization Rate

Sh

ore

A H

ard

ne

ss

Storage time [h]

0,1 1 10 100 1000 10000

Hi

He-Hi

He

t1/2

1/2(He- Hi)

CR: Determination of CR: Determination of CrystallizationCrystallization RateRate

Source: U. Eisele: Internal Bayer-Reporting System

Mercury dilatometry for the determinationof crystallization rate

(Tc =-5°C pretreatment: 30 min at 80°C)

Storage time [h]

0,1 1 10 100 1000

80

60

70

50

40

30

20

10

0

Vo

lum

e[m

m3]

Page 56: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

30

Dependence of t1/2 on StorageTemperature

(Baypren 210; Pretreatment: 1 h / 60°C)

Storage Temperature [°C]

5

10

15

25

20

t 1/2

[h

]

0

-20 -15 -10 -5 0 5 10 15 20

CR: CR: CrystallizationCrystallization Rate and Rate and CrystalliteCrystallite Melting Melting TemperatureTemperature

Source: U. Eisele „Introduction to Polymer Physics“ Springer Verlag

0

10

20

30

40

50

60

70

80

-60 -10 40

Polymerization temperature [°C]

Cry

sta

llit

e m

elt

ing

te

mp

era

ture

[°C

]

lowest figures

highest figures

Dependence of Crystallite Melting Temperatures on Polymerization

Temperature

DCB-Content of Monomer Feed [%]

Tg

[°C

]

DependenceDependence of of TgTg and and CrystallizationCrystallization Rate at Rate at --1010°°C on C on Monomer Monomer FeedFeed and and PolymerizationPolymerization TemperatureTemperature

- 31

0 3 12 1596

- 38

- 37

- 36

- 35

- 33

- 34

Sym-bol

T[°C]453525155

t 1

/2[h

]

10-1

100

102

101

103

0 3 9 12 156

DCB-Content of Monomer Feed [%]

45 35 25 15 5

Polymerization-temperature [°C]

Page 57: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CrystalliaztionCrystalliaztion Rates of Rates of UnvulcanizedUnvulcanized CR, CR, UnvulcanizedUnvulcanized CRCR--CompoundsCompounds and and CRCR--VulcanizatesVulcanizates at at -- 1010°°CC

t1/2 [h] (unvulcanized CR)

500

400

300

200

100

0

0 100 200 300 400 500 600 700 800

B. 210

B. 112

KA 8418

B. 110

B. 110 VSC

t 1/2

[h]

Unvulcanized CR-compounds

CR

-base

svu

lcan

izate

s

Unvu

lcan

ized

CR

CR 100,0 phr

Carbon black (N 762) 75,0 phr

Polyetherthioether 10,0 phr

Vulkanox DDA 2,0 phr

Vulkanox 4010 NA 0,5 phr

Stearic acid 0,5 phr

Magnesium oxide 4,0 phr

Zinc oxide 5,0 phr

25

20

15

10

5

0

DependenceDependence of of CrystallizationCrystallization Rate on Rate on BlendingBlending Ratio of Ratio of TwoTwoCRCR--GradesGrades and on Type of and on Type of PlasticizerPlasticizer

t 1/2

[h

]

Baypren 110 VSC (slowly crystallizing)

Baypren 210 (normally crystallizing) 0 20 40 60 80 100

100 80 60 40 20 0

Unvulcanized ISO- 2475-1975 Compounds; Measurements at - 10°C

CR 100 phrStearic acid 0,5 phrMagnesium oxide 0,5 phrPhenyl-2-Naphthylamin 2,0 phrCarbon black (N 772) 30 phrZinc oxide (active) 5,0 phrVulkacit® NP 0,5 phr

300

Influence of Plasticizers(CR-grade: Neoprene® W (~ Baypre® 210)

Temperature [°C]

50

100

150

250

200

t 1/2

[h

]

0

-20 -15 -10 -5 0 5 10 15 20

Source:R. M. Murray, J. D. Detenber Rubber Chem . Technol. 34 (1961) 668-685 “First and Second Order Transitions in Neoprene“

Neoprene® W + mineral oil

Neoprene® W + Butyloleate

Page 58: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DependenceDependence of of CompressionCompression Set (CS) of Different Set (CS) of Different CRCR--GradesGrades on on StorageStorage TemperatureTemperature

Temperature [°C]

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

100

90

80

70

60

50

40

30

20

10

0

DCB-containing rubber grade (Baypren® 110) DCB-free rubber grade (Baypren® 210)CR Adhesive grade (Baypren® 320)

Bayer-Brouchure: „Chloropren-Kautschuk von Bayer: Der vielseitig einsetzbare Werkstoff“

CS

(1

68

h / v

ari

ab

le t

em

pe

ratu

res)

RecipeRecipe Features Features whichwhich areare specificspecific forfor Different Different CRCR--RubberRubber GradesGrades

CH2

CH CH2

Cl

CH2

CH2

Cl Cl

CH2

CH3

O

OCH2

CH3

O

O CH2

n

S

SS

S

SS

S

S

2 - Chloro - 1,3 - Butadiene

2,3 - Dichloro - 1,3 - Butadiene

Dimethacrylate

Sulfur

• Standard CR-Grade

• Sulfur Grade

• Precrosslinked CR-Grade

Page 59: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Molar Molar MassMass ControlControl byby MercaptanesMercaptanes and and bybyXanthogendisulfidesXanthogendisulfides

Molar mass control by Xanthogendisulfides results in the formation of polymer molecules withtwo identical (xanthate) end groups. Xanthate end groups participate in vulcanization. As a consequence, vulcanizates based on xanthate modified CR exhibit better mechanical propertiesthan mercaptane modified CR

Molar mass control by mercaptanes

P* + HS - R P - H + R - S*

R - S* + nM R - S - Mn*

R - S - Mn* + HS - R R - S - Mn - H + R - S*

Molar mass control by Xanthogendisulfides

P* + (RO - CS - S -)2 P - S - CS - OR + RO - CS - S*

RO - CS - S* + Mn RO - CS - S - Mn*

RO - CS - S - Mn* + (RO - CS - S -)2 RO - CS - S - Mn - S - CS - OR + RO - CS - S*

CR: CR: InfluenceInfluence of End of End GroupsGroups on on VulcanizateVulcanizatePropertiesProperties

30 40 50 60 70 80 90 100 110

ML 1+4 (100°C)

16

15

14

13

12

11

10

Modulus M300 [MPa]

Ten

sile

Str

ength

[MP

a]

22

21

20

19

18

10 11 12 13 14 15

ISO-Compound 2475CR 100,0 phrCarbon black N 762 30,0 phrStearic Acid 0,5 phrMgO 4,0 phrPhenyl-2-Naphthylamine 2,0 phrZnO active 5,0 phrVulkacit NPV/C 0,5 phr

Vulcanization: 40 min/150°C

CR-grade with xanthate end groups

Mercaptan modified CR-grade

M300

[MP

a]

Page 60: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DynamicDynamic ResistanceResistance of of CRCR--StandardStandard Grades (Grades (MonsantoMonsanto Test)Test)

52 54 60 62 64 665856

Strain Amplitude[%]

0

50

100

150

250

200

Cy

cles

un

til

fail

ure

[kcy

cles

]

Source: R. Musch presented at the 140th ACS Rubber Division Meeting, Detroit October 8-11, 1991

68

Xanthate modified CR-Grade (Baypren 121) unaged

7 days / 100°C

Mercaptane modfied CR-grade (Baypren 110 VSC) unaged

7 days / 100°C

ISO-Compound 2475CR 100,0 phrCarbon black N 762 30,0 phrStearic Acid 0,5 phrMgO 4,0 phrPhenyl-2-Naphthylamine 2,0 phrZnO active 5,0 phrVulkacit NPV/C 0,5 phr

Vulcanization: 40 min/150°C

CRCR--SulfurSulfur GradesGrades

NR2 C S CH

2

S

C

Cl

CH CH2

S CH2

C

Cl

CH CH2

S C NR2

S

u v w x y( )()

Application:Vulcanizates which are based on CR sulfur grades perform particularly well in dynamicapplications. As a consequence, belts which meet the requirements of different applications area major application area (conveyor belts, V-belts, poly-v-belts, timing belts)Production:CR-Sulfur Grades are obtained by two consecutive production steps (1. Polymerization and 2. Chemical break down of high molar masses)In the 1st production step chloroprene and sulfur are copolymerized. The copolymers obtainedhave a high molar mass and long sulfur bridges. In the 2nd production step, the molar mass of the copolymers is reduced by a break down of sulfur bridges (peptization). As a consequence of the chemical breakt down of the sulfur bridges dithiocarbamate end groups are incorporated. These end group participate in vulcanization.. As a consequence, the number of dangling chainends is reduced and vulcanizate properties are improved. Compounding and Vulcanization:During compounding residual sulfur bridges are broken down "Mastication". Sulfur grades can be vulcanized by the addition of ZnO and/or MgO (without the addition of accelerators).Critical Aspects:During storage, the Mooney viscosity of sulfur modified CR can increase or decrease. Heatresistance of vulcanizates based on sulfur modified CR is inerior to that of standard CR.

Page 61: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ProductionProduction of of CRCR--SulfurSulfur GradesGrades

S CH2

Cl

CH CH2

S S CH2

Cl

CH CH2

S S

S

NR2

S

NR2

S

S

NR2

S CH2

CH CH2S CH

2

Cl

CH CH2

S S

S

NR2

v x( )()

a w

x)(

v( )

a n

n

w

CH2

C

Cl

CH CH2

S8+

1) Copolymerization of Chloroprene and Sulfur

2) Chemical break down of high molar masses by the use of disulfides, particularly Thiuramdisulfides

Impact of Impact of thethe AmountAmount of Incorporated of Incorporated SulfurSulfur on on MasticationMasticationand and AgeingAgeing PerformancePerformance

30

32

34

36

38

40

42

44

46

48

50

0 2 4 6 8 10

Mastication time [min]

ML

1+

4 (

10

0°C

) [M

E]

Baypren 510

Baypren 610

Inco

rpora

ted

Su

lfu

r

Mastication:

Mill size: 200 x 400 mmFriction: 1:1,2Revolutions: 20 min-1

Width: 1,2 mmAmount: 600 mg

0

10

20

30

40

50

60

70

80

0 0,2 0,4 0,6

Sulfur [phm]

Ch

an

ge o

f M

10

0 (

7d

/10

0°C

) [%

]

Compound Ingredients:

CR 100 phrRuß (N 762) 75 phrPolyetherthioether 10 phrVulkanox DDA 2,0 phrVulkanox 4010 NA 0,5 phrStearic acid 0,5 phrMagnesium oxide 4,0 phrZinc oxide 5,0 phr

Page 62: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

VulcanizationVulcanization of of CRCR--SulfurSulfur GradesGradesH

CH

H

N

S

N

S Sx

S

S

S

N

H

S

Sx

S

S

H

C

H

N

S

N

SH

CR-Sulfur grades (which are fullycommercially available) containdithiocarbamate end groups which areattached via sulfur bridges. These end groups are active in vulcaniaztion.

CR-Sulfur grades can be considered as "rubber bound intermediates“ which areknown from theoretical considerationson the mechanism of sulfur cure.

As a consequence, CR sulfur grades arevulcanized by the use of ZnO and MgO(+ Stearinsäure) without usingaccelerators.

CR sulfur grades exhibit a criticalstability of Mooney viscosities duringstorage particularly at elevatedtemperatures.

PrecrosslinkedPrecrosslinked CRCR--GradesGrades

CR-Gel

Ungelled

(soluble)

CR

Application:

Unvulcanized CR compounds whichcontain CR gel exhibit good processingfeatures, particularly a low die swell.

Major application areas are extrudedarticles (wiper blades as well as windowand door seals In these applications CR is being substituted by EPDM and TPEs.

Production:

Precrosslinked CR-rades are blends of gelled CR and ungelled (soluble) CR. Thetwo blend components are producedseparately by emulsion polymerization. Prior to finishing, the two latices areblended. By the latex blending process a good dispersion of the gelled CR pariclesin the soluble CR phase is achieved.

ded0

Rubber Compound

Die swell = x 100de

do

Page 63: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

PropertiesProperties of of PrecrosslinkedPrecrosslinked CRCR--GradesGradesD

ie S

well

[%]

26

38

42

46

34

30

50

10

16

18

20

14

12

Gel content [wt.% %]

Ten

sil

eS

tren

gth

[MP

a]

0 10 20 30 40 50 60 70

Gel content [wt.% %]

0 10 20 30 40 50 60 70

VulcanizationVulcanization of CRof CR

CH2

CH2

NHNH

S

CH2

Cl

CH

CH2

CH2

CH2

NHNH

S+

CH2

CH

CH2

CH2

CH2

NHNH

Cl S

CH2

CH

CH2

CH2

CH2

NHNH

O S

CH2

CH

CH2

CH2

CH2

NHNH

O S

CH2

CH

CH2

CH2

CH2

NHNH

O

S

CH2

CH

CH2

S

CH2

CH

CH2

CH2

Cl

CH

CH2

CH2

CH

CH2

S

CH2

CH

CH2

- ZnCl2

Cl

+

+ ZnO

- ZnCl +

-

Mechanism of CR-Vulcanization according to Pariser/Du Pont

+ ZnCl ++

CH2CH

2

NHNH

S

CH2CH

2

NS

S

CH3

Ethylenethiourea(ETU/Vulkacit(R) NPV)

"cyclic Dithiocarbamate" (Vulkacit(R) CRV)

Chemicals for CR-Vulcanization

OS

S

R

NR2

S

S

Sx

Xanthate end groups are presentin in xanthate modified CR

Dithiocarbamate end groups arepresent in sulfur modified CR

End groups which participate inCR-Vulcanization

Page 64: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Substitution of CRSubstitution of CR

0 20 40 60 80 100 120 140

max. Volume Swell in ASTM-Öl Nr. 3 [Vol %]

ma

x.

se

rvic

ete

mp

era

ture

[°C

]

100

125

150

175

200

225

250

75

50

FKM

FMVQ

FZ

EU

CMCSM

norequirements

NRAU

NBR

CR SBR BR

EPDM(H)IIR

EVM

MVQ

AEMACMHNBR

80 % VAcResistance to high temperatures

Resistance to dynamic stress

Price

Resistance to high temperatures, flame resistance

Page 65: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

• Overview– NBR-Microstructure

– Basic Features of NBR and Range of NBR Grades

– Application Areas of NBR and Market

– Producers and Production Capacities

– Range of NBR Grades

– Dependence of Properties on Acrylonitrile Content

• Polymerisation– Emulsifiers

– Initiator systems

– Molar mass regulation

– Copolymerization

• Product groups and Properties– Standard grades

– Carboxylated grades

– Precrosslinked grades

• Vulcanization and Vulcanizate Properties

NitrileNitrile Rubber (NBR)Rubber (NBR)

NBR: NBR: MicrostructureMicrostructure

CH3

CH2

CH21

CH2

4

CH2

CH CH

CH2

CH2 CH

21

CH3

CH

2

4

1,4-cis 1,4-trans Vinyl Acrylonitrile

CN

CH2CH

21

δ +δ +δ +δ +

δ δ δ δ −−−−

C

N

CN

Page 66: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DependenceDependence of of thethe MicrostructureMicrostructure of Incorporated of Incorporated ButadieneButadiene MoietiesMoieties on on PolymerizationPolymerization TemperatureTemperature

Source:The Synthetic Rubber Manual (International Institute of Synthetic Rubber Producers, Houston (1989)

Polymerization-

temperature

[°C]

-20

5

50

100

Microstructure of Butadiene Sequences

1,4-cis 1,4-trans Vinyl

[%] [%] [%]

0,8 79,6 19,6

7,7 71,5 20,8

14,8 62,0 23,2

27,6 51,4 21,0

Basic Features of NBRBasic Features of NBR

Positive:• Low degree of swelling in oil, fuels, greases and fats

•High kevel of mechanical properties•High abrasion resistance especiall for carboxalatedgrades

• Broad range of grades• Low gas permeability• Low price level / high competition

Negative:• Maximal service temperature: < 110 °C

(Criterium: 1000 h / εεεεb=0,5*εεεεb0)• Standard grades are not applicable for outdoor use

(contrary to NBR/PVC-Blends)

slow cure

peroxide cure

Fast curing / Low mouldfouling

(Injection moulding)

liquid NBR-HO-terminated-COO-terminated-NH2-terminated

NBR-powder grades

NBR/PVC-Blends

NBRmit bound antioxydant

X-NBR Special grades

Standard

grades

Precrosslinked NBR

Page 67: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NBRNBR--ApplicationApplication AreasAreas in Western Europein Western Europe

Others

4%

Adhesives

1%

Cable and

wiring

5%

shoes

5% building

5%

Rubber

modification of

Thermoplastic

and

duroplastic

polymers

11%

Automotive

35%Rubber Goods

(without

automotive)

34%

time in ASTM-ÖL3 [days]0 7 14 21

0

50

100

150

200

250

300

NBRCR

SBR

NR

Vo

lum

esw

ell

[%]

NBR:MarketNBR:Market-- und und DevelopmentDevelopment

0

50

100

150

200

250

300

350

400

450

1985

1990

1995

2000

2005

2010

Co

ns

um

pti

on

[j/

y]

Page 68: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NBR: NBR: ProductionProduction CapacitiesCapacities(European Rubber Journal 181, n(European Rubber Journal 181, noo 4, April, S. 10 1999; 4, April, S. 10 1999; updatedupdated in in JulyJuly 2010)2010)

Zeon Tokuyama / JP 45 NipolKawasaki /JP 20 NipolLouisville / USA Goodrich 35 HycarHouston / USA Goodyear 28 ChemigumBarry/Wales / GB BP 15 Breon(Baton Rouge / USA) (Copolymer) 15 (Nysin)

Lanxess La Wantzenau / FR Polysar 100 Perbunan / KrynacLeverkusen / DE Bayer 35 PerbunanSarnia / CAN Polysar 25 Perbunan / KrynacTriunfo / BRA Petroflex 30 Perbunan

JSR Yokkaichi / JP 35 JSR NBRPolimeri Porto Torres / IT 30 EuropreneParatec Altamira / Mexico Negromex/Uniroyal 25 ParatecKorean Kumho Ulsan 20 Kumho NBRLucky Gold Hyundai 16President Kaoshing / Taiwan 15Eliokem Sandouville / FR Goodyear 11 Chemigum (Powder)

Valia /Gujarat - Indien Goodyear 25 Chemigum (bales)Nitriflex Duque de Caxais / BRA 10 Nitriflex/NitricleanPASA Santa Fe 5S&C Bareilly 2Sibur Omsk

Total: 424

NBRNBR--StandardStandard GradesGrades

Mooney Viscosity ML 1+ 4 (100°C)

Acr

ylo

nit

rile

con

ten

t[w

t. %

]

without pretreatment (DIN 53523)

15

20

25

30

35

40

20 30 40 50 60 70 80 90 100 125

45

50

Page 69: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NBR: NBR: DependenceDependence of of TgTg on on AcrylonitrileAcrylonitrile ContentContent

Tg

[°C

]100

80

60

40

20

+0

-20

-40

-60

-80

-100

0 10 20 30 40 50 60 70 80 90 100

Acrylonitrile content [wt.%]

E-BR

PAN

Gordon-Taylor-Equation*

TgCopolymer = w1*Tg1 + w2*Tg2

TgE-BR = - 80°C

TgPAN = + 100°CRange of C

omm

ercia

l gra

des

*Gordon M., Taylor J. S., J. Appl. Sci., 21, 581 (1950)

NBR: NBR: DependenceDependence of of VolumeVolume SwellingSwelling on on AcrylonitrileAcrylonitrile ContentContent

vvvv

vW

eig

ht

Ch

an

ge[

%]

90

80

70

60

50

40

30

20

10

0

-10

0 5 10 15 20 25 30 35 40 45 50

Acrylonitrile content [wt.%]

Fuel C (Isooctan/Toluene: 50/50)Fuel B (Isooctan/Toluene: 70/30)

ASTM Öl Nr. 3 (aromatic/naphthenic)ASTM Öl Nr. 1 (paraffinic)

Expt. Conditions:

14 days

Fuel B and C: 20°C

ASTM-Oils: 140°C

Page 70: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DependenceDependence of of ShoreShore AA--HardnessHardness and Rebound on and Rebound on AcrylonitrileAcrylonitrile ContentContent

Reb

ou

nd

[%

]

50

40

30

20

10

0

0 5 10 15 20 25 30 35 40 45 50

Acrylonitrile [wt.%]

75°C

20°C

Source: Rubber, 3 Synthetic Ullmann‘ s Encyclopedia of Technical Chemistry, Vol A 23 (1993)

Sh

ore

A H

ard

nes

s

90

80

70

60

50

400 5 10 15 20 25 30 35 40 45 50

Acrylonitrile content [wt.%]

75°C

20°C

DependenceDependence of of CompressionCompression Set on Set on AcrylonitrileAcrylonitrileContentContent

Co

mp

ress

ion

Set

(70

h/1

00°C

) [%

]

50

40

30

20

10

0

0 5 10 15 20 25 30 35 40 45 50

Acrylonitrile-content [wt.%]

Source: Rubber, 3 Synthetic Ullmann‘ s Encyclopedia of Technical Chemistry, Vol A 23 (1993)

Page 71: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NBRNBR--PolymerizationPolymerization: : ActivationActivation of of PolymerizationPolymerization, , Molar Molar MassMass Regulation and Regulation and DeactivationDeactivation

Redox Initiation:R-OOH + Fe2+ R-O* + OH- + Fe3+

Fe3+ + Reducing agent Fe2+ + oxydized Reducing agentR-O* + Monomer R-O-Mon*

Growth reaction:R-O-Mon* + n Monomer P*

Molar Mass Regulation by Mercaptanes:P* + HS - R P - H + R - S*R - S* + n Monomer R - S - Mn*

R - S - Mn* + HS - R R - S - Mn - H + R - S*

Transfer Reaction:P* + R - H R - H + P*

Deactivation:P* + P* P - P

EmulsifiersEmulsifiers forfor NBRNBR--PolymerizationPolymerization

CH3

CH3

COOHH

CH3

CH3

COOHH

CH3

CH3

COOHH

CH3

CH3

COOHH

+ +

Abietic Acid Dehydro abietic acid Dihydro abietic acid Tetrahydro abietic acid

Pd

Disproportionated Abietic Acid

Methylen-Bis (Naphthalin- sulfonsäure), Na-Salz (Baykanol PQ(R))

CH2

-SO3

Na

-SO3

Na

2 Na +

Partially hydrogenated tallow fatty acids

Producer Brand name C14 ges. C14 ges. C18 ges. C18 unges.BAX AG IS/1 3,1 32,5 33,5 31

Holm THT 1618W 0,4 27,5 34,8 37,3

Oleon Radiacid 40 3,5 35,1 24,8 36,6

Unichema Prifac 5910 2,6 37,7 31,5 28,3

Cognis Edenor C1618 1,2 40,3 26,4 32,1

Sulfates- und Sulfonates (Examples)Na-Laurylsulfate (Texapon)

Na-Alkylarylsufonate (Marlon)

Na-Alkylsufonate (Mersolat)

Page 72: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ActivatatorActivatator Systems Systems forfor NBRNBR--PolymerizationPolymerization

CH2

CH2

CH

CH2

CH2

CHCH3

CH3

CH3

O O H

N CH2

CH2

N

CH2

CH2

CH2

CH2

OH

OH

OH

OH

O

OO

O

S

O

O

H

O

H

H Na+

Fe SO4

p-Menthylhydroperoxide (p-MHP)

Na-FormaldehydesulfoxylateNa-Hydroxymethanesulfinate

Ethylenedinitrilotetraacetic acid (EDTA)

Ion-(II) sulfate

(NH4)2 S

2O

8

N

CH2

CH2

CH2

CH2

CH2

CH2

OH OH

OH

Ammoniumperoxodisulfate

Triethanolamine

“Organic“ Activation System“Inorganic“

Activation System

CopolymerizationCopolymerization Diagram Diagram forfor thethe CopolymerisationCopolymerisation of of Butadiene/ACNButadiene/ACN-- ((forfor incrementalincremental conversionsconversions))

0 10 20 30 40 50 60 70 80 90 100

Acrylonitrile content of monomer feed [wt.%]

Acr

ylo

nit

rile

con

ten

tof

poly

mer

[w

t. %

] 100

90

80

70

60

50

40

30

20

10

0

Copolymerization Parameters

(ACN = M1; Butadiene = M2)

5°C: r1 = 0,02; r2 = 0,28

50°C: r1 = 0,04; r2 = 0,42

Azeotropic composition:

(calculated for 5°C)

Acrylonitrile: ca. 38+5 Gew.%

Butadiene: ca. 62+ 5 Gew.%

k11r1 =k12

k22r2 =k21

Source: W. Hofmann, Nitrilkautschuk, Berliner Union Verlag

AzeotropicComposition

Ideal Copolymerisation

Page 73: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NBR: NBR: DependenceDependence of Integral of Integral CopolymerCopolymerCompositionComposition on Monomer on Monomer ConversionConversion

Acr

ylo

nit

rile

Con

ten

tof

Poly

mer

[G

ew. %

]100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

Monomer Conversion [%]

Acrylonitrile content

of monomer feed:

60 wt.%

50 wt.%

38 wt.%33 wt.%28 wt.%

20 wt.%

10 wt.%5 wt.%

Modellierungsparameter

(ACN = M1; Butadien = M2):

r1 = 0,02; r2 = 0,28

W. Hofmann, Nitrilkautschuk, Berliner Union Verlag

NBR: NBR: DependenceDependence of of IncrementalIncremental and Integral and Integral AcrylonitrileAcrylonitrile ContentContent on Monomer on Monomer ConversionConversion

Acr

yln

itri

lon

itri

leco

nte

nt

of

poly

mer

[w

t. %

]

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

Monomer conversion [%]

Monomer Feed:

Acrylonitrile: 73,7 wt.%

Butadiene: 26,3 Gew.%

Copolymerizatin parameters:

r1 = 0,023; r2 = 0,30

Incremental composition

Integral composition

Incorporation of ACN during batch-polymerization

For the production of a NBR-grade with

a high chemical homogenity one or both

of the two monomers (ACN respectively

butadiene) have to be incrementally added

during the course of the polymerization in

order to compensate for changes in the

composition of the monomer feed, unless

polymerization is performed in the azeo-

tropic monomer composition

Page 74: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NBR: NBR: DependenceDependence of of TgTg on on PolymerizationPolymerization ParametersParameters((BatchBatch--PolymerizationPolymerization))

Lower Tg Upper Tg

[wt.%] [°C] - [%] [°C] [°C]

A 38,9 5 - >57 -19

B 32,8 5 - >57 -22

C 25,8 5 - >57 -61 -33

D 44,8 50 - >57 -13

E 34 50 - >57 -26

F 29,2 50 - >57 -46 -32

G 28,5 50 - >57 -49 -33

H 23 50 - >57 -64 -40

I 21,1 50 + >57 -53

K 31,4 50 - 57 -31

TgMonomer

Conversion

Sample Bound

ACN

Polymerization

temperature

ACN-addition

during

polymerization

Source:V. R. Landi (Uniroyal) Presented at a meeting of the Divison of Rubber Chemistry of the American Chemical Society, Cleveland, Ohio, October 12-15 (1971)

Rubber Chemistry and Technology

Batchwise NBR-Polymerization may result in chemically

inhomogenous blends which exhibit two separate Tg-peaks

InfluenceInfluence of of TDMTDM--QualityQuality on on thethe EfficiencyEfficiency of of Molar Molar MassMass RegulationRegulation

• For NBR-Production C12-Mercaptans are efficient molar mass modifiers

• Tert.-Dodecylmercaptane (TDM) is specifically important

• TDM by Chevron Phillips is based on propene-tetramers

• TDM by Lanxess is based on isobutene-trimers

0

20

40

60

80

100

120

140

160

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Amount of TDM [phm]

Mo

on

ey V

isco

sit

y

ML

1+

4 (

100°C

)

TDM / Lanxess

TDM / Phillips Chevron

Page 75: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Molar Molar MassMass Regulation Regulation byby TDM TDM BasedBased on TIBon TIB

H+

H+

SH

++

Wagner- Meerwein- Rearrangement

+

-

+

"Triisobutene (TIB)"

1. TIB- Production by Isobutene-Oligomerisation

2

+

2. TDM-Production by the Addition of H2S to TIB

H2S / Cat.

2,2',4,6,6'-Pentmethylheptanthiol-4

+

"Triisobutene (TIB)"

TDM-Mischung: Herstellung und Anwendung22.05.2007LanxessDE 102007024009

Zeon

Zeon

Zeon

Company

Preparation of 2,2,4,6,6-pentamethylheptan-4-thiol27.12.1994Jp 07 316 128

Preparation of 2,2,4,6,6-pentamethylheptan-4-thiol27.12.1994Jp 07 316 127

Preparation of 2,2,4,6,6-pentamethylheptan-4-thiol27.12.1994Jp 07 316 126

Patent TitlePriorityPatent No.

ReactionReaction of Incorporated of Incorporated TDMTDM--EndEnd GroupsGroups DuringDuringVulcanizationVulcanization

CH3

C CH2 C CH C CH

3

CH3

CH3

CH3

CH3

CH3

CH3

C

CH2

C

CH2

C

CH3

CH3

CH3

S CH3

CH3

CH3

CH2

CHCHCH2

SHCH2

CHCHCH2

3. Thermal Decomposition of TDM-End Groups

+Vulcanization

TDM derived end groups result in:• Acceleration of speed of cure

• Reduction of free (dangling) chain ends / Improvement of mechanical properties

• During vulcanization TIB is released which causes odour

29.08.1994 (Jp)ZeonEP 0779300

Zeon

Zeon

Company

29.08.1994 (Jp)EP 0779301

Unsatuarated Nitrile/Conjugated Diene copolymer, process for Producing the same, and Rubber Composition

30.03.1993 (Jp)EP 0692496

Patent TitlePriorityPatent No.

Page 76: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DependenceDependence of of NBRNBR--PropertiesProperties on on ContentContent of of Metal IonsMetal Ions

_

Ion-Number = 3 40

cCa cNa cK

23 39++

cMg

24 Atomic weightweight

ppm

Nitrile Rubber with Specific Ion Number22.05.2007LanxessDE 102007024011

Nitrile Rubber with Specific Ion Number22.05.2007LanxessDE 102007014010

Nitrile Rubber with Specific Ion Number22.05.2007LanxessDE 102007024010

Company Patent TitlePriorityPatent No.

Influence of Ions on Speed of Cure:accelerating: Na-, K- Ionsretarding: Mg-, Ca- Ions

DependenceDependence of of NBRNBR--PropertiesProperties on on ContentContent of of Metal IonsMetal Ions

0

10

20

30

40

50

60

70

0,00 20,00 40,00 60,00 80,00 100,00 120,00

Ion-Number (IN)

Mo

on

ey

sc

orc

h M

S5

(1

20

°C)

[min

]

_

Ion-Number = 3 40

cCa cNa cK

23 39++

cMg

24 Atomic Weight

ppm

Page 77: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DependenceDependence of of NBRNBR--PropertiesProperties on Metal Ion on Metal Ion ContentContent

0

1

2

3

4

5

6

7

8

9

10

-20 0 20 40 60 80 100 120

Ion-Number (IN)

M3

00

[M

Pa

]

_

Ion-Number = 3 40

cCa cNa cK

23 39++

cMg

24 Atomic Weight

ppm

NBR: Peroxyde NBR: Peroxyde CurableCurable GradesGrades

Crosslinkingefficiency

1,0

Type of Rubber Theoretical X-linkingefficiency

M - Rubber 1

R - Rubber > 1

Degradating rubbers < 1

NumberNumber of of xx--linkslinksXX--linkinglinking efficiencyefficiency = =

PeroxidePeroxide--functionsfunctions

Rubber

NBRO O O

O C

C

C

C

2

2 +

(R*)

+ 2 R-H

OH

OH

OH

OH

S

OH

Avoidance of phenol-and amine based antioxydants

(=radical scavengers)

Page 78: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

IngredientsNBR (18 wt.% ACN)* [phr]Zinc oxide [phr]Stearic acidVulkanox OCDTMQVulkanox MB-2Carbon black (N 550)Carbon black (N 772)Dioctylphthalat (Vestinol/Hüls)Etherthioether (Vulkanol OT)Vulkalent ESulfur (Rhenocure IS-60-50)Vulkacit CZVulkazit NZVulkacit ThiuramPerkadox BC 40 (Akzo)Vulcanization t [min]/T [°C]

Peroxide100

---

1,0-

40-

5,0------

4,012/180

EV 21005,01,0-

1,51,53050-

6,01,00,3-

1,52,0-

16/160

EV 11005,00,5-

1,0-

50-

5,0--

0,42,0-

2,0-

25/160

EV 31005,00,52,5-

2,580--

201,00,31,5-

2,5-

25/160

* Perbunan NT 1845 (ACN; 18 Gew. %; ML 1+4 (100°C): 50 ME; MR: 14%)

VulcanizationVulcanization of NBR: Compound of NBR: Compound StudyStudy

Vulcanization System

ML1+4 (100°C) [ME]ts [min]t90 [min]

Shore A TS [MPa]εεεεb [%]M100 [MPa]M300 [MPa]

CS (70h/100°C) [%]CS (70h/120°C) [%]CS (70h/125°C) [%]

Brittleness Point [°C]Tg [°C]CS (24h/-20°C) [%]

Peroxide

770,64,9

70 18,32604,2

13,0

--

14

---

EV 2

871,82,6

7219,53654,417,3

20-

31

-62-53,5

17

EV 1

783,27,2

7116,93104,316,3

12--

-60-49-

EV 3

673,47,0

7115,83104,715,4

16--

-62-6020

VulcanizationVulcanization of NBR: of NBR: ResultsResults of Compound of Compound StudyStudy

Page 79: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

C

N

CN

COOH

CarboxylatedCarboxylated NBR (XNBR (X--NBR)NBR)

Application Areas:• Spinning Cods und spinning hoses• high performance shoe soles• pump stators / Pump seals• belts• Hydraulic hoses

Application Areas:• Spinning Cods und spinning hoses• high performance shoe soles• pump stators / Pump seals• belts• Hydraulic hoses

Advantages:• High tensile strength• High moduli• Good dynamic performance (cut growth resistance)• High abrasion resistance

Disadvantages:• Scorchiness of Compounds• Cost of ZnO2 in relation to ZnO• high Compression Set• high heat-built-up bei dyn. Beanspruchung• Reduced ageing resistance

Carboxl-containing monomers:

• Methacrylic acid

• Itaconic acid

• Maleic Acid

C

CH2

OOC

CH3

CH2

COOC

CH3

C

CH2

OOC

CH3

CH2

CCOO

CH3

CH2

C COO

CH3

CCH

2

COO

CH3

C

CH2

COO

CH3

CH2

COOC

CH3

ZnO

Zn

Zn

2+_

2+

2+

Zn

ZnOH+

_

ZnO

_

ZnOH+

_

_

__

_

_

_

CH2

C

COOH

CH3

8

+ ZnO

ChemistryChemistry of of VulcanizationVulcanization withwith Metal Metal oxidesoxides

- H2O

• Vulcanization with metal oxides is used for X-NBR and CSM.

• The following metal oxides are used: CaO, MgO, ZnO and ZnO2

• For scorch safety ZnO2 is superior over ZnO

• Usually, vulcanization with metal oxides is combined with sulfur cure

• Dual vulcanization results in a „hybride-network-structure“

• In a hybride network chemical as well as physical networks are present.

Sources: Eisenberg, A. Macromolecules, Vol 3, 2 (1974) 147 „Clustering of Ions in Organic Polymers - A Theoretical Approach“

Ibarra, L., Alzorriz, M. Polym. Int. 48: 580-586 (1999)

Naskar, N., Debnath, S. C., Basu, D. K.; J. Appl. Pol. Sc., Vol 80, 1725-1736 (2001)

Brown, H. P. Rubber Chemistry and Technol, 30 (1957) 1347 Crosslinking Reactions of Carboxylated Elastomers“

Page 80: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CompoundCompound-- and and VulcanizateVulcanizate PropertiesProperties of NBR and Xof NBR and X--NBRNBR

X - NBR

NBR

CB (N 660)

Dibutylphthalate

Stearic acid

Wingstay 29

Sulfur

TMTD

MBS

Zinc oxide

100

0

40

5

2

1

0,5

2

1

5

50

50

40

5

2

1

0,5

2

1

5

0

100

40

5

2

1

0,5

2

1

5

X-NBR

NBR

Fmin. [Nm]

Fmax.

ts [min]

t90 [min]

t95 [min]

Shore A

M100 [MPa]

M200 [MPa]

M300 [MPa]

TS [MPa]

εεεεb [%]

Abrasion Index

Ageing at 70h/121°C

∆ elongation [%]

CS [%]

100,0

0

9,0

86,3

3,0

10,0

21,5

83

5,2

11,0

18,6

25,5

430

493

- 42

34,1

50,0

50,0

10,2

78,7

2,7

7,0

11,0

80

4,5

10,0

15,5

21,0

415

159

- 35

27,1

0

100,0

8,0

60,0

2,8

6,8

8,3

67

1,7

4,8

11,0

18,2

500

73

- 30

14,7

PrecrosslinkedPrecrosslinked NBRNBR

Properties:• Reduction of die swell

• Increased dimension stability after extrusion

• Improvement of surface quality of extruded/calendered articles

• Increase of Moduli

• Improvement of CS

• Reduction of TS

• Reduction of elongation at break

Properties:• Reduction of die swell

• Increased dimension stability after extrusion

• Improvement of surface quality of extruded/calendered articles

• Increase of Moduli

• Improvement of CS

• Reduction of TS

• Reduction of elongation at break

Precrosslinked NBR High Mooney NBRKrynac 34.80

Precrosslinked NBR-grades provide for high dimensional stability after extrusion which is

only matched by standard NBR-grades with considerably increased Mooney viscosities

Page 81: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

NBR* (34 Gew.% ACN)

NBR (34 Gew.% ACN)

Zincoxide

Stearic acid

TMQ (Vulkanox HS)

Zincmethylmercaptobenzimidazol

Carbon black (Corax N 550)

Vulkanol 81

Sulfur

TBBS (Vulkacit NZ)

TMTD (Vulkacit Thiuram)

10

90

3,0

1,0

1,5

1,5

30

10

0,3

1,5

1,5

Krynac VP KA 8769

Krynac 34.50

Lanxess

Henkel KGaA

Lanxess

Lanxess

Degussa

Lanxess

Kali Chemie

Lanxess

Lanxess

Source: Bayer AG, Marinelli/Welle, KALIS-Nr.: 9588 vom 05. 10. 2000

PrecrosslinkedPrecrosslinked NBR: Compound NBR: Compound StudyStudy

phr

phr

phr

phr

phr

phr

phr

phr

phr

phr

phr

20

80

3,0

1,0

1,5

1,5

30

10

0,3

1,5

1,5

30

70

3,0

1,0

1,5

1,5

30

10

0,3

1,5

1,5

40

60

3,0

1,0

1,5

1,5

30

10

0,3

1,5

1,5

* Precrosslinked NBR

NBR* (34 Gew.% ACN)NBR (34 Gew.% ACN)

Compound-ML [ME]Mooney-Relax. [%]Die swell /linear [%]Fmin. [dNm]Fmax. [dNm]ts1 [min]t90 [min]t95 [min]Shore A/23°CShore A/70°CM100 [MPa]M200 [MPa]M300 [MPa]Tensile Strength [MPa]Elongation at break [%]Rebound/23°C [%]

Rebound/70°C [%]CS (70h/23°C) [%]CS (70h/100°C) [%]

1090425,8

42,90,7710,631,855,316,6151491,22,44,5

19,867740541334

PrecrosslinkedPrecrosslinked NBR: NBR: ResultsResults of Compound of Compound StudyStudy

2080445,6

31,70,9511,311,774,765,8453501,42,95,2

16,456339561332

3070475,5

31,21,1512,11,684,585,5755521,53,25,8

15,556039571330

4060515,7

16,81,4413

1,644,5

5,4857541,73,66,4

14,148839611228

Page 82: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

4. 4. OverviewOverview on Solution Rubberson Solution Rubbers• Features of the Solution Process

• Definition of “Solution Rubbers“

• Isolation of Rubbers from their Solutions– Dry Finishing with Extruders

– Dry Finishing with Heated Mills (under vacuum)

– Solvent Removal by „Steam Striping“

– Expeller Screw for Mechanical Water Removal from Rubber

Advantages:• Use of water sensitive catalyst systems (Z/N, anionic, cationic)• evaporation cooling• low cooling costs if semi- or total adiabatic processses are applied

Disadvantages:• low content of solids• high viscosities• reactor fouling• waste air• waste water (depending on finishing technology)• high drying costs for recycled solvents (depending on finishing technology)

Definition of Solution Rubbers and Definition of Solution Rubbers and ExamplesExamples

Rubber

Ti-BRNi-BRCo-BRNd-BR

Li-BR

L-SBREPM/EPDM

CM/CSMHNBR

IIR

So

lutio

n R

ub

bers

So

lutio

n-B

R

ReactionMedium

solvent solvent solventsolvent

solvent

solvent solvent

solventsolvent

solvent

Catalyst/Process

Z/N*Z/N*Z/N*Z/N*

anionic

anionicZ/N*

polymer modif.polymer modif.

cationic

Hig

h-cis-

1,4

-BR

* Z/N = Ziegler-Natta Catalysis

A “solution rubber” is prepared in the presence of an organic solvent

in which the rubber is either dissolved or dispersed.

Examples

Page 83: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DryDry FinishingFinishing withwith ExtrudersExtruders ((UnderUnder VacuumVacuum))

US 4124306 (French Oil Mill Machinery)Prior.: 30.11.1977Inv.: D. K. Bredesen, G. C. Craig, W. W. Gilius, C. R. Johnson

Dry Finishing: Recovery of rubbers from their solutions by direct evaporationwith extruders without the use of steam

Vent for Devolatilizing Srew press

DryDry FinishingFinishing withwith Hot Mills (Hot Mills (UnderUnder VacuumVacuum))

Dry Finishing: Recovery of rubbers from their solutions by direct evaporationunder vacuum with „heated mills“without the use of steam

Source:

DE 4032598 (Bayer AG)

Prior.: 16.04.1992

Inv.: B. von der Linden, K. Goth

Page 84: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Solvent Removal Solvent Removal byby SteamSteam StrippingStripping

US 2,592,814(Du Pont)Prior.: 20.12.1947Inventor: J. L. LudlowPH-

Control

Steam

Strippingaid

Antioxydant

oil

Stripping

unit Dewatering(expeller)

screw

Expanderscrew

Steam

Waste water

Isolation of CSM from Solution

US 5266211Bunawerke Huels GmbHPrior.: 13.06.19990Inventor: W. Breuker, H. Wagner, E. Moeller, B. Schleimer

Process for Precipitating Polymers

ExpellerExpeller ScrewScrew forfor MechanicalMechanical Removal of Removal of Water Water fromfrom RubbersRubbers

Source:US 2003007709 (Bayer AG) Prior.: 05.07.2001Inv.: N. Schweigler H. Goebel, T.-O. Neuner

After steam stripping a dispersion of rubber crumbs in water isotained. Before thermal drying water is removed mechanically

Source:US 3672641 (French Oil Mill Machinery)Prior.: 14.09.1970Inv.: R. K. Slaby

In order to obtain rubber crumbs a cutting deviceis often attached at the end of a dewatering screw

Page 85: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

4.1. 4.1. OverviewOverview on on PolybutadienePolybutadiene Rubbers (BR):Rubbers (BR):

• BR: Overview– Property Profile and Areas of Application

– Microstructure, Glass Transition Temperature and Crystallization

– Producers and Production Capacities

– Market- und Market Development

• Application of BR for Tyres and for Impact Modification (HIPS/ABS)– Comparison of BR grades in Tyre Performance

• Unvulcanized Compound Properties (Green Strength and Tac)

• Vulcanizate Performance (Dynamic Performance and Abrasion Resistance)

– Comparison of BR-Grades for the Impact Modification of Thermoplastics(HIPS/ABS)

• Principle of Rubber Toughening

• BR Branching and Viscosity of Solutions

• Correlation of Mooney- and Solution Viscosities

• Performance Requirements for Tyres and Impact Modification

• Comparison of Production Technologies for High-cis-BR

• Summary

CH2

CH CH

CH2

CH2

CH CH

CH2

CH2

CH CH

CH2

CH2

CH

CH

CH2

1,4-cis 1,4-trans 1,2- bzw. Vinyl

Property Profile and Property Profile and AreasAreas of of ApplicationApplication

Positive:• Low price and good performance/price-ratio

• Broad range of BR-grades with different molar masses, oil extenison, Tgs etc.

• Brod spectrum of applications(tyres, modification of thermoplastics, TRP, golf balls)

• Dependence of strain induced crystallization on 1,4-cis content

• Low glass transition temperature

Negative:• Poor resistance to heat and ageing

• High degreee of swelling in fuels, oils and greases

• high gas permeability

•Spontaneous crystallization

Golf ball cores

1%

Technical

Rubber

Products

5%

Rubber

Toughening

23%

Tyres

71%

Application Areas

Page 86: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Catalyst Li* Co Ni Ti Nd E-BR**

Tg -93 -106 -107 -103 -109 -80

Microstructure (according to manufacturer‘s product specifications) [%]

1,4-cis 36-38 97 97 93 98 12,9

1,4-trans 52 1 2 3 1 68,3

Vinyl 10-11 2 1 3-4 <1 18,8

Microstructure (according to Thorn-Csanyi et al.) [%]Vinyl/1H-NMR*** 10,4 1,9 4,0 <1 18,1

Vinyl/FT-IR*** 11,4 1,0 5,4 0,6 17,7

Vinyl/Metathese*** 10,7 1,7 4,6 0,7 17,8

BR: BR: MicrostucturesMicrostuctures and Glass and Glass TransitionTransitionTemperaturesTemperatures

* aliphatic, cycloaliphatic aromatic solvents without polar additives

CH2

1

CH2

CH3

CH2

4

CH2

1

CH2

CH3

CH24

CH21

CH2

CH3

CH24

1,4-cis 1,4-trans

*** E. Thorn-Csanyi, H.-D. Luginsland, Rubber Chem. Technol. (1977) 222-230

** Polymer Handbook/Polymerisation temperature: 25°C

1,2- bzw. Vinyl

CrystallizationCrystallization Rate of Rate of UnvulcanizedUnvulcanized and and VulcanizedVulcanized BR BR (Nd (Nd catalyzedcatalyzed BR) BR)

0,1

1

10

100

-100 -80 -60 -40 -20 0

Temperature [°C]

t 1/2

[m

in]

Raw Rubber

Vulcanizate

Source: U. Eisele Introduction to Polymer Physics, Springer-Verlag 1990

Page 87: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

BR: Impact of 1,4BR: Impact of 1,4--ciscis--Content on Content on CrystalizationCrystalization Rate and Rate and Melting Melting TemperatureTemperature of of CrystallitesCrystallites

0

50

100

150

200

250

90 92,5 95 97,5 100

1,4-cis-content [%]

t 1

/2 (

-20

°C)

[min

]

Nd

Ni

Co

Ti

-25

-20

-15

-10

-5

0

90 92,5 95 97,5 100

1,4-cis-content [%]

Me

ltin

g t

em

pe

ratu

re o

f c

rys

tallit

es

[°C

]

Nd NiCo Ti

BR: BR: ProducersProducers and and ProductionProduction CapacitiesCapacities

0

50

100

150

200

250

300

350

400

450

500

Lanxe

ss

Goodye

ar

Mic

helin

Sin

opec

BS/F

S

Kum

ho

Sib

ur

Pol

imer

i

Dow

Thaila

nd

Nizhnek

amsk

nefte

chim

TSRC

Ube

JSR

Asa

hi

Zeon

other

s

Cap

acity [kt]

Source: IISRP Worldwide Rubber Statistics 2001 / Amendments 2011

Page 88: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

SelectedSelected BRBR--ProducersProducers and BRand BR--GradesGrades

0 50 100 150 200 250 300 350 400

Goodyear Tyre&Rubber Co., Beaumont, Tx

ASRC (Michelin), Louisville, Ky

Sinopec, GaoQiao, Caojing

Lanxess, Orange, Texas

BS/FS, Lake Charles, La

Korea Kumho, Yeochin, Yeosu

Lanxess, Port Jérôme, FR

Petroflex, Cabo, BR

Dow, Schkopau, DE

Michelin, Bassens, FR

Nizhnekamskneftechim

Ube, Chiba, JP

Chemizna Dwory, SA, Kralupy, CZ

Lanxess, Dormagen, DE

Polimeri, Ravenna, IT

Capacity [kt]

Li

Ni

Ti

Co

Nd

Li/Co/Nd

Ni/Nd

BR: BR: ApplicationApplication AreasAreas

Tyre Market (2.2 Mio t)Ni-BR

38%

Nd-BR

8%

Li-BR

7%

Ti-BR

18%Co-BR

22%

not

assigned

7%

HIPS/ABS-Market (0,68 Mio t)

Li-BR

48%

Co-BR

52%

Application Areas of BR

Tyres

71%

HIPS/ABS

23%

Technical

Rubber

Goods

5%

Golf balls

1%

Page 89: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Anatomy of a Passenger Tire and Use of BRAnatomy of a Passenger Tire and Use of BR

SidewallNR/BR: 60/40

TreadSBR/BR: 70/30

Sub TreadNR/BR: 80/20

CarcassNR/BR: 90/10

Rim CushionNR/BR: 80/20

ApexNR/BR: 80/20 Source:

ComparisonComparison of BRof BR--Grades Grades forfor thethe ApplicationApplicationin in TyresTyres ((ASTMASTM--CompoundCompound 3189 3189 –– 90)90)

Source:Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group, Order No.: KA 34287e. Edition 10.98

ASTM Designation: D 3189 - 90 „Standard Test Methods for Rubber-Evaluation of Solution BR

BR (Nd-, Co-, Ti-, Li-) 100,0 phr

Zinc oxide 3,0 phr

Sulfur 1,5 phr

Stearic acid 2,0 phr

Carbon black (NBS 378) 60,0 phr

TBBS 0,9 phr

Oil (ASTM Type 103) 15,0 phr

Vulcanization: 145°C/35 min

Page 90: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Green Green StrengthStrength of of BRBR--CompoundsCompounds

0 250 500 750 1000

5

4

3

2

1

0

Str

ess

[MP

a]

Strain [%]

Nd-BRLi-BR Ti-BR Co-BR

Source:

Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group, Order No.: KA 34287e. Edition 10.98

Tack of Tack of UnvulcaniuzedUnvulcaniuzed BRBR--CompoundsCompounds

0

50

100

150

200

250

300

350

100 1000 10000

critical load for separation [g]

tim

e u

nti

l sep

ara

tio

n [

sec]

Li-BR

Ti-BR

Co-BR

Nd-BR

Imp

rov

emen

t

Source:„Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group, Order No.: KA 34287e. Edition 10.98

Page 91: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

VulcanizateVulcanizate PropertiesProperties of BR Gradesof BR Grades

Source:“Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group, Order No.: KA 34287e. Edition 10.98

BR Grade

Vulcanizate properties

Tensile Strength [MPa]

Elongation at break [%]

M300 [MPa]

Shore A-Hardness

Rebound [%]

DIN-Abrasion [mm3]

Pendulum -Skid

Asphalt, dry

Asphalt, wet

Dynamic properties

Goodrich-HBU [°C]

De-Mattia crack growth [mm/kc]

Monsonto-FTF/εεεε =100% [cycles]

Nd

15,3

400

9,4

65

49

23

85

33

27

1,9

460

Co

14,5

525

8,6

63

47

27

85

33

32

6,0

50

Ti

13,4

510

8,1

64

45

33

85

33

36

1,5

115

Li

13,0

480

8,0

66

47

52

89

35

18

5,6

63

1,41,4--cis BR: cis BR: DynamicDynamic Performance of Performance of BRBR--VulcanizatesVulcanizates ((MonsantoMonsanto FatigueFatigue to to FailureFailure Test)Test)

0

5

10

15

20

25

30

35

40

Nu

mb

er o

f K

ilo

cy

cle

s u

nti

l F

ail

ure

Ti Ni Co Nd

Imp

rov

emen

t

Source: D. J. Wilson „Recent Advances in the Neodymium Catalysed Polymerisation of 1,3-Dienes“

Makromol. Chem., Macromol. Symp. 66, 273-288 (1993)

Page 92: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

1,41,4--cis BR: cis BR: AbrasionAbrasion ResistanceResistance of of BRBR--VulcanizatesVulcanizates((DINDIN--AbrasionAbrasion))

20

25

30

35

40

45

50

0 5 10 15Modulus at 300% elongation [MPa]

Ab

rasi

on

[m

m3

]

Ti-BR

Ni-BR

Co-BR

Nd-BR

Imp

rov

emen

t

Source:D. J. Wilson „Recent Advances in the Neodymium Catalysed Polymerisation of 1,3-Dienes“ Makromol. Chem.,

Macromol. Symp. 66, 273-288 (1993)

Phase Phase MorphologyMorphology of Rubber of Rubber ModifiedModifiedThermoplasticsThermoplastics and Thermoset and Thermoset ResinsResins

Soft Phase

BRBREPDMEPMNBR

Hard Phase

SANPSSANPPPP

Examples

ABSHIPSAESEPM/PPNBR/PP

Rubber Modified Thermoplastics

Soft (dispersed) Phase

Grafted Shell„Compatibilizer“Hard Phase (coherent phaseor matrix)

Source:C. Schade, H.-J Renner, W. Heckmann

(BASF)

„Predictive property Adjustment“

Kunststoffe international 7/2010, 36-39

The impact resistance of hard and brittle thermoplasticand duroplastic polymers is improved by rubber particles

Prerequisites for an efficient impact modification are:

1) good dispersion of the rubber phase in the matrix

2) good mechanical bonding across the phase boundaries

3) x-linking of the rubber phase

Page 93: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

InfluenceInfluence of Rubber of Rubber ContentContent on on NotchedNotched Impact Impact ResistanceResistance of of EPM/PPEPM/PP--BlendsBlends

Source:H. Schwager (BASF); Kunststoffe 82, 499 (1992)T. Sasaki, T. Ebara, H. Johoji; Polymers for Advanced Technologies 4, pp. 406-414 „New Polymers from New Catalysts“

Temperature [°C]

No

tch

ed

imp

act

resis

tan

ce

[kJ/m

2]

0 20-20-400

80

60

40

2020

25

3347 37

ho

he

52

Rubber content[wt.%]

Impact of Impact of BranchingBranching on Solution on Solution ViscositiyViscositiyof Liof Li--BR in BR in StyreneStyrene

1

10

100

1000

10000

100000

5 7 9

Solid Contents of BR solution [wt.%]

Vis

co

sit

y [

mP

a*s

]

HX 565 Mooney: 65 Degree of Branching: 50-55

HX 501 Mooney: 40 Degree of Branching: ca. 18

HX 530 Mooney: 65 Degree of Branching: ca. 10

Source: Rubbers as Impact Modifiers for Plastics Bayer AG Rubber Business Group Order No.: KA 34271e

Page 94: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CorrelationCorrelation of Solution and of Solution and MooneyMooney ViscositiesViscosities of of Different BRDifferent BR--Grades Grades

0 10 20 30 40 50 60 70 80

Mooney-Viscosity (ML1+4/100°C) [MU]

260

240

220

200

180

160

140

120

100

80

60

40

20

0Solu

tion

Vis

cosi

ty(5

,43 w

t.%

in

tolu

ene)

[m

Pa*s]

Source: „Rubbers as Impact Modifiers for Plastics“ Bayer AG, Rubber Business Group, Order No.: KA 34271e

Li-BR (commercial grades)

Co-BR (commercial grades)

Star shaped BR

Lin

ear an

d slig

htly

branch

edBR

gra

des

Performance Performance RequirementsRequirements forfor thetheApplicationApplication of BR in of BR in TyresTyres and HIPS/ABSand HIPS/ABS

The performance profiles for HIPS/ABS und for tyresdiffer significantly

Property Performance Requirements

for tyres for HIPS/ABS

Tg as low as possible as low as possible

Vinyl content - > 1 Mol%

Gel content not crical <500 ppm

Solution viscosity - <21 mPas (5,2% / toluene)

colour - colourless

Tack yes -

Green strength yes -

Strain induced crystallization yes -

dynamic resistance yes -

Abrasion resistance yes -

Page 95: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Butadiene 4-Vinylcyclohexene (4-VCH)

Formation of 4-VCH bya Diels-Alder-Reaction

Positivefeature

[ppm]

[%]

[min]

lowVeryhigh

highhighFormation of 4-VCH

100-200200-25050-10010-50Transition metal content

fullyadiabatic

partiallyadiabatic

partiallyadiabatic

partiallyadiabatic

Heat removal

18-2211-1215-1614-22Solids Content

nonoyesyesMolar MassControl agents

Very lowlowhighhighTendency towardsgel formation

<100<95<8555-80Conversion

100-120120120150Residence time

HexaneAliphatics

BenzeneToluene

BenzeneTolueneHexane

Benzene, Toluene(Aliphatics)

Solvent

NdTiNiCoTransition Metal

HighHigh--ciscis--BRBR ProductionProduction TechnologiesTechnologies

SummarySummary

From the different BR grades, Nd-BR is advantageous from two points of view:

• Tyre applications (particularly tyre treads)

• Production technology

For the impact modification of thermoplatics (HIPS and ABS)

• Li-BR and Co-BR are superior

• for Nd-BR a highly branched grade with a low solution viscosity is required

Page 96: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

• Selected Milestones in Rubber History

• Capacities of Multi-Purpose Solution Plants

• Origins of S-SBR Technology and Basic Features

• Chemical Aspects of the Anionic Polymerization and Consequences

– Reaction Mechanism and Catalyst Costs

– Vinyl-Content and Impact on Tg

– Branching and Impact on Processability

– Styrene/Butadiene-Copolymers, Preparation and Properties

– Integral Rubber

• Green Tyre Technology

• Recent Developments in S-SBR Technology Towards Improving Tyre Performance

–Functionalisation of S-SBR

4.2. 4.2. LiBRLiBR and Sand S--SBRSBRWithWith a Special a Special EmphasisEmphasis on Integral Rubberon Integral Rubber

SelectedSelected MilestonesMilestones in Rubber in Rubber HistoryHistory withwith a a Special Special EmphasisEmphasis on on AnionicAnionic PolymerizationPolymerization

1839 Charles Goodyear discovers the vulcanization by sulfur

1888 John Dunlop patents pneumatic tire

1929 First laboratory scale E-SBR by Tschunkur & Bock (Buna S)

1938 Invention of redox activation by Bock (“cold E-SBR“)

Source: H. L. Hsieh, R. P. Quirk, Anionic Polymerization, Principles and Practical Consequences, Marcel Dekker Inc. New. York, Basel 1996

1910 Matthews, Strange (England), Harries (Germany) and Schlenk

(Germany) discover sodium as a catalyst for polymerization

1914-18 Start-up of Methyl-Rubber production in Germany

(2,3-dimethylbutadiene/Na-catalyst)

1929 Ziegler discovers BuLi to be a polymerization catalyst

1936 Ziegler describes the features of the anionic polymerization

1939-45 BR-production in Russia (catalysts based on Na and K)

1952 Start-up of R&D into diene base rubbers/Li-metal by Firestone

1960ies Start- up of commercial productions using anionic initiators by

Firestone, Shell and by Phillips Petroleum

1926 Butadiene rubber developed in Germany (Buna)

Page 97: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Plant Location Capacity [kt] RemarksWestern EuropeEniChem Ravenna 100.000 incl. TPE‘s

Grangemouth 80.000Bayer Lillebonne 120.000Michelin Bassens 85.000Repsol Qimica Santander 80.000 incl. TPE‘sFina Polymers Antwerp 80.000 incl. TPE‘sDow Schkopau 60.000

AmericasASR Louisville, Ky 110.000Bridgestone/Firestone Lake Charles 180.000

Orange 125.000 incl. TPE‘sBayer Orange 30.000Goodyear Beaumont, Tx 360.000Petroflex Cabo 35.000 incl. TPE‘sNegromex Salamanca 30.000

Altamira 10.000

JapanAsahiJapan Elastomer Oita 48.000 incl. TPE‘sNippon Zeon Tokuyama 296.500 incl. E-SBRJSR Yokkaichi 30.000 incl. Hydrogenated polymers

OthersKorean Kumho Yeochon 145.000Taiwan Synthetic Kaohsiung 210.000 incl. TPE‘sDow (Carbochem) Newcastle 30.000

Total Capacity 2.274.500

CapacitiesCapacities of of MultiMulti--PurposePurpose Solution Solution PlantsPlants* * (BR/S(BR/S--SBRSBR--SBSSBS--TPETPE‘‘s)s)

* Source: IISRP Worldwide Rubber Statistics 2001

Origin of basic technology

Firestone/Asahi

Phillips-Petroleum

technology origin not assigned

OriginOrigin of of SS--SBRSBR--TechnologiesTechnologies and Basic Features and Basic Features

Initiator

Solvent

Randomizer

branching agent/chain end coupling

short stop

process

temperature control

sequential monomer addition

Vinyl content of BR-moieties

molar mass distribution of base polymer

Firestone/Asahin-Bu-Li

n-hexane

none

DVB

water

continuous

adiabatic

butadiene

~ 10%

broader

Phillipssec.-Bu-Li

cyclohexane

glymes

DVB, SiCl4, SnCl4

stearic acid

discontinuous, batch

isotherm

one shot

> 20%

narrower

Until today, the technologies have merged and there are onlysmall differencies in the technologies of the leading companies

Feature Technology

Basic Patents:Firestone: US 3317918, CA 966949, US 3205211, FR 1546396, FR 1539429, FR 1539427, BE 718549,

US 3681304, OS 2134656, US 3558575, US 3726844, US 3726844, US 3787377Phillips: US 3458490, US 3438952, US 3502746Bridgestone: JP 75-015271

Page 98: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

MechanismMechanism of of thethe AnionicAnionic PolymerizationPolymerization

Li+

R

CH2

n

R

CH2 Li

+ Li+

Li+

R R

CH2

+

+

Initiation:

Chain growth:

n

Transfer reactions: ideally none

Termination reactions: ideally none

• Under ideal polymerization conditions, there is neither chain transfer nor

termination reactions and the active species are truly living.

• All polymer chains are initiated at the start of the polymerization and all

chains grow up to total monomer consumption.

• The resulting polymer molecules have a narrow molar mass distribution

and a high chemical homogeinity

Features of a Features of a ““LivingLiving PolymerizationPolymerization““

Living Polymerization: Rational for Uniform Terminology T.r. Darling, T. P. Davis, M. Fryd, A. A. Gridnev, D. M.

Haddleton, S. D. Ittel, R. R. Matheson, jr., G. Moad, E. Rizzardo, Journal of Polym. Chemistry, Vol 38, 1706-1708 (2000)

0 0,5 1,0

Monomer Conversion X

Mola

r M

ass

(Mn

) [g

/mo

l]

nInitiator = u

nInitiator = v

nInitiator = w

u < v < w

DP: degree of po0lymerization

Mn: number average of molar mass

X: monomer conversion

nMonomer : amount of monomer [moles]

MWMonomer: molar mass of monomer

nInitiator : amount of initiator [moles]

f: functionality of initiator

u, v, w: amounts of initiator

nMonomer

DP = X nInitiator * f

nMonomer * MWMonomer

Mn = XnInitiator * f

Mn = m * X + C

C = 0

n Monomer * MGMonomerm = nInitiator * f

Page 99: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

0

5

10

15

20

25

0 50000 100000 150000 200000 250000 300000 350000 400000

Molar mass [g/mol]

Co

sts

fo

r B

uL

i [[

Pf/

kg

]

Consequences from the living nature of the polymerization:• Catalyst costs increase with decreasing molar masses.• Star shaped polymers are obtained by the coupling of low molar mass

polymers. Therefore star shaped polymers are bound to be more expensivethan standard rubbers at the same molar mass.

Basis of calculation:

• 65 DM/kg BuLi (4 DM/mol BuLi; MwBuLi: 61 g/mol)

• Ideally “Living Polymerization“

Impact of Initiator Impact of Initiator ConcentrationConcentration on Molar on Molar MassesMasses and on and on CatalystCatalyst CostsCosts

Co

sts

for

Bu

-Li

[Pf/

kg

ru

bb

er]

Molar mass [g/mol]

Impact of the Impact of the GegenionGegenion and of the Solvent and of the Solvent on the Vinylon the Vinyl--ContentContent

Gegen- Microstructure

ion (Benzene)

cis-1,4 trans-1,4 1,2-

[%] [%] [%]

Li 35 55 10

Na 10 25 65

K 15 40 45

Cs 6 35 59

Solvent Microstructure

cis-1,4 trans-1,4 1,2-

[%] [%] [%]

Hexane 35 55 10

Toluene 35 52 13

THF 0 9 91

Sources:R. Casper in Ullmann‘s Encyclopedia of Technical Chemistry

G. Sylvester u. P. Müller in Houben Weyl, Methoden der organischen Chemie,

Band E 20/Teil2, Makromolekulare Stoffe, S. 801

PP

LiLi

P

P

X X

LiLi

+

+

+

+

-

-

-

X X

-

X XEther with two coordination sites

1,4-insertion:

1,2-insertion:

Page 100: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Dependence of the VinylDependence of the Vinyl--Content on Polymerization Content on Polymerization Temperature and Modifier (Type and Concentration)Temperature and Modifier (Type and Concentration)

0,1 1,0 10 100

Ether [mol/mol Li]

90

80

70

60

50

40

30

20

10

0

Vin

yl-

Co

nte

nt

[mo

l%]

DME30°C

DME50°C

DME70°C

THF30°C

THF50°C

THF70°C

Source: Ullmann‘s Encyclopedia of Technical Chemistry

Modifier:DME: DimethoxyethaneTHF: Tetrahydrofuran

Impact of Impact of thethe Vinyl Vinyl ContentContent of Liof Li--BR on BR on TgTg

Tg

[°C

]

+ 0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

0 10 20 30 40 50 60 70 80 90 100

Vinyl-Content [%]

VI-BR

Standard-Li-BR (without modifiers)

S. L. Aggarwal, T. G. Hargis, R. A. Livigni, H. J. Fabris, L. F. Marker, „Advances in

Elastomers & Rubber Elasticity, J. Lal a. J. E. Mark, Eds., Plenum Press, New York, 1986, p. 17

Range of commercialVinyl-BR grades

Page 101: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

LiLi--BR: BR: DependenceDependence of of WetWet SkidSkid and and AbrasionAbrasion ResistanceResistance

on Vinyl on Vinyl ContentContent

Vinyl-BR SBR

1712

Vinyl Content 10 47 64 66 88 18

1,4-cis 40 26 21 18 7 8

1,4-trans 50 27 15 16 5 74

Wet Skid Performance (Laboratory)

Portable Test Device* - 84 109 104 120 100

Retreaded Tyre

Concrete 70 95 92 93 - 100

Asphalt 70 90 92 93 - 100

Abrasion Resistance 140 100 80 100

* Road Research Laboratory Instrument, on wet Syenite-Glass Surface

BranchingBranching byby thethe CopolymerizationCopolymerization withwithDivinylbenzeneDivinylbenzene

Li+

CH2R

n

R CH

CH

n

R

n

Li+

Li+Li

+

CH2

R

n

+

Copolymerization with multifunctional monomers (DVB):

Page 102: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Li+

SiCl4

Li+

Cl

C

Si

4

+ 4

Chain end coupling with SiCl4, SnCl4 etc.:

(SnCl4 as alternative)

BranchingBranching byby Chain End Chain End CouplingCoupling

Coupling with SiCl4:• Reduction of Cold-Flow

• low viscosity of BR-solutions

• Application for HIPS and Bulk-ABS

• Highly filler loaded rubber compounds

with good processability and high Shore-

A Hardness (roll covers, tyre beads etc.)

Coupling with SnCl4:exclusive úse is for tyres; during compound

preparation the Sn-C bonds seems to break

and the bound rubber content is increased.

As a consequence hysteresis of vulcanizates

is reduced.

Many patents in this area, for example:

US 6271317 (Goodyear) Prior.: 19.01.1998,

Inv.: A. F. Halasa, S. Futamura, W. L. Hsu,

B. A. Matrana „Asymmetrical Tin-Coupled

Rubbery Polymers and Method of Making“

(Star shaped rubbers with at least 3

brances; 1 branch with MW <40.000 g/mol

and 1 branch with MW>80.000 g/mol)

Impact of Chain Impact of Chain BranchingBranching on on ProcessabilityProcessability

Shear rate [sec-1]

Source: U. Eisele, Introduction to Polymer Physics, Springer Verlag 1990

Vis

cosi

ty

Highly branched

(Star shaped)

Broad molar mass

distribution

Narrow molar

mass distribution

100 101 102 103 104 105 106

Cold Mooney- Com- Calan- Ex- Injection Spin-

flow measure- pression dering trusion moulding drawing

ment moul-

ding

Imp

rovem

ent

Imp

rovem

ent

Page 103: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

LiLi--BR: BR: InfluenceInfluence of of BranchingBranching on Cold on Cold FlowFlow

Co

ld F

low

[mg

/min

]

0 20 40 60 80 100

Mooney-Viscosity ML 1+4 (100°C) [MU]

14

12

10

8

6

4

2

0

Divinylbenzene

[phm]

0,03

0,06

Linear Chain

Star shaped

polymer with

3 branches

Linear BR has an extremely high cold flow which results in the instability of

rubber bales. BR has to be branched in order to improve the stability of bales.

Li-BR linear star branched

Coupling agent without SiCl4

Mw [g/Mol] 256.000 310.000

Mn [g/Mol] 188.000 158.000

Mw/Mn 1,4 2,0

Cold flow [mg/min] 16 0

ML 1+4(100°C) 53 54

Compound-Mooney ML 1+4 (100°C) 98 80

Shore A Hardness 64 61

S300 [Mpa] 8,0 8,1

Tensile Strength [Mpa] 16,5 16,2

heat-build-up [°C] 32 40

Rebound [%] 77 71

Compound Preparation:

BR: 100 phr, Ruß (IRB Nr. 2): 50 phr, Zink oxide: 3 phr, Mineral oil : 10 phr, Stearic acid: 2 phr,

Sulfur: 1,75 phr, Accelerator: 0,8 phr; Vulcanization: 135 °C/35 min

PropertiesProperties of Linear and Star of Linear and Star BranchedBranched LiLi--BRBR

Page 104: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

S-SBR: Solution-SBR

LL--SBR: Market and Market SBR: Market and Market DevelopmentDevelopment

Source: IISRP; Evaluation by Bayer AG (Wachholz/BPO-IIS-BPSC-SP)

0

100

200

300

400

500

600

700

1989 1991 1993 1995 1997 1999 2001

Co

ns

um

pti

on

[t]

Introduction of “Green Tyre Technology by Michelin“

Page 105: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CopolymerizationCopolymerization of of StyreneStyrene and and ButadieneButadiene at at Differential Monomer Differential Monomer ConversionsConversions

0 10 20 30 40 50 60 70 80 90 100

Styrene-content of monomer feed [wt. %]

Sty

ren

eco

nte

nt

of

po

lym

er [

wt.

%]

100

90

80

70

60

50

40

30

20

10

0

Parameters of copolymerization

(styrene = M1; butadiene = M2)

Radical copolymerization

(emulsion)

r1 = 0,7

r2 = 1,4

Anionic colymerisation in

hexane

(Bu-Li/no randomizers/50°C)

r1 = 0,04

r2 = 11,8

E-SBR

S-SBRin hexane

CopolymerizationCopolymerization of of StyreneStyrene and and ButadieneButadiene

The anionic copolymerization of styrene and butadiene in an unpolar

solvent (hexane) yields a block copolymer with the following features:• high chemical homogeinity

• narrow molar mass distribution

• tapered intermediate sequence

Butadiene block tapered sequence styrene block

Course of the copolymerization in hexane (full batch process):

start up of the reaction

For For tyretyre applicationsapplications block block styrenestyrene blocksblocks havehave to to bebeavoidedavoided as as theythey cause high cause high hysteresishysteresis losseslosses. .

Page 106: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

0 10 20 30 40 50 60 70 80 90 100

Styrene content in the monomer feed [wt. %]

Dif

fere

nti

al

sty

ren

eco

nte

nt

in t

he

po

lym

er

[wt.

%]

100

90

80

70

60

50

40

30

20

10

0

E-SBR

S-SBRin Hexane

Styrene/ButadieneStyrene/Butadiene--CopolymerisationCopolymerisation

Rando-

mizers

(Styrene = M1; Butadiene = M2) Cyclohexane; 25/75 Styrene/Butadiene

Source: H. L. Hsieh, R. P. Quirk, Anionic Polymerization, Principles and Practical Applications, Marcel Dekker, Inc.

Y. Melenevskaya, V. Zgonnik, V. Denisov, E. Dolinskaya, K. Kalnish; Polym. Sci. (USSR), 21, 2215 (1979)

T r1 r2

[°C]

Benzene 25 0,04 10,8

Cyclohexane 25 0,04 15,5

Hexane 25 0,03 12,5

THF 25 4,0 0,3

Diethylether 25 0,4 1,7

Triethylamine 25 0,5 3,5

Anisol 25 0,3 3,4

Diphenylether 25 0,1 2,8

THF -78 11,0 0,04

THF 0 5,3 0,2

THF 25 4,0 0,30

10

20

30

40

50

60

70

0 20 40 60 80 100

Monomer Conversion [%]

To

tal

Sty

ren

e C

on

ten

t o

f P

oly

me

r

[wt.

%]

n-Butyl-Lithium

t-BuOK/n-Buli: 0,067/1

t-BuOK/n-Buli: 0,38/1

Impact of Impact of RandomizersRandomizers on on thethe CopolymerizationCopolymerizationBehaviourBehaviour of of StyreneStyrene and and ButadieneButadiene

Page 107: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Sty

ren

eC

on

ten

t[w

t. %

]

0 10 20 30 40 50 60

Vinyl [%]

- 70°C

+10°C

- 60°C - 50°C

+ 0°C

- 10°C

- 20°C

- 30°C

- 40°C

TgTg of Sof S--SBR: SBR: TheThe Impact of Impact of StyreneStyrene and Vinyl and Vinyl ContentContent

40

30

20

10

0

In In thethe variationvariation of of thethe microstructuremicrostructure ((vinylvinyl--contentcontent) ) thethe SS--SBR SBR technology has a technology has a greatergreater versatilityversatility thanthan thethe EE--SBRSBR--technology.technology.

So

luti

on

tec

hn

olo

gy

wit

ho

ut

ran

do

miz

ers

Solution technology with

randomizers

Sta

nd

ard

Em

uls

ion

Tec

hn

olo

gy

Source: H. Mouri, J. E. Hall, (Firestone) 146th ACS meetin in Pittsburgh, PA., USA

Impact of Impact of TgTg on on ImportantImportant Tyre Tyre TreadTread PropertiesProperties

S-SBR (25% Styrene, 55% Vinyl)

Emulsion BR

high cis Nd-BRLi-BR

S-SBR (18% Styrene, 10% Vinyl)

E-SBR (15% Styrene)

E-SBR 1500 (23.5% Styrene)

E-SBR 1516 (40% Styrene)S-SBR (34% Styrene, 32% Vinyl)

-20

-60

-40

-80

-100

Increase of Heat Build Up and Wet Skid Resistance

Decrease of Rolling Resistanceand Abrasion

Tg

Tg

[[ °°C

]C

]

In order to In order to complycomply withwith manymany conflictingconflicting tyretyre treadtread propertiesproperties thethepreparationpreparation of rubber of rubber blendsblends isis essential in rubber technology. An essential in rubber technology. An alternative to alternative to macroscopicmacroscopic blendingblending wouldwould bebe microscopicmicroscopic blendingblending

as as withwith integral rubber.integral rubber.

Page 108: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Source: K. H. Nordsiek, K. M. Kiepert, Kautschuk Gummi Kunststoffe 38 (1985), p. 178-185

tan

δLi- NR SBR SBRBR 1500 1700

-100 -80 -60 -40 -20 0 20 40 60 80 100

Temperature [°C]

10-1

10-2

10-3

1

Integral-rubber

Integral Rubber is a multi block copolymer the building blocks of

which have well defined Tgs

TheThe „„Integral RubberIntegral Rubber““ ConceptConcept

Integral-Rubber 2 based on butadiene, styrene and isoprene(batch process with sequential monomer- and modifier addition)

Integral-Rubber 1 based on butadiene, styrene and isoprene(full batch process without the sequential addition of either monomer or modifier)

RoutesRoutes forfor thethe PreparationPreparation of Integral Rubbersof Integral Rubbers

Segment: Medium-cis BR Vinyl-BR S-SBR 3,4-IR

Tg [°C] -90°C -50°C -20°C ~ 0°C

Segment: Vinyl-BR S-SBR 3,4-IR

Tg [°C] -90°C -20°C ~ 0°C

butadiene randomizer styrene isoprene

Page 109: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Performance Performance ComparisonComparison of Standard Sof Standard S--SBR SBR withwithEE--SBR in a SBR in a CarbonCarbon Black CompoundBlack Compound

ProcessabilityBlack incorporation timeTackGreen Strength

Vulcanizationt10

t90

t90 - t10

Mechanical PropertiesModuliTensile StrengthTear resistanceAbrasion resistanceHeat build upRolling resistanceWet grip

Price

E-SBR

+++

+-0

++++--++*

S-SBR

---

-++

----+++-

* fully depreciated plants

In a In a carboncarbon blackblack loadedloaded compound compound therethere isis no real no real advantageadvantage forfor SS--SBR.SBR.

ThereforeTherefore therethere was no major breakwas no major break--throughthrough forfor SS--SBR SBR untiluntil thethe greengreen tyretyretechnology technology emergedemerged..

Green Tyre TechnologyGreen Tyre Technology

Si OH

Si OH

SEt-O SiEt-O

Et-OCH

2

CH2

CH2

S

SSCH

2

CH2

CH2

SiEt-OEt-OEt-O

SiO2

0

50

100

150

Rolling Resistance

AbrasionResistance

Carbon black

loaded tread

Green tyre

WetSkid

Performance of the green tyre Additional costs for the green tyre

Patents:DE 2447614; Degussa, Prior.: 05.10.1974; Erf.: K. Burmester, S. Wolf, E. Klötzer, F. ThurnUS 4,709,065; Shin-Etsu; Prior.: 20.09.1985; Erf.: H. Yoshioka et al.EP 299074; Bridgestone; Prior.: 03.10.1987; Erf.: T. Hamada et al. DE 3813678; Bridgestone; Prior.: 23.04.1987; Erf.: M. Takeshita et al. EP 501 227; Michelin, Prior.: 25. 02. 1991; Erf.: R. RaulineEP 447066; Bridgestone; Prior.: 27.02.1991; Erf.: T. Hamada

RußCompound

E-SBR--

Ruß--

++++

SilicaCompound

L-SBRNRBR

SilikaSi 69DPG

----

Rubber

FillerSilaneAdditive

Raw MaterialsMixing Costs

Page 110: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

RecentRecent DevelopmentsDevelopments in Sin S--SBR Technology SBR Technology TowardsTowards ImprovingImproving Tyre PerformanceTyre Performance

FunctionalisationFunctionalisation of Sof S--SBRSBR

• Partial or total substitution of activator

• Improvement of silica dispersion

• Iprovement of silica reinforcement

• Reduction of hysteresis loss

• Improvement of wet skid

• Reduction of abrasion loss

Li+

CRn

R C80n

N

R1 R2

CH2

Si OROR

OR

R1C 91

R2

NCH

2

Si

OR

OR

OR

Li+

+

FunctionalizationFunctionalization of of LivingLiving Chain EndsChain Ends

EP 1113024 A1; Prior.: 02.12.1999, Bridgestone, Inv.: K. Morita, H. Kondo "Polymer process for making the polymer and rubber composition using the polymer“

Page 111: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Li+

CH2

Rn

Li+

O

Cln

Cl

O

n

Rn

Rn

Cl

+2

- 2

FunctionalizationFunctionalization withwith Polyether SegmentsPolyether Segments

DE 10057508; Bayer AG, Prior.: 21.11.2000; Erf.: T. Scholl, W. Obrecht, Braubach, E. Giebeler, Grün, A. Müller, M. Graf„Polyether/Diolefin-Kautschuke enthaltende Kautschukmischung“

CH2

C

CH

CH2

N

CH3

CH3

CH2

Incorporation of Incorporation of AminoisopreneAminoisoprene

EP 01165641; Bayer AG, Prior.: 03.02.1999; Erf.: T. Scholl, W. Obrecht, R. Stadler,

R. Morschhäuser, G. Mannebach "Kautschukmischungen basierend auf Aminoisopren"

Dimethyl-Aminoisoprene• is incorporated initially at the chain end• it acts as a randomizer during the whole course of the polymerization• the aminoisoprene containing rubber exhibits increased interaction with silica

Page 112: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Li+

CH2

Rn

Si

O

Si

ORn

Si

O

CH3

CH3

CH3CH

3 CH3

CH3

O

SiO

Si

OSi

CH3

CH3

CH3

CH3

CH3

CH3

Li+

+

D3

FunctionalizationFunctionalization of of thethe LivingLiving Chain End Chain End withwith a a PolysiloxanePolysiloxane Building BlockBuilding Block

Source: EP 0778 311; Michelin, Prior.: 07.11.1995; Erf.: J.-L. Cabioch „Composition de caoutchoucà base de silice et de polymère diénique fonctionnalisé ayant une fonction silanol terminale“

ModificationModification of Sof S--SBR SBR withwith HydroxylHydroxyl--MoietiesMoieties

S

HX

X SH

X: - OH (US 6252008)X: - COOH (US 6365668)

Sources:

US 6252008; Bayer AG; Prior.: 18.07.1998; Inv.: T. Scholl, U. Eisele, J. Trimbach, S. Kelbch

WO 02/31028 A1; Bayer AG; Prior.: 10. 10. 2000; Inv.: Th. Scholl, J. Trimbach, W. Nentwig, R. Engehausen

US 6365668; Bayer AG; Prior.: 16.11.1998; Inv.: Th. Scholl, J. Trimbach

Page 113: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

4.3. 4.3. ChemistryChemistry and and ProductionProduction Technology of HighTechnology of High--ciscis--1,4 BR 1,4 BR withwith an an EmphasisEmphasis on Ndon Nd--BRBR

• Technically Relevant Catalyst Systems for the Production of High cis-1,4 BR– Influence of Halides on 1,4-cis Content

– Role of Halides and Electron Donors on Microstructure

– Trans-1,4 BR: Dependence of Melting Temperature on 1,4-cis-Content

– Reaction Scheme of Butadiene Insertion

• Mechanism of Nd-Catalyzed Butadiene Polymerization– Activity of Rare Earth Naphthenates (Cocatalyst: RnAlCl3-n)

– Influence of Solvents

– Influence of Molar Neodymium/Chloride-Ratio on 1,4-cis Content

– Reaction Scheme of Butadiene Polymerization by Nd-Catalysis

– Mechanism of Nd-Catalyzed Butadiene Polymerization

• Technical Options for the Control of Molar Mass in Nd-BR-Production

BR Catalyst System cis-1,4

Content

Li-BR nBu-Li 36 - 38

Co-BR Co(II)Octanoate / DEAC / H20 97

Ni-BR Ni(II)Naphthenate /Bu2O.HF/TIBA 97

Ti-BR TiJ3(OEt) / TiCl4 / TEA 93

Nd-BR Nd(III)Versatate / DIBAH / EASC 98

TechnicallyTechnically Relevant Relevant CatalystCatalyst Systems Systems forfor thetheProductionProduction of High of High ciscis--BRBR

Abbreviations:

nBu-Li n-Butyl-LithiumDEAC Diethyl Aluminum ChlorideTIBA Triisobutyl AluminumTEA Triethyl AluminumDIBAH Diisobutyl Aluminum ChlorideEASC Ethylaluminum Sesquichloride

Molar

Ratios

1 / 7 0-80 / 20-30

1 / 100 / 40

1 / 0,7 / 5

1 / 10-15 / 3

Page 114: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

InfluenceInfluence of of HalidesHalides on 1,4on 1,4--ciscis--ContentContent

Ti Co Ni NdF 35 93 98 95,7

Cl 75 98 85 96,2

Br 87 91 80 96,8

J 93 50 10 96,7

Metal Component of

Catalyst SystemHalide

Source: Zhinquan Shen, Jun Ouyang, Fasong Wang, Zehnya Hu, Fusheng Yu, Baogong Qian; J. Pol. Sci., Chem. Ed. 18 (1980) 3345-3357

92

93

94

95

96

97

98

0 1 2 3 4

Molar Cl/Nd - Ratio

cis

-1,4

-Co

nte

nt

[%]

Sources:•Lars Friebe: Diploma Thesis TU Munich 2000 •L. Friebe, O. Nuyken, H. Windisch, W. Obrecht; Macromol. Chem. Phys. 8 , 203 (2002) 1055-1064

trans -1,4-BR

cis -1,4-BR

trans -1,4-BR

cis -1,4-BR

trans -1,4-BR

cis -1,4-BRNd(CH2Ph)Cl2 + TIBA

Nd(CH2Ph)3 + TIBA

Nd(COOR)3 + DIBAC

Nd(COOR)3 + TIBA

trans -1,4-BR

cis -1,4-BR

Nd(COOR)3 + Mg (Allyl)2

Nd(COOR)3 + Mg (Allyl)2 + R-Cl

Nd(OR)3 + TIBANd(OR)3 + DIBAC

Source:

Shiro Kobayashi; Transition in

Precision Polymerization (1997)

Part 1. H. Watanabe, T. Masuda,

Diene Polymerization, pages 55-66

RoleRole of of HalidesHalides and and ElectronElectron DonorsDonors on on MicrostructureMicrostructure

For the achievement of high 1,4-cis contents the

presence of a halidesource is essential

s - 1,2 - BR

cis - 1,4-BRCo(Oct)2 + AlR2Cl + H2O

Co(Oct)2 + AlR2Cl + H2O + PPh3

Co(Oct)2 + AlR3 + CS2 s - 1,2 - BR

Ni(Oct)2 + BF3 - OEt2 + AlR3 + PPh3

Ni(Oct)2 + BF3 - OEt2 + AlR3 cis - 1,4 - BR

trans - 1,4 - BR

The coordination of electrondonors to vacant catalyst

sites results in a significantreduction of 1,4-cis contents.

As a consequence, syndiotacticBR or trans-1,4 BR are

obtained.

Page 115: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Tm

[°C

]

1,4 - trans-content [Mol %]

- 40

+ 0

40

80

120

160

80 90 1007060

Trans 1,4Trans 1,4--BR: BR: DependenceDependence of Melting of Melting TemperatureTemperatureon 1,4on 1,4--trans trans ContentContent

Data from:

US 5134199 Enoxy Chem Ltd.

GB 2161169 (Asahi)

US 4931376 (Asahi)

US 5596053 (Bridgestone/Firestone)*

*US 5596053 (Bridgestone/Firestone) Prior. 31. 05. 1995; Erf.: J. W. Kang; J. T. Poulton

"High Trans-1,4-BR and Catalyst and Process for Preparing Crystalline High Trans-1,4-BR“

US-A-5089574 (trans-1,4-BR-Herstellung/Goodyear)

EP-A-1092565 Prior.: 11.10.99 D. J. Zanzig, P. H. Sandstrom, J. J. Verthe, E. J. Blok, G. M. Holtzapple

„Tire with silica-reinforced tread comprised of trans-1,4-BR, solution-SBR, polyisoprene and defined amount

of carbon black and amorphous silica“

Goodyear

Source: Porri, Giarrusso, J. Polymer Science, Vol. 4, 93

M

C8

M

C15

M

C22

C29

M

C36

M

C43

`

C54

C60

MBd

Bd

MBd M

Bd

Allyl-Komplex

ReactionReaction SchemeScheme of of ButadieneButadiene InsertionInsertion

For the achievement of high 1,4-cis contents, a vacant coordination siteon the transition metal is a prerequisite. To this site butadiene has to becoordinated in a cisoid mode.

The formation of trans-1,4-BR is thermodynamically favourablewhereas the formation of 1,4-cis-BR ist kinetically controlled.

Page 116: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Source:

Zhinquan Shen, Jun Ouyang, Fasong Wang, Zehnya Hu, Fusheng Yu, Baogong Qian

J. Pol. Sci., Chem. Ed. 18 (1980)3345-3357

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

0

10

20

30

40

50

60

70

80

90

100U

ms

atz

[%

]

Activity of Rare Earth Napthenates (Cocatalyst: RnAlCl3-n)

MechanismMechanism of of NeodymiumNeodymium CatalyzedCatalyzed ButadieneButadienePolymerizationPolymerization

Only rare earth metals in the oxydation state

+III show polymerization activity

Al-alkyls reduce Pm, Sm and Eu salts to the

oxydation stage +II

MechanismMechanism of of NeodymiumNeodymium CatalyzedCatalyzed ButadieneButadienePolymerizationPolymerization: : InfluenceInfluence of of SolventsSolvents

Source: F. Cabassi,G. Ricci, L. Porri; Transition Metal Catal. Polym. (Proc. Int. Symp. 1988, 2nd vol. 655-670)

„Neodymium Catalysts For 1,3-Diene Polymerization. Some Observations On their Activity And Steoreospecificity“

Contrary to other Ziegler–Catalysts,

aromatic solvents have a negative im-

pact on Nd-based catalyst systems

Page 117: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

MechanismMechanism of of NeodymiumNeodymium CatalyzedCatalyzed ButadieneButadienePolymerizationPolymerization

AlHO

O R1

R2

R3

Nd

3

Al

ClEt

Et

NdV DIBAH EASC

1 10 - 15 3

Cl

Al

Cl

Et

Literature:

1) Friebe, Lars; Nuyken, Oskar; Obrecht, Werner; Adv. Polym. Sci. (2006) 204, 1-154 (Review); http://dx.doi.org/10.1007/12_094

Neodymium-Based Ziegler/Natta Catalysts and their Application in Diene Polymerization2) Friebe, Lars; Mueller, Julia; Nuyken, Oskar; Obrecht, Werner; Journal of Macromolecular Science, Part A: Pure and Applied Chemistry (2006), 43(6), 841-854.

Comparison of the solvents n-hexane, tert-butyl benzene and toluene in the polymerization of 1,3-butadiene with the Ziegler catalyst system

neodymium versatate/diisobutylaluminum hydride/ethylaluminum sesquichloride.

3) Friebe, Lars; Mueller, Julia M.; Nuyken, Oskar; Obrecht, Werner. Pure and Applied Chemistry (2006), 43(1), 11-22.

Molar mass control by diethyl zinc in the polymerization of butadiene initiated by the ternary catalyst system

neodymium versatate/diisobutylaluminum hydride/ethylaluminum sesquichloride. Journal of Macromolecular Science, Part A:

4) Friebe, Lars; Nuyken, Oskar; Obrecht, Werner. Macromolecular Science, Part A: Pure and Applied Chemistry (2005), A42(7), 839-851.

A Comparison of Neodymium Versatate, Neodymium Neopentanolate and Neodymium Bis(2-ethylhexyl)phosphate

in Ternary Ziegler Type Catalyst Systems With Regard to their Impact on the Polymerization of 1,3-Butadiene.

5) Friebe, Lars; Nuyken, Oskar; Windisch, Heike; Obrecht, Werner. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) (2004), 45(1), 758-759.

Novel investigations and applications for neodymium based catalysts.

6) Friebe, Lars; Nuyken, Oskar; Windisch, Heike; Obrecht, Werner. Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28-April 1, 2004 (2004)

Novel investigations and applications for neodymium based catalysts.

7) Friebe, Lars; Windisch, Heike; Nuyken, Oskar; Obrecht, Werner. Journal of Macromolecular Science, Pure and Applied Chemistry (2004), A41(3), 245-256.

Polymerization of 1,3-Butadiene Initiated by Neodymium Versatate/Triisobutylaluminum/Ethylaluminum Sesquichloride: Impact of the Alkylaluminum Cocatalyst Component.

8) Friebe, Lars; Nuyken, Oskar; Windisch, Heike; Obrecht, Werner. Macromolecular Materials and Engineering (2003), 288(6), 484-494.

In situ preparation of a compatibilized poly(cis-1,4-butadiene)/poly(e -caprolactone) blend.

9) Friebe, Lars; Nuyken, Oskar; Windisch, Heike; Obrecht, Werner. Macromolecular Chemistry and Physics (2002), 203(8), 1055-1064.

Polymerization of 1,3-butadiene initiated by neodymium versatate/diisobutylaluminum hydride/ethylaluminum sesquichloride: kinetics and conclusions about the reaction mechanism.

ReactionReaction SchemeScheme of of ButadieneButadiene PolymerizationPolymerizationbyby NdNd--CatalysisCatalysis

AlH Al O Al

AlH Al

O Al

O

AlO

H Al AlORCH2 (R-CH2-O)2 Nd - H + (R-CH2-O)3 Nd +

CH2

CH3

CH3

CH2

C

CH3

CH3

H (R-CH2-O)2 Nd (R-CH2-O)2 Nd - H +

H Al R-CH2-O AlH

Nd (O-CH2- R )3 + + (R-CH2-O)2 Nd

Nd ( OOC - R )3 + 6 Nd (O-CH2- R )3 + 3

1) Formation of Nd-Alcoholate by the Reduction od Nd-Versatate

2) Formation of a Nd-Hydrodo Compound (Precursor of Active Nd-Species)

Nd ( OOC - R )3 + 3 Nd (O-CHR- R )3 + 1

Source: L. Friebe, O. Nuyken, H. Windisch, W. Obrecht; Macromol. Chem. Phys. 8 , 203 (2002) 1055-1064

Page 118: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ReactionReaction SchemeScheme of of ButadieneButadiene PolymerizationPolymerizationbyby NdNd--CatalysisCatalysis

CH3

CH3

CH3

AlR 3 (R-CH2 - O)2 Nd(R-CH2 - O)2 Nd - H +

3) Hydride transfer and Formation of a Nd-Allyl Compound

4) Halogenation of the Nd-Allyl Compound

(R-CH2 - O)2 Nd Al2Et3Cl3 Cl2 Nd

Source: L. Friebe, O. Nuyken, H. Windisch, W. Obrecht;Macromol. Chem. Phys. 8 , 203 (2002) 1055-1064

ReactionReaction SchemeScheme of of ButadieneButadiene PolymerizationPolymerizationbyby NdNd--CatalysisCatalysis

R

Cl

Cl

AlR3

R

Cl

Cl

AlR3

AlR3

R

Cl

ClAlR3

AlR3

Cl

ClAlR3

AlR3

R

Cl

ClAlR3

AlR3R

R

Cl

ClAlR3

AlR3

Nd NdNd+

-

Nd+

-

Nd+

-

Nd+

-

Source: L. Friebe, O. Nuyken, H. Windisch, W. Obrecht;Macromol. Chem. Phys. 8 , 203 (2002) 1055-1064

5) Formation of polymerization active Nd species (cationic Nd allyl complex)and first butadiene insertion

Page 119: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ReactionReaction SchemeScheme of of ButadieneButadiene PolymerizationPolymerizationbyby NdNd--CatalysisCatalysis

6) Control of Molar Mass by Al-Alkyls and by Al-Hydrido Compounds

Source: L. Friebe, O. Nuyken, H. Windisch, W. Obrecht, Journal of Macromol. Sci.

Active “living“ inactive “dormant“polymer chain polymer chain(attached to Nd) (attached to Al)

R

AlH H AlR

R

Al AlR

NdL

L+ Nd

L

L+

NdL

L+ Nd L

L+

MechanismMechanism of of NdNd--CatalyzedCatalyzed ButadieneButadiene PolymerizationPolymerization

0 50 100 150 200 250

Mon

om

er C

on

ver

sion

[%] 100

80

60

40

20

0

time [min]

0 50 100 150 200 250 300

Time [min]

0

-1

-2

-3

-4

-5

ln(1

-x)

Conversion/time-plots Plot for 1st order monomer consumption

ExperimentalConditions:

Addition Sequence:

1. Hexane

2. Butadiene

3. DIBAH

4. Neodymversatate

5. EASC

Polymerization temperature: 60°C

Solvent n-Hexane

Butadiene 1,85 mol/l

NdV 0,20 mmol/l

EASC 0,13 mmol/l (nCl/nNd = 2/1)

DIBAH2,0; 4,0; 6,0; 10,0 mmol/l

nDIBAH/nNd = 10, 20, 30, 50

Sources: Lars Friebe: Diplomarbeit and der TU München, Dezember 2.000 L. Friebe, O. Nuyken, H. Windisch, W. Obrecht;Macromol. Chem. Phys. 8 , 203 (2002) 1055-1064

nDIBAH/nNd = 10nDIBAH/nNd = 20nDIBAH/nNd = 30nDIBAH/nNd = 50

nDIBAH/nNd = 10nDIBAH/nNd = 20nDIBAH/nNd = 30nDIBAH/nNd = 50

Page 120: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

MechanismMechanism of of NdNd--CatalyzedCatalyzed ButadieneButadiene PolymerizationPolymerization

e lu t io n t im e / m in

3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5

dif

feren

ce

of

refr

acti

on

in

dex

6 6 .4

c o n v e r s io n / %

5 5 .1

5 0 .0

4 3 .5

3 5 .6

3 0 .7

2 2 .7

1 2 .2

4 .8

8 2 .5

7 .8

Elution time[min]

30 35 40 45 50 55 60 65

Dif

fere

nce

in R

efra

ctiv

eIn

dic

esDependence of Molar MassDistribution on Monomer

Conversion

Dependence of PDI (Mw/Mn) on Monomer Conversion

Source: L. Friebe: Diploma Thesis at TU Munich, December 2.000 L. Friebe, O. Nuyken, H. Windisch, W. Obrecht;Macromol. Chem. Phys. 8 , 203 (2002) 1055-1064

4,0

3,5

3,0

2,5

2,0

1,5

1,00 10 20 30 40 50 60 70 80 90 100

Monomer Conversion [%]

Mw/M

n

nDIBAH/nNd = 10nDIBAH/nNd = 20nDIBAH/nNd = 30nDIBAH/nNd = 50

MechanismMechanism of of NdNd--CatalyzedCatalyzed ButadieneButadiene PolymerizationPolymerization

0 10 20 30 40 50 60 70 80 90 100

Mn

[g . m

ol-1

]

Monomer Conversion [%]

2,5*105

2,0*105

1,5*105

1,0*105

0,5*105

0

Form

al

Nu

mb

erof

Poly

mer

Ch

ain

s fo

rmed

per

Nd

-Ato

m

nDIBAH/nNd = 4,4

0 10 20 30 40 50

nDIBAH/nNd

16

14

12

10

8

6

4

2

0

Dependence of Mn on Monomer Conversion

Molar Mass Controlwith Al-Component

Source:L. Friebe: Diploma Thesis at TU Munich, December 2000 L. Friebe, O. Nuyken, H. Windisch, W. Obrecht; Macromol. Chem. Phys. 8 , 203 (2002) 1055-1064

nDIBAH/nNd = 10nDIBAH/nNd = 20nDIBAH/nNd = 30nDIBAH/nNd = 50

nDIBAH/nNd = 10nDIBAH/nNd = 20nDIBAH/nNd = 30nDIBAH/nNd = 50

Page 121: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

TechnicalTechnical OptionsOptions forfor thethe ControlControl of Molar of Molar MassMass in in NdNd--BR BR ProductionProduction

Influence of Butadiene/Nd-ratioD. J. Wilson, Polymer 1993, 34,16, 3504-3508

0

100

200

300

400

500

600

700

800

900

0 0,05 0,1 0,15 0,2 0,25 0,3

Nd (mmol/100 wt.-parts of butadiene]

Mo

lar

Ma

ss

(M

v)

[kg

/mo

l]Influence of Polymerization Temperature

G. Sylvester, B. Stollfuss ACS, Rubber Div. Dallas 1988 „Synthesis of

cis-1,4-Polybutadienes by rare earth catalysts“

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90

Polymerization Temperature [°C]

Mo

lar

Mass (

Mv)

[kg

/mo

l]

Influence of Monomer ConversionM. Bruzzone ACS Symposium Series No. 3 (1982)

33-55

0

10

20

30

40

50

60

0 20 40 60 80 100

Monomer Conversion [%]

ML

1+

4 (

10

0°C

)

Contrary to Catalysts based on Co,

Ni and Ti, for Nd-based catalysts

there is no agents for the control of

molar mass available.

Therefore in Nd-BR technology

molar mass has to be controlled by:• Nd/Al-ratio

• Monomer/Nd-ratio

• Monomer Conversion

• Polymerization temperature

ComparisonComparison of Technologies of Technologies forfor thethe ProductionProduction of of High cisHigh cis--1,41,4--BRBR

Butadiene Vinylcyclohexene (VCH)

* Formation of VCH by Diels-Alder-Reaction

BenzeneBenzeneBenzene

100-200200-25050-10010-50Residual transition metalContent [ppm]

lowvery highhighhighFormation of VCH

nonenoneyesyesMolar mass regulator

18-22%11-12%15-16%14-22%Max. solids concentation

fullyadiabatic

Partiallyadiabatic

Partiallyadiabatic

Partially adiabatic/isothermal

process

Very lowlowhighhighGel formation

< 100%< 95%< 85%55-80 %Monomer conversion

100-120 min120 min120 min150 minResidence time

N-HexaneCylcohexane

TolueneHexaneToluene

TolueneAliphates

Solvents

NdTiNiCo

Advantage

Page 122: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

4.4. 4.4. Ethene/PropeneEthene/Propene--CoCo-- and and TerpolymersTerpolymers (EPM/EPDM)(EPM/EPDM)

• Overview– EPM and EPDM, Termonomers, Market, Range of Grades and

Property Profiles

• EPDM-Production– Chemistry of Polymerization , Producers, Capacities, Brand

Names and Production Technologies

• Production Technologies (Flow Charts)– Solution Process

– High Temperature Solution Process

– Gase Phase Process

– Comparison of Manufacturing Technologies

• Metallocenes– Ovewrview on Metallocene Patents

– Metallocene Activation

– Comparison of Catalyst Costs

Ethene/PropeneEthene/Propene--CoCo-- und und TerpolymersTerpolymers(EPM/EPDM)(EPM/EPDM)

Method of Vulcanization

Peroxides

SulfurPeroxides

Phenol resinsetc.

EPM

EPDM

EPM (15%)

Ethene/Propene-Copolymers

Major areas of application:• Oil additives• Impact modification of thermoplastic

polymers (PP)

EPDM (85%)Ethene/Propene/Diene-Terpolymers(30% of grades are oil extended)

Major areas of application:• Technical rubber goods• Cables and wires• TPEs

Page 123: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EPDMEPDM--TermonomersTermonomers

5-Ethyliden-2-norbornene

(ENB)

1,4-Hexadiene

(HD)

Dicyclopentadiene

(DCPD)

Relative polymerization rates of termonomer double bonds

in Vanadium catalysedpolymerizations

~ 40 : 1

~ 15 : 1

~ 5 : 1

Criteria for the selection of the termonomer:

• Large reactivity difference of double bonds during polymerization

• Low impact on the reduction of the polymerization rate

• Low impact on the reduction of the molar mass during polymerization

• Sufficiently long scorch time and high crosslinking efficiency during vulcanization

• Low termonomer costs

time [min]

20

30

40

50

70

0

60

To

rqu

e[N

m]

0 1,0 2,0 3,0 4,0 5,0 6,0

10

Impact of Impact of thethe TermonomerTermonomer on on thethe CuringCuringCharacteristicsCharacteristics

ENB DCPD HD

ENB

DCPD

1,4-HD

Page 124: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Advantages:– good price/performance-ratio– high maximum service temperature– good low temperature performance– broad spectrum of grades (oil extended grades etc.) – ability for vulcanization with sulfur, peroxides and others– high loadability with extender oils and fillers (reduction of compound price)– good mechanical properties of vulcanizates– good weathering and ozone resistance (outdoor applications) – good electrical insulation (low salt content)– Low density

Disadvantages:– low resistance to oil and chemicals– fair ability to covulcanization– low resistance to fungi and bacteria

Property Profile of EPM/EPDM Property Profile of EPM/EPDM basedbasedVulcanizatesVulcanizates

41%16%

15%9%13%

6%

Automotive

Thermoplast Modification

Building

Technikcal Rubber Goods

Electro/Electronics

Oil Additives

Main Main ApplicationApplication AreasAreas of EPM/EPDMof EPM/EPDM

0

100

200

300

400

500

600

700

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

40

45

50

55A

uto

moti

ve

Pro

du

ctio

n/

Mio

.

Automotive production (world)

EPDM Consumption (world)

Market: 1,050 Mio t (2004)

Growth rate: 3,5 %/a

Source: European Chemical News 10, März 2005, 13

EP

DM

-Con

sum

pti

on

/ k

t

Page 125: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Range of Range of EP(D)MEP(D)M--GradesGrades

0, 25, 30, 50, 100[phr]Oil Content:

16 - 20 20 - 60 60 - 90[MU]Mooney Viscosity:

[ML 1+4 (125°C)]

0 1,7 - 3 4 - 7 8 - 12[wt.%]ENB-Content:

50 - 75[wt.%]Ethene Content

-65

-62,5

-60

-57,5

-55

-52,5

-50

-47,5

-45

40 45 50 55 60 65 70

Ethene content [wt.%]

Tg

[°C

]

DependenceDependence of of TgTg on on thethe EtheneEthene-- and and thethe ENBENB--ContentContent((VV--catalysedcatalysed commercialcommercial productsproducts))

Tg(EPDM) = Tg(EPM) + 1,2°C/wt.% ENB

EPDM/2% ENBEPDM/1% ENBEPM /0% ENB

Source: M. Hoch, M. Arndt-Rosenau, Bayer-Report ARO 1, HCM 40 of 16.02.2001

Page 126: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

0

5

10

15

20

25

30

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Ethene content [wt.%]

En

tha

lpy

of

fusi

on

[J

/g]

35-39°C

40-44°C

45-49°C

50-54°C

55-59°C

60-64°C

65-70°C

DependenceDependence of of thethe CristallinityCristallinity on on thethe EtheneEthene ContentContent and and on on thethe PolymerizationPolymerization TemperatureTemperature of of VV--CatalysedCatalysed EPMEPM

Source: M. Hoch, M. Arndt-Rosenau, Bayer-Report ARO 1, HCM 40 of 16.02.2001

Chemical and Chemical and ProcessProcess AspectsAspects in in EPM/EPDMEPM/EPDM--ManufacturingManufacturing TechnologiesTechnologies

Chemical Aspects

free radicalPolymerization

Ziegler/Natta-Polymerization

anionionicPolymerization

cationicPolymerization

Polyaddition und Polycondensation

Polymer-modification

Process Features

Emulsion Solution Dispersion Bulk Gas-Phase

E-SBR, CR, NBR, E-BR, ACM,FKM, EVM

EVM EVM AEM, EVM, (ENM)

(G-BR)

(G-EPM/EPDM)

BR

EPM/EPDM

BR, L-SBR. IR

CIIR, BIIR, CM, CSM, H-NBR, FZ

ECO, CO

AU, EU

IIR

EU

CM, CSM, (H-NBR)

Q

Q

AU, Q

EPM/EPDM

Page 127: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Process Solution Slurry High temperature Gas phase

solution (Dow) (UCC)

Solvent: Hexane Propene/ethene Hydrocarbon mix. -

Catalyst System Ziegler/Natta CGC/Borane Ziegler/Natta

Catalysts: VOCl3, VCl4, V(acac)3,VO(OR)3, TiCl4 CGC-Catalyst V(acac)3

Cocatalysats: EASC, DEAC Borane (MMAO) Al-Alkyl

Reactivators: PDCAE, TCAE, BPCC - CHCl3Modifier: H2, ZnEt2, (NH3) - H2

Short stos: Stearic acid, water, antioxidants ?

Antioxidans: sterically hindered phenols, phosphites ?

Stripping aids: water soluble polymers etc. - -

Oil: mineral oil fraction with high b. p. - -

Features of Features of thethe EPDMEPDM--ManufacturingManufacturingTechnologiesTechnologies

O

O C2H5

Cl

Cl

C4H

9O

OCl

Cl

Cl ClCl

C2H

5OCl9

O

Cl

Cl

Reactivators: PDCAE BPCC TCAE

Source: R. T. Sylvest, J. A. Riedel, J. R. Pillow; GAK 6/1997 (50) 478-483

+V VOCl3

+IV VCl4

+III VX3 + R2 AlX {R2VX} {R2V+

} + R2AlX2

-

+II VX2 + R3 Al [R2V] [RVX]

R2AlX R3Al

SpeculationSpeculation on on thethe ActiveActive SpeciesSpecies in in thetheVanadiumVanadium--CatalysedCatalysed EPDMEPDM--PolymerizationPolymerization

Source: K.J. Cann, J.W. Nicoletti, X. Bai, F.D. Hussein, K.H. Lee, D.P. Zilker, Presentation at FLEXPO `97

{homogeneously soluble species} [heterogeneous species]

Ak

tivato

r

heatheat

Page 128: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EPDMEPDMProducers, Capacities (Producers, Capacities (ktkt) and Brand Names) and Brand Names

Baton Rouge, Louisiana 180

Notre Dame de Gravenchon 85

Geleen, Niederlande 135 Keltan

Triunfo, Brasilien 35 Nitriflex EP

Plaquemine, Louisiana 100 Nordel-IP

Seadrift, Texas 90 Elastoflo (UCC)

Marl, Deutschland 60 Buna EP G

Orange, Texas 55 Buna EP T

Lion Copolymer Geismar, Louisiana 91 Royalene / Trilene

Polimeri Ferrara, Italien 85 Dutral

Mitsui Chiba, Japan 60 Mitsui EPT

JSR Kashima, Japan 25

Yokkaichi, Japan 45

Sumitomo Chiba, Japan 40 Esprene

Kumho Yeochon, Südkorea 40 KEP

Petro China Jilin, China 30

Nizhnekamsk Nizhnekamsk, Russland 30

Herdillia Maharashtra, Indien 10

total capacity 1076

Vistalon

JSR EP

Exxon

DSM

DPDE

Lanxess

Source: European Chemical News 10, März 2005, 13

Water

Modifier

Reactivator

EASC

VOCl3 /VCl 4 3 / 1

PH-

Control

EPDMEPDM--SolutionSolution--ProcessProcess withwith FullyFully FloodedFlooded ReactorReactor

destillation

Packaging

Externalcooling

loop

baling

Waste water

Steam

Strippingaid

Antioxydant

oil

Stripper

Polymerizationreactor

dewteringscrewg

Expeller

drier

Settler

Azeotropicdestillation

Water containingazeotrope

drier

Condenser

Condenser

Hexane

Flash drum

Propene

drier

destillationEthene

Hexane VNB/ENB

drierDrier

ENB

Boiling point: 146°C

Max. exposure limit/MAK: 1 ppm

Smell limit: 3-5 ppm

Steam

Settler

Precoller-32/-35°C

Waste air

Waste water

Waste water

Process FeaturesPropene precooling: -32°C/-35°C

Temperature: 20-65°C

Pressure: 5-10 bar

Residence time: 6-15 Min.

Soldis conc.: 3 -7 Gew.%

H2 O: < 3 ppm

Page 129: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DowDow‘‘s s HighHigh--TemperatureTemperature Solution Solution ProcessProcess((SourceSource: Dow: Dow--Patents, Patents, PublicationsPublications etc.)etc.)

"Insite-Kat." packaging

Antioxidant(AO)

Flash-drum

Polymerizationreactor

Purification

Condenser

Temperature: 40 - 80 °C Ta: 80°C (>130°C)Pressure: 9-15 barResidence time: < 20 Min.

Evaporator

High boiling

residue

(ENB, AO, etc.)

Destillation

Ta

Scavenger

Solvent and

monomer

Ethene Propene ENB MMAO Borane

Plant location: Plaquemine/Lousiana

baler

Purification Purification

Evaporator

Ageingdrum

In the Dow-HT-Process low

amounts of CGC- catalyst

are required. The catalyst

is not washed out and no

steam stripping is applied

(„leave-in-catalyst“)

Metal Metal ContentContent of Commercial EPDMof Commercial EPDM

Source: J. G. Pillow (Dow) „Ethylene Elastomers made using Constrained Geometry Catalyst Technology“

Kautschuk Gummi Kunststoffe 51, 12/98, 855-859

Cl

R

A

R

R

ZrAlkylation

Zr +

ClZr

Activation by MAO (molar excess of MAO: 10.000 - 10.000 fold)

Activation by Borane/Borates: (with molar B/Zr-ratios)

Activation of Metallocenes

584,19,464440631,94,8EPDM#6

184,14,61609,62,8<15,1EPDM #5

82,85,7646,72,0<12,4EPDM #4

48,81,81,7314,3<11,9EPDM #3

22,31,81,7314,3<18,0EPDM # 2

8,0<1<11,71,31,0<1Dow-CGC

SumNaCaAlFeTiVProduct

Page 130: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CrystallinityCrystallinity of of MetalloceneMetallocene--BasedBased EPDMEPDM

0

5

10

15

20

25

30

40 42 44 46 48 50 52 54 56 58 60 62

Ethene Content [wt.%]

En

thalp

y o

f fu

sio

n [

J/g

]

N

Me2Si

Ti

X

X

CMe3

DOW-Insite-Cat.

ZrCl2

CH2

CH2

CH2

CH2

CH2

CH2

CH2

CH2

EBTHI-Cat.

V-Catalysis

0

10

20

30

40

50

60

70

80

90

100

0 3 5 7 78,

58,

5

10,0

0

12 18 2132

,5 35

37,5

0

37,5

47,5

Enthalpy of Fusion [J/g]

Lo

w-T

em

pera

ture

-Co

mp

ressio

n-S

et

[%]

EPDM/V-Cat.

EPDM/CGC (Dow)

Impact of Impact of CristallinityCristallinity on on LowLow--TemperatureTemperatureCompressionCompression Set of Set of EPDMEPDM--BasedBased VulcanizatesVulcanizates

N

Me2Si

Ti

X

X

CMe3

DOW-Insite-Cat.

Page 131: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

UCCUCC‘‘s s EPDMEPDM--GasGas--PhasePhase--ProcessProcess ((nownow Dow)Dow)

Purification

Purification

Product

Compressor

Baling of

Product etc.

Cooler

Temperature: < 90 °C (40°C-60°C)

Pressure: 9-15 bar

Residence time: 0,5 - 1 h

ENB

Boiling point: 146°C

Maximum exposure level: 1 ppm

Smell limit 3-5 ppm

Filter

Monomer degassing

unit

Source: „Carbide starts up Seadrift plant with new technology“ European Chemical News, 1-8 February 1999 ($

12m charge for replacing the purge unit)

Plant location: Seadrift/Texas

Desactivation

ENB

Fluidizing Aid

Suported Catalyst

Ethene

Propene

Modifier

Purification

Purification

Patents:EP 1099715

EP 1099473

EP 1086995

EP 1083192

US 6180738

WO 0000333

WO 9965953

Flow-Chart:US 4994534

ComparisonComparison of of EPM/EPDMEPM/EPDM--ManufacturingManufacturingTechnologiesTechnologies

Process Solution Slurry HT-Solution Gas-PhaseV-Catalysis V-Catalysis CGC/Dow V-Catalysis

Process Economy 4 5 7 10

EPM 10 10 10 10

EPDM 10 10 10 0

Low Mooney 10 8 10 0

High Mooney 5 10 3 10

Oil Extended Grades 7 10 3 0

Process Flexibility 42 48 36 20

Overall Process

Performance 46 53 43 30

• The well established vanadium based solution and slurry processes

are inferior in investment and operation costs, but provide a higher

flexibility.

• The HT-solution and the gas-phase technology are low cost-

technologies, which are superior in the production of specific grades

• The well established vanadium based solution and slurry processes

are inferior in investment and operation costs, but provide a higher

flexibility.

• The HT-solution and the gas-phase technology are low cost-

technologies, which are superior in the production of specific grades

Ranking: 1-10; 1= modest; 10=excellent

Page 132: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

MetalloceneMetallocene--PatentsPatents 19801980--2000 (2000 (OctOct. 2000). 2000)

0

50

100

150

200

250

Nu

mb

er

of

Pa

ten

ts (

US

) +

Pa

t. -

Ap

pl.

Exx

on

Hoec

hst

Dow

BA

SF

Phi

llip

sTa

rgor

Mits

ui P

etro

lS

hell

UC

CM

ont

ell

Mits

ui C

hem

.Id

emitsu

DS

M BP

Bore

alis

Fin

a

EN

IM

obil

Du P

ont

Cib

a G

eigy

Alb

emar

leN

r. 2

2 B

ayer

2.923 2.923 DocumentsDocumentsUSUS--Patents and EPPatents and EP-- and WOand WO--Patent Patent ApplicationsApplications

WPIDS-Recherche Dr. Karjetta vom 29. 09. 2000

Cl

R

A

R

Cl

R

R

Zr

Alkylation

(BuLi, AlR3 or MAO)

Zr+

ClZr Zr

Alkylation

(BuLi, AlR3 or MAO)

ActivationActivation of of MetallocenesMetallocenes

Activation by MAO Activation by borates and boranes

Page 133: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CH2

CH2

R

CH2

CH2

R

CH2

CH2

R

CH2

CH2

R

Zr+ Zr

+

Zr+

Zr+

CosseeCossee--MechanismMechanism of of MetalloceneMetallocene CatalysedCatalysedOlefinOlefin Insertion Insertion

HDPE, i-PPHDPE, s-PP, COCHDPE, LLDPE, i-PP, EP(D)MHDPE, LLDPE, a-PP

MAO-ActivationBorate-Activation

MAO-Activation*

MAO-Activation

EP 69951(09.07.1981)

Hoechst (Kaminsky)

EP 4858821(12.11.1990)

Hoechst(Spaleck)

EP 351392(15.07.1988)

Fina(Ewen, Razavi)

EP 468537(30.01.1987)

Exxon(Turner)

EP 129368(06.06.1983)

Exxon(Ewen)

EP 35242(29.12.1980)

BASF(Kaminsky)

Key Patents in Key Patents in MetalloceneMetallocene-- und und SingleSingle--SiteSite--CatalystsCatalysts1.1. Bis 1.1. Bis CyclopentadienesCyclopentadienes

ZrX

X

B ZrX

X

B = Bridge

Me2C

ZrCl2

ZrCl2

Me2Si

* H. C. Welborn, Jr.; J. A. Ewen US 5324800 (Exxon) Prior.: 30.08.1991 „MAO-Activation of Bridged Metallocenes“

Page 134: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

HDPE, LLDPE,PP, EPM, EPDM

HDPE, LLDPE, PP,

EPM, EPDM, COC

PE, PPHDPE, PPPolyolefins

MAO-/Borate-Activation

MAO-/Borate-Activation

WO 97/2351(22.12.1995)Hoechst AG(Herberich)

US 5539124(19.12.1994)Lyondell

WO 98/50392(08.05.1997)Nova Chemicals(Spence)

WO 98/01455(05.07.1996)Bayer AG(Ostoja-Starzewski)

WO 96/34021(25.04.1995)Lyondell

US 5554775(17.01.1995)Lyondell

EP 638593(02.08.1993)Shell

ZrX

X

E

E

E = N, P

NBR

ZrX

XB

N

R

ZrX

X

BY

BY

PMe

2Si

Me

MeMe

Ph ZrCl2

B

Cl

Cl

ZrCl

Cl

P

SiMe3

Ph

Ph

Key Patents in Key Patents in MetalloceneMetallocene-- und und SingleSingle--SiteSite--CatalystsCatalysts1.2. 1.2. IsoelectronicIsoelectronic BicyclopentadienylBicyclopentadienyl SystemsSystems

HDPELLDPEEPM

POHDPELLDPEEP(D)MES

S-PS

MAO_/Borate-Activation

Borate-ActivationMAO-/Borate-Activation

MAO-Activation

EP 420436(13.09.1989)Exxon

US 5206197Dow(04.03.1991)

WO 96/13529DSM(Lovocat)

US 5132380(12.09.1991)Dow

EP 416 815(31.08.1998)Dow

EP 210615(29.07.1985)Idemitsu Kosan

Ti

X

XRxE

E= N, O

N

Me2Si

Ti(IV)

X

X

CMe3

NR2

Ti

X

XIII

Ti

OMeMeO

MeO

Key Patents in Key Patents in MetalloceneMetallocene-- und und SingleSingle--SiteSite--CatalystsCatalysts2. 1. 2. 1. MonoMono--CyclopentadienylCyclopentadienyl SystemsSystems

Page 135: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Key Patents in Key Patents in MetalloceneMetallocene-- und und SingleSingle--SiteSite--CatalystsCatalysts2.2. Mono 2.2. Mono CyclopentadienylCyclopentadienyl SystemsSystems

PE, LLDPEEP(D)MEP(D)M

MMAO-ActivationMMAO-ActivationMMAO-Activation

US 6063879

(29.10.1997)

Nova

WO 2008/095687

DSM

WO 2005/005496

DSM

TiCH3

CH3N

P

t-But-Bu

t-Bu

FF

F

F F

TiCH3

CH3N

CN

N

Ti

X

O

N

P

HDPE, PPPolyolefins,

Polyacetylens

PolyacetylensPolyolefinsAlternating

Olefin/CO-Copolymers

(„Carilon“)

EP 571945

(29.05.1992)

Sumitomo

US 5637660

(17. 04. 1995)

Lyondell

EP 606125

(08.01.1993)

Shell

JP 5230133

(19.02.1992)

Mitsui Toatsu

WO 92/12162

(27.12.1990)

Exxon

EP 121965

(05.04.1983)

Shell

P

Pd

P

ArAr

X

ArAr

N

Ti

N

Ar

X

X

Ar

S

O

Ti

O

X

X

t-Bu

t-Bu

Key Patents in Key Patents in MetalloceneMetallocene-- und und SingleSingle--SiteSite--CatalystsCatalysts3.1. Post 3.1. Post MetallocenesMetallocenes

N

OZr

N

O

X

X

Page 136: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

N

M

N

X

X´R

R

R

R

M = Ni, Pd

Key Patents in Key Patents in MetalloceneMetallocene-- und und SingleSingle--SiteSite--CatalystsCatalysts

3.2. Post 3.2. Post MetallocenesMetallocenes

N

N

N FeCl

Cl

OO

TiN N

Cl Cl

EPM, EPDMHDPE, EPMHDPE(PP)HDPE, (PP)polar/unpolar

Copolymers, LDPE

EP 1881014

(10.05.2006)

Mitsui

EP 0874005

(24.01.1998)

Mitsui

BPDuPont

(Brookhart)

WO 96/23010

(24. 01. 1996)

DuPont

(Brookhart)

Features of Features of thethe ActivationActivation byby MAOMAO

(CH3)2 Al - [O - Al - CH3]n- O - Al(CH3)2

(CH3) Al - [O - Al - CH3]n- O - Al(CH3)

O

n : 6 - 20

MW : 2.000-2.500

Chemical Structure of Methylalumoxane (MAO):

Features of the activation by MAO:• The details on the mechanism of the activation by MAO are not known

• A 1.000-10.000 fold molar excess of MAO is needed in solution polymerizations

• A 50-100 fold molar excess is needed for supported catalysts (gas phase)

• MAO is capable of alkylating metallocenedichlorides

• MAO is able to abstract chlorides from metallocenemono- or dichlorides

• MAO is an efficient scavenger for impurities

(Polymerizations performed in the presence of MAO are very robust towards impurities)

Page 137: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

N

H

PhMe

Me

PhPh

Ph

B

F

FF

F

F

FF

F

FF

F

FF

F F

B

F

F

F

F

F 4

_

B

F

F

F

F

F 4

_

+

+

ActivationActivation of of MetallocenesMetallocenes byby BoranesBoranes and Boratesand Borates

R

R

R

Zr +

Zr

- R-

• For the Activation of metallocenes molar quantities of borane/borates arerequired

• Polymerizations activated by boranes/borates are very susceptible to impurities

Borane

Anilinium Borate

Triphenylcarbenium

Borate

Abstraction of Alkyl-Anions by Borane and Borates

ActivationActivation of of MetallocenesMetallocenes

Zr +

R

Zr

R

R

- R-

N

H

PhMe

Me

A

PhPh

Ph

NPh

MeMe

PhPh

Ph

R

B

B

R

A

-A

-

A-+

+

F5F5

F5

- RH+ R

F5F5

F5

-+ R

-

-

M. Bochmann

(1990)T. J. Marks (1991;JACS 113, 3623)

M. D. Rausch,

J. C. W. Chien (1991)

R. F. Jordan (1986)

Ag BPh4

+

Ag+1/2 R2 + BPh4

-

CH3CN

+ R-

+ R -

-

FF

FFF

B

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

-

A : - EP 468 537 (Exxon) Priorität: 1987

EP 561 479 (Exxon) Priorität: 1987

Nicht oder schwach koordinierende Anionen

"NCA"oder "WCA"

(insbesondere: Tetrakis(Pentafluorophenylborat)

EP 468 537 (Exxon) Priorität: 1987

EP 561 479 (Exxon) Priorität: 1987

Nicht oder schwach koordinierende Anionen

"NCA"oder "WCA"

(insbesondere: Tetrakis(Pentafluorophenylborat)

Turner

1987

Turner

1987

US 5599761 (Exxon) Priorität: 04.02.1987

Erfinder: H. W. Turner

„Ionic Metallocene Catalyst Compositions“

US 5599761 (Exxon) Priorität: 04.02.1987

Erfinder: H. W. Turner

„Ionic Metallocene Catalyst Compositions“

Page 138: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Activation of Cp2ZrCl2 by MAO (BASF/Kaminsky) EP 35242; Prior. 29.12.80

Activation of metallocenesby borates (Exxon/Turner)

Activation of metallocenes by Alkyl/R<C6- Al-Oxanen (Exxon)

Activierung of Cp2ZrRCl by MAO (Hoechst/Kaminsky) EP 69951; Prior.: 09.07.81

Year of Priority

1980

1985

1990

1995

Activation of metalloenes by Al- Alkyls R >C8 - Al-Oxanes (Montell)

Key Patents Key Patents forfor thethe ActivationActivation of of MetallocenesMetallocenes

Activation by boranes (Fina/Ewen) EP 427 697; Prior.: 10. 10. 1989

Activation of CGCby MAO (Dow/Stevens) EP 416815; Prior.: 31.08.89

Activation by borates (Dow/Stevens) EP 418044; Prior.: 14.09.89 [Cp1MXn]+ [BR4]-

CGC/Diene-activation by boranes (Dow/Stevens) EP 705 269; Prior.: 24. 06. 1993

EP 468 537; Prior.: 30.01.87 [Cp2MX]+ [BR4]EP 561 479; Prior. 30. 01. 1987US 559 976; Prior. 04. 02. 1987 Ionic metallocene catalyst comosition

CGC-Activation by boranes (Dow/Stevens) EP 705 269; Prior.: 24. 06. 1993

WO 01/08691 (Bayer AG)

Prior.: 18.08.2000

Inv.: Becke, Kahlert,

Denninger, Windisch, Obrecht

WO 01/10124 (Bayer AG)

Prior.: 11.09.2000

Inv.: Becke, Denninger,

Kahlert, Obrecht, Schmid,

Windisch,

EP 1066296 (Bayer AG)

Prior.: 24.03.1998

Inv.: Becke, Denninger,

Mager, Windisch

EP 111927 (Bayer AG)

Prior.: 23.06.1999

Inv.: Becke, Mager, Zahalka

Non Non CoordinatingCoordinating AnionsAnions

EP 468537 (Exxon)

Prior.: 30.01.1987

Inv.: Turner, Hlatky

EP 561479 (Exxon)

Prior.: 30.01.1987

Inv.: Turner, Hlatky

FF

FFF

B

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

FF

F

F

F

FF

F

F

FF

F

FF

F

F

F

F

F

F

F

F

F

F

F

B

F F

FF

FF

F

F

F

FB

F

FF

FF

F

F

F

F

F

Si

B

FF

F

F

FF

F

F

F

F

F

F

F

F

F

B

F

F

F

F

FF

F F

F

F

F

F

F

F

FF

F

F

F

F

--

-

4 -

Page 139: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ComparisonComparison of of CatalystCatalyst CostsCosts

• MAO-activation of metallocenes is not economical in a solution process

• Borate-activation results in catalyst costs which are comparable with

Vanadium-systems

• For an improvement in overall-economy metallocene-technology has to be

combined with process improvements

• Increased catalyst costs might be compensated by the improved property

profile of new products

• MAO-activation of metallocenes is not economical in a solution process

• Borate-activation results in catalyst costs which are comparable with

Vanadium-systems

• For an improvement in overall-economy metallocene-technology has to be

combined with process improvements

• Increased catalyst costs might be compensated by the improved property

profile of new products

Example Catalyst Cocat. Reactivator Total Cat-Costs

[EUR/100 kg] [EUR/100 kg] [EUR/100 kg] [EUR/100 kg]

Plant 1 VOCl3 EASC DCPEE

[EUR/kg] 0,50 3,75 2,00 6,25

Plant 2 V(acac)3 DEAC TEA

[EUR/kg] 1,25 1,30 0,65 3,20

Exxon- Pat. Et(Ind)2ZrCl2 MAO -

[EUR/kg] 13,00 151,00 - 164,00

Exxon- Pat. Et(Ind)2ZrMe2 Borate -

[EUR/100 kg] 2,25 3,45 - 5,70

Page 140: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

4.5. Butyl4.5. Butyl-- and Halobutyl Rubber and Halobutyl Rubber

Contents

• Overview– Products, Property Profiles and Areas of Application

– Market, Market Shares, Producers and Range of Grades

• Polymerization Mechanism and Production Technologies– Standard-Butyl Rubber (IIR)

– Halo Butyl Rubber (XIIR)

• Vulcanization and Vulcanizate Properties

Abbreviations:Butyl Rubber: IIR

Bromo Butyl Rubber: BIIR

Chloro Butyl Rubber: CIIR

Brominated Isobutene Paramethylstyrene Rubber: BIMS

IIR-Terpolymer (mainly with Divinyl benzene): XLIIR

ButylButyl-- and Halo Butyl Rubber and Halo Butyl Rubber

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

X

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH3

CH2

CH2

n

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

CH CH2

CH CH2

n

CH2Br CH

3

C

CH3

CH3

X = Cl: Chloro Butyl Rubber (CIIR)

X = Br: Bromo Butyl Rubber (BIIR)

Butyl Rubber (IIR)

Brominated Isobutene-co-p-Methylstyrene Rubber (BIMS)

Isobutene-Terpolymers

Basic Features:

Isoprene content: 0,5 - 2,5 Mol%

Incorporation of Isoprene: random 1,4-trans

Tg: ca. -72°C

Mw/Mn: 3 - 5

C45

CH3

CH3

CH226

C27

CH28

CH3

29CH

2

30

CH223

CH235 CH

221

C15

CH316

CH3

39

C19

CH3

20

CH338

123°

Standard Angle: 109,5°

Page 141: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ButylButyl-- and Halo Butyl Rubber (X)IIR: Property Profile and and Halo Butyl Rubber (X)IIR: Property Profile and AreasAreas of of ApplicationApplication

Property ProfilePositive:• Low gas permeability• high resistance to heat and vapour• high resistance to chemicals• good insulation properties• good covulcanization (XIIR))• product purity

(grades without antioxydants)

Negative:low elasticity /highly damping

Areas of Applications:• XIIR based Innerliners (passenger tyres)• IIR b ased tubes (truck tyres)• bladders (IIR)• ABC-protection clothes• Cable and wiring• Pharmaceutical stoppers• Adhesives and sealants• absorbers for noise and fenders• chewing gum

86%

5% 4% 3% 1%1%

Tyres Pharmaceutical

Others AdhesivesChewing gum Automotive

Source:CHEManager 20/2006, Seite 8 (GIT Verlag Darmstadt)

Butyl and Halobutyl Rubber (X)IIR: GradesButyl and Halobutyl Rubber (X)IIR: Grades

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

X

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH3

CH2

CH2

n

C

CH3

CH3

Halo Butyl Rubber (XIIR) X = Cl: Chloro Butyl Rubber (CIIR) X = Br: Bromo Butyl Rubber (BIIR)

Butyl Rubber (IIR)

X2 (Cl2 / Br2)

Advantages of XIIR over IIR:• Higher speed of vulcanization

•Improved covulcanization without deterioration of basic IIR properties

Page 142: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

-75 -50 -25 0 25 50 75 100

Temperature [°C]

20

40

0

60

Reb

ou

nd

Ela

sti

cit

y[%

]

80

IIR

EPDM

NBR

SBR

NR

1,4-cis BR

CharacteristicCharacteristic Features of IIR Features of IIR basedbased VulcanizatesVulcanizates

0,1

1

10

100

0,0029 0,00295 0,003 0,00305 0,0031

1/T x 10exp4

Lu

ftd

urc

hlä

ss

igk

eit

(Q x

10

ex

p8

)

Temperature [°C]

70 60 50

1,4-cis-BR

NREPDM

SBRNBR/28 ACN

NBR/33 ACNNBR/38 ACNIIR

Source: Butyl And Halobutyl Compounding Guide For Non-Tyre Applications, 12/92 Bayer AG -KA 34 166)

Rebound (50 phr SRF, without plasticizer)

Air permeability of vulcanized rubbers(50 phr SRF, without plasticizers)

(X)IIR: Market, Market (X)IIR: Market, Market DevelopmentDevelopment, , ProducersProducersand and ProductionProduction CapacitiesCapacities

0

100

200

300

400

500

600

700

1979

1982

1985

1988

1991

1994

1997

2000

Co

nsu

mp

tio

n [

kt]

IIR

XIIR

Sum

Market Growth (Basis: 2.000):IIR: - 2,3 %/ p.a. XIIR: + 2,3 % p.a. Sum: + 1,2 % p.a.

Main Areas of Application:(90%: Tyres and Tyre Production)•XIIR: Inner liners•IIR: Truck tyre tubes•IIR: heating bladders

Pricing (1996):•IIR: ca. 1,80 €/kg•XIIR: ca. 2 €/kg•BIMS: ca. 3,5 €/kg

1.041

80

45

50

180

252

414

Total

[kt]

Total Capacity

XXJapan Butyl Co.

(X)XSinopec

XTogliatti

XXNizhnekamsk

XXLanxess

XXExxon

Halo-

butyl

ButylCompany

Production capacities (2008)

Page 143: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Range of Commercial IIR and XIIR GradesRange of Commercial IIR and XIIR Grades

Range of Standard Butyl Grades

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Content of double bonds [Mol%]

Mo

on

ey V

isco

sity

ML

(1

+8

) 1

25

°C

Range of XIIR Grades

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Halogen Content [Mol%]

Mo

on

ey V

isco

sity

ML

(1

+8

) 1

25

°C

Chlo

rbuty

l

Bro

mbu

tyl

H2O „slop isoprene“ H2O

Isobutene- Isoprenedrying unit

NH3- Ethene-Heat exchangers

compressor dryer compressor

AlCl3-

solution

drum

Reactor Steam- Flash- Stripping-unit unit

CH3Cl

“catalyst cocatalyst

drum“

Storage tank for

„mixed feed“

Storage

units for

IIR-slurry

in water

Cond

enser

IIR: IIR: FlowFlow Chart of Chart of SlurrySlurry PolymerizationPolymerization(Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Volume 8, 1993)

Al2O3

Page 144: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Features of IIR Features of IIR ProductionProduction TechnologyTechnology

Ethylene(liquid)

Ethylene(gas)

mixed feed catalyst

Inlet and Drainfor light

hydrocarbonwash

catalystSources:Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Volume 8, 1993US 2,356,128; US 2,491,752; US 2,491,710; US3,968,076; US 4,474,924; US 4,068,051; US 5,532,312

Process: Slurry polymerization

Catalyst: AlCl3

Cocatalysts: HCl (Exxon)

H2O (Lanxess)

Diluents: CH3Cl (Exxon and Lanxess)

„mixed feed“(GUS)

Make-up of AlCl3-solution 30 - 45 °C

Polymerization temperature: -90 °C bis - 100 °C

Residence time 0,5 - 1 h

Conversion of monomers:

Isobutene 75 - 95 %

Isoprene 45 - 85 %

Concentration of IIR-Slurry 25 - 35 wt.%

Reactor output: 2 - 4 t/h*Reactor

Operation time of reactors: 18 - 60 h

Additives:

Antiagglomerants: (Stearic acid/Zn-stearate)

0,4 - 1,0 wt.%

Antioxydants: 0,02-0,15 wt.%

-discolouring: alkylated Phenylene Diamines

-None discolouring: phenolic AO

(+ alk. Phenyl phsophites)

-chewing gum: without AO

IIR: IIR: ReactionReaction SchemeScheme of of CationicCationic PolymerizationPolymerization

CH3

C

CH3

CH2

CH3

C+

CH3

CH3H

+ AlCl4

AlCl4

H+ AlCl

4AlCl3 + HCl

AlCl3 + H

2O H

+AlCl

3OH

CH3

C+

CH3

CH3

AlCl4

CH3

C

CH3

CH2

CH3

C+

CH3

CH2H

n

AlCl4

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH3

C+

CH3

CH2H

n

AlCl4

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH3

C

CH3

CHH

n

CH3

C+

CH3

CH3

AlCl4

CH3

C

CH3

CH2

CH3

C+

CH3

CH2H

n

AlCl4

CH3

C

CH3

CH2

CH3

C

CH3

CH2H

n

Cl AlCl3

-

-

-

-

-

+

Initiation of Polymerization:

- +

-

Formation of Cation:

+

+

Chain Propagation (Growth) Reaction:

- +

Transfer Reaction:

n

+ -

+

Termination Reaction:

+

Page 145: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

IIR: IIR: LivingLiving CationicCationic PolymerizationPolymerization

CH3

C

CH3

CH2

CH3

C+

CH3

CH2

R

R+ MXR - Cl + MX

CH3

C

CH3

CH2

CH3

C+

CH3

CH2R

n

CH

3

C

CH3

CH2

-

R+

CH3

C+

CH3

CH2

R

CH3

C

CH3

CH2

CH3

C+

CH3

CH2R

n

CH3

C

CH3

CH2

CH3

C

CH3

CH2R

n

Cl + MX

MX-

MX-

MX-

MX-

Initiation:

+

Generation of Carbo Cation:

+

+

Reversible Termination:

n

Propagation:

n+1n

n+1

n+1 n+1

n+1n

ClCl

Cl

Cl

Cl

BCl3 and TiCl

4

MXn (Metal halides) and R-Cl used for the preparation

of Isobutylene based blockcopolymers:

InfluenceInfluence of of PolymerizationPolymerization TemperatureTemperature on Molar on Molar MassMass((PolyisobutylenePolyisobutylene / / withoutwithout IsopreneIsoprene))

Mn

[g/m

ol]

1/T *103 [K-1]

3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0

107

106

105

104

13 -25 -50 -75 -90 -106 -120 -143

γ-Strahlung

BF3/H2O

EtAlCl2/H2O

AlCl3/H2O

Molar Masses:

γ-Strahlung > EtAlCl2 > BF3 > AlCl3

Source: J. Kennedy, P. D. Trivedi, Adv. Pol. Sci. (1978) 28, 113-151

Page 146: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

X-IIR-

Slurry

in water

Antiagglo- steam Caustic

merants soda

Storage tank Halogenation reactor Neutralization reactor

Addition of AO

water

Br2 bzw. Cl2

IIR-solution

in hexane

Hexane

XIIR: XIIR: FlowFlow Chart of Chart of IIRIIR--HalogenationHalogenation

Source: Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Volume 8, 1993)

XIIR: XIIR: MechanismMechanism of of IIRIIR--HalogenationHalogenation

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH3

CH2

CH2

n

C

CH3

CH3X

X

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH3

CH2

CH2

n

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C C

CH3

CH2

CH2

n

C

CH3

CH3

H

X2

X

X

+

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C C

CH3

CH2

CH2

n

C

CH3

CH3

HX

X

+

- HX

- HX

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

C

CH3

CH3

X

Reaction Conditions:

Solvent: Hexane

IIR-solids 20 - 25 wt.%:

Ratio of Halogen/Isoprene: 1:1 Mol/Mol

Reaction temperature : 40 – 60 °C

Residence time: l h

Stripping-Vapour : 2 - 2 kg/ kg XIIR

Antioxydants / stabilizers: Ca-Stearate,

Epoxydized Soy

bean oil (ESB)

Source:Kirk-Othmer Encyclopedia of Chemical Technology,

Fourth Edition, Volume 8, 1993

Patents:

US 2631984; US 3099644; US 4288575; US 4554326;

US 4632963; US 4681921; US 4650831; US 4384072;

US 4513116; US 5681901

Page 147: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CrosslinkingCrosslinking EfficienciesEfficiencies in in VulcanizationVulcanization bybyPeroxidesPeroxides ((DicumylDicumyl PeroxidePeroxide))

1) Dissertation Th. Früh, TU Hannover 1995

X-linking

efficiency

~ 100 1)

12,5

10,5

1,5

0,4 - 0,7

1,0

1,0

0,5

<<1

1,0

<<1

Type of Rubber Theoretical Cross-

linking efficiencies

M - Rubbers 1

R - Rubbers > 1

Degradating polymers < 1

NumberNumber of of crosslinkscrosslinksXX--linkinglinking efficiencyefficiency ==

PeroxidePeroxide FunctionsFunctions

Rubbber

Vi-BR

(98% Vinyl)

SBR

cis 1,4-BR

EPDM

EPM

NBR

IR

CR

IIR

PE

PP

O O O

O C

C

C

C

2

2 +

(R*)

+ 2 R-H

100 -

- 100

50 50

- 20

130 80

10 -

1 1

- 1,5

- 1,5

6 -

1 -

PropertiesProperties of of SulfurSulfur-- and and PeroxidePeroxide CuredCured IIR and XLIIRIIR and XLIIR

IIR

IIR -Terpolymer*

N 762

Hard Clay

Polarite 102R/EEC Int

Pb3O4

Stearic acid

Bis(t-butylperoxy-isopropyl)benzene

Trimethylolpropanetrimethacrylate

Dibenzoyl chinone dioxime

Dibenzo thiazyldisulfide

Polysar Butyl 402

Polysar Butyl XL 10000

Carbon black

Silicate

Silanised calcinated Clay

-

-

Perkadox 14-40 B/Akzo

Sartomer 350/Sartomer

Actor DQ/Kawaguchi

Vulkacit DM / Lanxess

Source: C. A. Moakes, Bayer „Polynotes“ No B11 „An Improved Seal for Chemical CondensersBased on Polysar Butyl Terpolymer“

* IIR-Terpolymer mit Divinylbenzol (XLIIR)

Page 148: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Butyl Rubber Grade

Compound Properties

Compound Mooney (ML 1+4/100°C)

Mooney-Scorch (125°C) [min.]

Vulkanizate Properties (160°C/12 min.)

Shore A Härte (23°C)

S100 [MPa]

Elongationat break [%]

Tensile Strength [MPa]

Compression Set (70h/105°C [%])

Hot air ageing (100°C/96h)

Shore A Härte (23°C)

S100 [MPa]

Elongation at break [%]

Tensile Strength [MPa]

Electrolyte permeability (g*mm/day*m2)

Ethylenglycol

g-Butyrolactone

Dimethyl formamide

IIR

105

4,0

81

6,0

155

6,8

75

83

7,8

110

8,0

0,38

1,0

7,8

XLIIR

98

6,2

76

6,5

105

7,5

15

78

-

95

8,2

0,21

0,8

1,8

PropertiesProperties of of SulfurSulfur-- and and PeroxidePeroxide CuredCured IIR and XLIIR IIR and XLIIR

VulcanizationVulcanization of BIIR of BIIR byby PeroxidesPeroxides

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

X

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

C

CH3

CH3X

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

C

CH3

CH3

+ DCP

- 2 X*

Page 149: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

VulcanizationVulcanization of BIIR of BIIR byby ZnO/NNZnO/NN‘‘--mm--PhenylenePhenylene

BismaleicBismaleic ImideImide

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH2

CH2

n

X

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH CH2

n

C

CH3

CH3

+ ZnO- ZnOHX

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH CH2

n

C

CH3

CH3

CH3

C

CH3

CH2

CH3

C

CH3

CH2

CH2

C CH

CH2

CH CH2

n

C

CH3

CH3

NC

C

N

C

C

O

O

O

O

Source: Butyl and Halobutyl Compounding Guide for Non-Tyre Applications, Bayer AG, Rubber Business Group KA 34166, ed. 12/92

J. Rogers, W. H. Waddell (Exxon) „Isobutylenkautschuke im Kraftfahrzeug: Eine Literaturübersicht, GAK 9/1999-Jahrgang 52, 670-682

IIR (Lanxess Butyl 301) [phr]

XIIR (Bromo butyl

Carbon black (N 330) [phr]

Carbon black (N 774) [phr]

Zinc oxide [phr]

Lead Oxide (Pb3O4) [phr]

Stearic Acid [phr]

Sulfur [phr]

MBT [phr]

Benzochinondioxim [phr]

PF-Resin (Amberol) [phr]

CR (Baypren 110) [phr]

Dicumyl peroxide [phr]

Zinc oxide [phr]

Dicumyl peroxide [phr]

BMI (HVA 2) [phr]

temperature [°C]

time [min]

100

-

50

-

5

-

1,0

1,25

1,5

-

-

-

-

-

-

-

160

25

100

-

50

-

5

6

1,0

-

-

-

10

5

-

-

-

-

190

30

100

-

50

-

5

10

1,0

-

-

6

-

-

-

-

-

-

150

12

-

100

-

50

-

-

1,0

-

-

-

-

-

1,5

-

-

-

180

15

-

100

-

50

5

-

1,0

-

-

-

-

-

-

5

-

-

180

3

-

100

-

50

5

-

1,0

-

-

-

-

-

-

1,5

0,5

180

4

-

100

-

50

5

-

1,0

-

-

-

-

-

-

-

1,5

180

20

IIR and XIIR: IIR and XIIR: MethodsMethods of of VulcanizationVulcanization and and VulcanizateVulcanizate PropertiesProperties

Page 150: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

IIR und XIIR: IIR und XIIR: MethodsMethods of of VulcanizationVulcanizationand and VulcanizateVulcanizate PropertiesProperties

IIR [phr]

XIIR [phr]

Carb. black (N 330) [phr]

Carb. black (N 774) [phr]

Vulcanization

Compound Properties

ML 1+4 (100°C) [MU]

MS5 (125°C) [min]

MS5 (135°C) [min]

Physical Properties

Shore A Hardnes

M100 [MPa]

M300 [MPa]

Tensile Strength [MPa]

Elongation at break [%]

CS (70h/150°C) [%]

100

-

50

-

S/MBT

91

17

-

66

2,5

16,6

530

68

100

-

50

-

Resin

82

>30

-

64

1,9

15,8

590

12

100

-

50

-

Chinon

94

7

-

64

2,1

12,8

400

68

-

100

-

50

ZnO

83

-

16

48

0,9

5,2

12,4

580

58

-

100

-

50

DCP

88

-

12

40

0,5

1,8

8,9

680

53

-

100

-

50

DCP/BMI

88

-

14

54

0,12

9,5

10,5

325

28

-

100

-

50

ZnO/BMI

89

-

16

58

0,19

10,2

13,6

360

13

Source: Butyl and Halobutyl Compounding Guide for Non-Tyre Applications, Bayer AG, Rubber Business Group KA 34166, ed. 12/92

J. Rogers, W. H. Waddell (Exxon) „Isobutylenkautschuke im Kraftfahrzeug: Eine Literaturübersicht, GAK 9/1999-Jahrgang 52, 670-682

100 100

60 60

- 7

4 4

1 1

1,3 1,3

3 3

0,5 0,5

BIIR

Carbon black

Paraffin Oil

Resin

Stearic Acid

MBTS

Zinc oxide

Sulfur

Polysar Brombutyl 2030

N 660

Sunpar/Sunoco Inc.

Pentalyn A / Hercules

Vulkacit DM / Lanxess

InfluenceInfluence of Oil of Oil LoadingLoading on on PropertiesProperties of of BIIRBIIR--VulcanizatesVulcanizates

Page 151: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Butylkautschuk-Typ

Paraffinöl

Mischungseigenschaften

Compound-Mooney (ML 1+4/100°C)

Mooney-Relaxation (MR30) [%]

Monsanto-Tack [N]

Vulkanisateigenschaften (160°C/12 min.)

Zugfestigkeit [MPa]

Bruchdehnung [%]

S 50 [MPa]

S 100 [MPa]

S 300 [MPa]

Shore A Härte/23°C

Shore A Härte/70°C

Rückprallelastizität/23°C [%]

Rückprallelastizität/70°C [%]

Luftdurchlässigkeit/70°C (DIN 53536) [m2/s*Pa])

BIIR

7

62

5,5

2,2

8,9

670

0,8

1,1

4,0

58

40

9

29

3,0

BIIR

-

72

5,1

2,3

10,5

650

0,9

1,7

5,4

60

47

9

30

2,3

InfluenceInfluence of Oil of Oil LoadingLoading on on PropertiesProperties of of BIIRBIIR--VulcanizatesVulcanizates

BIIR

Carbon Black

Paraffin Oil

Resin

Stearic Acid

MBTS

Zinc Oxide

Sulfur

Polysar Brombutyl 2030

N 660

Sunpar/Sunoco Inc.

Pentalyn A / Hercules

Vulkacit DM / Lanxess

InfluenceInfluence of of CarbonCarbon Black Black LoadingLoading on BIIR on BIIR VulcanizatesVulcanizates

100 100 100 100 100

60 40 30 20 0

- - - - -

4 4 4 4 4

1 1 1 1 1

1,3 1,3 1,3 1,3 1,3

3 3 3 3 3

0,5 0,5 0,5 0,5 0,5

Page 152: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

100

60

72

5,1

2,3

2,9

6,2

7,9

11,8

730

0,9

1,3

5,4

55

43

10

32

2,14

0,647

0,251

BIIR (Butyl rubber 2030)

Carbon black (N 660)

Compound Properties

Compound-Mooney (ML 1+4/100°C)

Mooney-Relaxation (MR30) [%]

Monsanto Rheometer MDR 165°C

minimal torque [Nm]

t50 [min]

t90 [min]

Maximal torque [Nm]

Vulcanizate properties (160°C/12 min.)

Tensile Strength [MPa]

Elongation at break [%]

M50 [MPa]

M100 [MPa]

M300 [MPa]

Shore A Hardness/23°C

Shore A Hardness/70°C

Rebound at 23°C [%]

Rebound at 70°C [%]

Air permeation at 70°C/E+17 [m2/s*Pa])

tan δδδδ / 0°C (Roelig-test)

tan δδδδ /70°C (Roelig-test)

InfluenceInfluence of of CarbonCarbon Black Black LoadingLoading on BIIR on BIIR VulcanizatesVulcanizates

100

40

62

7,4

1,7

3,3

6,8

5,5

13,1

865

0,7

0,9

2,4

46

33

10,7

39

2,27

0,809

0,215

100

30

56

7,6

1,4

1,3

7,1

4,3

13,7

975

0,7

0,8

1,8

39

27

11,9

42

2,39

0,863

0,190

100

20

51

7,8

1,2

3,3

7,8

3,4

13,5

1055

0,6

0,7

1,2

33

23

12,2

44

2,58

0,900

0,178

100

0

40

7,2

0,8

3,3

6,8

2,2

7,3

1100

0,4

0,5

0,6

22

17

13,8

49

2,78

0,945

0,151

InfluenceInfluence of (of (X)IIR/NRX)IIR/NR--BlendBlend Ratio on Ratio on VulcanizateVulcanizatePropertiesProperties

BIIR

CIIR

NR

Carbon black (N 660)

Paraffin oil

Pentalyn A*

Stearic acid

Zinc oxide

MBTS

Sulfur

100 -

0 100

0 0

60 60

7 7

4 4

1 1

3 3

1,0 1,0

0,5 0,5

60 -

0 60

40 40

60 60

7 7

4 4

1 1

3 3

1,0 1,0

0,5 0,5

40 -

0 40

60 60

60 60

7 7

4 4

1 1

3 3

1,0 1,0

0,5 0,5

80 -

0 80

20 20

60 60

7 7

4 4

1 1

3 3

1,0 1,0

0,5 0,5

Source: W. Hopkins, R. H. Jones, J. Walter “Bromobutyl and Chlorobutyl. A Comparison of Their Chemistry,

Properties and Uses“ paper 16A10 presented at IRC ‘85 Kyoto; International Rubber Conference

Page 153: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

80

-

20

5,7

10,0

620

7,6

9,8

420

5,4

14,7

10,0

23,6

-

80

20

5,1

10,7

620

7,9

11,0

465

5,7

4,7

1,6

3,9

60

-

40

7,1

12,8

560

8,4

9,3

320

9,2

15,2

14,7

0,3

100

-

-

4,2

9,3

740

6,8

10,0

550

2,9

16,8

7,5

61,8

-

60

40

5,7

10,3

560

7,7

9,2

365

7,5

9,1

1,9

0,1

-

40

60

4,3

9,7

580

3,6

5,8

475

13,2

5,2

2,9

0,0

InfluenceInfluence of (of (X)IIR/NRX)IIR/NR--BlendBlend Ratio on Ratio on VulcanizateVulcanizatePropertiesProperties

BIIR [phr]

CIIR [phr]

NR [phr]

Unaged:

M300 [MPa]

Tensile Strength [MPa]

Elongation at break [%]

Aged (168h/100°C)

M300 [MPa]

Tensile Strength [MPa]

Elongation at break [%]

Air permeation at

50psi/65°C (Q x 10-8]

Adhesion at 100°C

Self adhesion / tack [kN/m]

Adhesion to NR [kN/m]

Fatigue to failure after

ageing at 168h/120°C [kcycles]

40

-

60

8,9

14,7

490

6,7

8,8

370

13,8

15,4

20,8

0,0

-

100

-

3,7

9,9

770

5,5

10,9

640

2,9

4,4

1,3

72,7

Page 154: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

5. Rubber 5. Rubber SpecialitiesSpecialities::Performance Performance ProfilesProfiles of of VulcanizatesVulcanizates

0

20

40

60

80

100Maximal Service Temperature

Low Temperature Performance

Ozone Resistance

Oil Swelling

Mechanical Properties

Processability

Silicon RubberHydrogenated Nitrile Rubber Fluoro RubberEthylene-Vinylacetate-Copolymers

Page 155: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

5.1. 5.1. FluoroFluoro Rubber (FKM / FPM)Rubber (FKM / FPM)

Bond Bond Radiusenergy of atoms[J/mol] [A]

C-H 413 0,37

C-F 485 0,72

Areas of Application:60 % Automotive (75% in Europe)

10 % Aviation and Aerospace

10 % Chemical planty s (Fume treatment

of incineration and power plants)

20 % rest

Rubber goods:30-40 % O-Rings and seals

30-40 % crank shaft seals

10-15 % hoses and profiles

~ 5 % Modification of polyolefins

4.5 % pipes and tubings

10 % rest

Sources: J. Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & SonsA. L. Logothetis „Chemistry of Fluorocarbon Elastomers“ Prog. Polym. Sci., Vol. 14, 251-296 (1989)

Maximum Service Temperature:

3.000 h 232°C1.000 h 260°C

240 h 288°C48 h 316°C

Properties of FKM-Vulcanizates:Positive:•Excellent resistance to ozone, UV- and weather

•High service temperature

•Low oil swell

•High resistance to chemicals and acids

•High flame resistancy

Negative:•High price

•Poor low temperature flexibility (except Kalrez)

•Poor resistance to amines and bases

•Poor compounding

•Necessity to oven ageing after vulcanization

FluoroFluoro Rubber: Market, Rubber: Market, ProducersProducers and and CapacitiesCapacities

Market: 2002: ca. 15.000 t

Prices: 20 - 50 EUR/kg (correlated with F-content)

Top price: ~ 500 €/kg (Kalrez)

Growth: 8 - 10% p. a.

Return on Sales: 20 - 25%

Estimated total capacity: 20 kt; capacity utilization: 80-100%

Asia

22%W-

Europe

33%

USA

45%World Market

Source: Kunststof En Rubber; 11 November 2003

1,0Chiba, Jp5AflasAsahi Glass

1,0Jp5NoxtiteUnimatec

2,0Chiba, JpAsahimont

1,0Osaka, Jp10DaielDaikin Kogyo

2,0Spinetta, I15TecnoflonSolvay(Ausimont)

2,02,1

Decatur, ALZwijndrecht, BE

Gendorf, DE

22FluorelDyneon

3,01,01,0

Deepwater, NJDordrecht, NLUtsonomiya, JpKawasaki, Jp

43Viton/KalrezDu Pont

DuPont-Showa

Capacity* [kt]

SiteMarket Share [%]

Tradenames

Producer

Page 156: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

FKM: FKM: CompositionComposition of Standard Gradesof Standard Grades

Soures: J. Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & SonsA. L. Logothetis „Chemistry of Fluorocarbon Elastomers“ Prog. Polym. Sci., Vol. 14, 251-296 (1989)

80 60 40 20TFE [wt.%]

HFP

[w

.t%

]

20

4

0

60

80

20

40

60 80

TFE VDF

HFP

VD

F [w

t.%]Am

orphou

s

Polym

ers

(rubbers)

VDF TFE HFP

[%] [%] [%]

X 33 33 33

Y 55 23 22

Z 22 12 65

X

Y

Z

Copolymers fluorine cont.

[wt.%]

TFE/P 54

VDF/HFP 65

VDF/HFP/TFE 67

VDF/HFP/TFE/CSM* 69

TFE/PMVE/CSM* 71

*Cure Site Monomer

C C

F

F

H

H

C C

F

F

F

F

C C

CF3

F

F

F

Fluorine containing monomers

VDF

TFE

HFP

FKM: Performance of Standard GradesFKM: Performance of Standard Grades

Copolymers Fluorine Cont. Volume swell Tg [°C]

[wt.%] benzene gear oil

21°C 121°C

VDF/HFP 65 20 171 -18

VDF/HFP/TFE 67 15 127 -8

VDF/HFP/TFE/CSM* 69 7 45 -5

TFE/PMVE/CSM* 71 3 10 -19

TFE/P 54 - - -2 (0)

0

20

40

60

80

100

120

140

160

180

60 65 70 75

Fluorine Content [wt.%]

Vo

lum

e S

we

ll [

%]

Benzene/21°C

Gear Oil/121°C

d

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0 200 400 600 800 1000

time [h]

red

ucti

on

of

elo

ng

ati

on

at

bre

ak [

%]

HNBR

FKM (68% F)

Storage in motor oil which contains amines (163°C)

Page 157: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

FKM: Glass FKM: Glass TransitionTransition TemperaturesTemperatures

Source: J. Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & Sons

-35

-30

-25

-20

-15

-10

-5

0

0 0,5 1 1,5 2

Hydrogen content [wt.%]

Gla

ss

tra

ns

itio

n t

em

pe

ratu

re [

°C]

TFE/VDF/PMVE

TFE/VDF/HFP

F

F

H

H

F

F

F

F

CF3

F

F

F

O

F

F

F

CF3

CH3

H

H

H

VDF Vinylidene fluoride(59% fluorine)

HFP Hexafluoropropene(76% fluorine)

TFE Tetrafluoroethylene(76% fluorine)

PMVE Perfluoromethyl-vinyl ether(69% fluorine)

P Propen

PVDF

Range of FKMRange of FKM--Grades and Grades and VulcanizationVulcanization

55 65 75

Fluorine Content [wt. %]

Ag

ein

gR

esis

tan

ce

in M

ed

ia w

ith

Basic

Ad

dit

ive

s

PTFEAflas Viton A Viton B, GF Viton GLT

Kalrez

peroxi-

disch

Vulcanization with

Peroxides

Vulcanization with

Bisphenols

Vulcanization

with Diamines

Page 158: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

FKM: FKM: VulcanizationVulcanization withwith DiaminesDiamines

CF2

CF3

CH2CF

2CH

2

F

CF2

CF2

CF3

CH CF2 CH

2CF

2 CF2

CF3

CH CF CH CF2

CF2

CF3

CH CF CH CF2

CFCF2

CH

CF3

CH CF2

CFCF2

CH

CF3

CH2CF

2

NH

R

NH

CF2

CF3

CH CF CH2 CF

2

CF2 CH

CF3

CH2CF

2

N

R

N

CF2

CF3

CH CH2 CF

2

CF2

CH

CF3

CH2CF

2

N

R

N

CF2

CF3

CH CH2CF

2

CF2

CH

CF3

CH2CF

2

O

CF2

CF3

CH CH2 CF

2

ONH

2

R

NH2

RNH2

NH2

1. Elimination of HF by MgO, CaO und PbO.

- HF - HF

2. Crosslinking by Diamines, which are used in "capped form" (such as carbamates) inorder to increase scorch resistance

- 2HF

Diamine cure yields crosslinks which are liable to hydrolysis (not steam resistant)

H2O

Sources: W. W. Schmiegel, Kaut. Gummi Kunst., 31, 137 (1978)W. W. Schmiegel, Angew. Macromol. Chem., 76/77, 39 (1979)

FKM: FKM: VulcanizationVulcanization withwith BisphenolsBisphenols

CF2

CF3

CH2

CF2

CH2

F

CF2

CF2

CF3

CH CF2

CH2

CF2 CF

2

CF3

CH CF CH CF2

CF2

CF3

CH CF CH CF2

CFCF2

CH

CF3

CH CF2

CFCF2

CH

CF3

CH2

CF2

O

CF3

CF3

O

CF2

CF3

CH CF CH2 CF

2CF3

CF3

OH O

CF3

CF3

OH OH P+

CH2

n

Cl

CF3

CF3

OH O P+

CH2

n

- HCl

1. Elimination of HF by MgO, CaO and PbO

- HF - HF

2. Crosslinking with Bisphenols ( such as Bisphenol AF) in the presence of BTPPC (Benzyltriphenyl phosphonium chloride) BTPPC acts as phase transfer catalyst and is often referred to as "accelerator"

+

+

Sources: T. L. Smith, W. H. Chu, J. Polym. Sci A-2, 10, 133 (1972)

A. W. Fogiel, J. Polym. Sci., Symp., 53, 333 (1975)

W. W. Schmiegel, Kaut. Gummi Kunst., 31, 137 (1978)W. W. Schmiegel, Angew. Macromol. Chem., 76/77, 39 (1979)A. Neppel, M. v. Kuzenko, J. Guttenberger, Rubber Chem. Technol., 56, 866 (1983)D. J. Plazek, I. C. Choy, F. N. Kelley, ‚E. von Meerwall, L.-J. Su, Rubber Chem. Technol., 56, 866 (1983)A. N. Theodore, M. Zinbo, R. O. Carter, III, J. Appl. Polym. Sci., 61, 2065 (1996)

Page 159: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

FKM: FKM: VulcanizationVulcanization withwith PeroxidesPeroxides

• C-F bonds have a high bond energy. As a consequence, F-radicals cannot be abstracted by peroxides and FKM with high fluorine contents (> 70 wt.%) cannot be vulcanized by the use of peroxides.

•For the vulcanization of FKM with F-contents > 70 wt% special cure sites are required. For this purposebromine and iodine are incorporated into FKM. C-Br and C-I bonds have a lower bond energy thqn C-F bonds. Therefore Br- and I-radicals can be abstracted by the use of peroxides.

• Br- and I- based cure sites are incorporated by chain modifiers and by special comonomers whichcontain Br- and/or iodine.

In the presence of Br- and I- containing compounds (modifiers and monomers) the polymerizationproceeds as a „living radical polymerization“ (this probably was the first example of a living radicalpolymerization). During the course of the polymerization Br- and I are incorporated as end groups.

During peroxide cure of Br- and I- containing FKM and during subsequent annealing toxic compoundsare released which contain bromine and iodine.

CF2

CFBr

CF2

CHBr

CFCF2

O CF2

CF2 Br

Br CF2

CF2 Br

C H2J

2

C F2J

2

J-(C F2) - J4 -6

CFCF2CF

CF3

CF2

CF2

CF2

CF2

CF2

CF2

CF2

CF2

CF2

CF3

Br

Jn

Br/J-Content:

0,5-1 wt.%

Source: D. F. Lyons GAK 3/2005, Jahrgang 58 „ Einfluss der Molmasse auf die Eigenschaften von Bisphenol-AF-vernetzten Fluorkautschuken“

Bond energy

[kJ/mol]

480

405

270

200

Type of

bond

C-F

C-H

C-Br

C-J

FKM: FKM: VulcanizationVulcanization•The method of FKM-cure depends on the fluorine content.

•Copolymers based on vinylidene fluoride and propene (Aflas) are crosslinked by

the use of peroxides.

•Fluoro rubbers with a fluorine content<70 wt.% (such as copolymers based on

VDF and HFP) are liable to HF-elimination which is a prerequisite for the

vulcanization with diamines and bisphenols. MgO and Ca(OH)2 are added to the

rubber compound in order to react with HF which is eliminated during

vulcanization.

•FKM vulcanizates which are cured by diamines and bisphenols contain double

bonds. As a result, their resistance to heat and ageing is inferior to FKM without

double bonds. Also, diamine cured FKM is liable to hydrolysis.

•Fluor rubbers with a fluorine content > 70 wt. % (FKM which contains no or only

a small amount of VDF) cannot elimiminate HF. Therefore vulcanization cannot

be achieved by diamines or bisphenols. FKM with F-contents > 70 wt.% requires

special cure site monomers which enable peroxide cure.

Source: J. Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & Sons

Page 160: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

5.2. Silicon Rubber (Q)5.2. Silicon Rubber (Q)

Grade Tg [°C] Tm [°C]MQ - 120 - 45

VMQ - 120 - 45

PVMQ - 120 - 70

FMQ - 69

Bond energies [kJ / mol]Si-O 444

C-O 339

C-C 348

C - S 272

S - S 266

Si O Si O

CH3

CH3

CH3

CH3

Si O Si O

CH3

CH3

CH3

CH

CH2

Si O Si O

CH3

CH3

CH

CH2

Si O Si O

CH3

CH3

CH2

CH2

CF3

CH3

)(n

)(

n

)(n

)(n

MQ

VMQ

PVMQ

FMQ

Vulcanizate Properties:

Positive:� Low temperature performance� High temperature resistance� Low dependence of properties on temperature

changes� Ozone-, UV- and Weather resistance� Hydrophopic character� Physiological inertness

Negative:� Low reistance against acids, bases, vapour and

hydrocarbons (significant improvement withFMVQ)

� Mechanical propertiesRTV: poor HTV: better / DVR !

� High gas permeability

Silicon Rubber: Silicon Rubber: PropertiesProperties and and ApplicationApplication AreasAreas

Application Areas:

� Pharmaceutical- and medical rubber

goods

� Rubber goods with food contact

� Cable insulation

� Adhesives

� Moulded articles

� Hoses, sealants (Automotive, Machine

building and E&E)

Temperature [°C]90

121

150

200

250

315

duration40 years

10-20 years

5-10 years

2-5 years

3 months

2 months

Sources:•K. Polmanteer, Rubber Chemistry Technology, Vol 61: 471-502“Silicon Rubber, its Development and Technological Progress“

•T. Maxson GAK 12/1995, Jahrgang 48, 873-884 „Fluor-Silikonkautschuk“

•D. Klages, U. Raupbach, GAK 4/1995, Jahrgang 48, 49-51 „Fluorsilicon-Kautschuk: Ein sehr moderner Werkstoff“

•E. L. Warrick, O. R. Pierce, K. E. Polmanteer, J. C. Saam, Rubber Chemistry Technology, Vol 52: 437-526 „Silicone Elastomer Developments 1967-1977“

•Winnacker/Küchler Chemische Technik, Prozesse und Produkte. Bd. 5 Organische Zwischenverbindungen, Polymere. Wiley-VCH, 2005

Automotive

industry

40%

Machine building

15%

Medical

Applications

25%

Haushalt

20%

Page 161: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Year 1995 2005

Consumption /t: ~ 110.000 ~ 200.000

ProducersProducers CapacitiesCapacities and Silicon Rubber Marketand Silicon Rubber Market

Growth rate 2005: ca. 3,5 % / a; LSR ca. 10 % / a

Nord-

amerika

44%

Japan

25%

Europe

31%Source:

Winnacker/Küchler Chemische Technik, Prozesse und Produkte. Bd. 5 Organische Zwischenverbindungen, Polymere. Wiley-VCH, 2005

850.000S Western World (2000)

Rhodorsil®60.000Rousillon, FRRhodia

30.000Nünchritz, DE

Elastosil®90.000Burghausen, DE

Wacker

KE, Sylon®95.000Isobe, JapanShin-Etsu

Silopren®65.000Leverkusen, DE

40.000Ohta, Japan

110.000Waterford, USAMomentive

(formerly: GE + Bayer)

110.000Barry, GB

Silastic®260.000Carollton, USADow Corning

Silicone Rubber-

Brand Name

Siloxane-Capacity

[kt]

SiteManufacturer*

*Evonik and Crompton are active in this market without proprietary siloxane production

Silicon Rubber: Silicon Rubber: ProductionProduction

Cl Si

CH3

CH3

Cl

SiO2 + C Si + 2 CO

2 CH3-Cl + Si

Synthesis of Silicium:

Rochow-Process:

Cl Si

CH3

CH3

Cl

OSi

O

SiO

Si

O

Si

CH3

CH3CH

3

CH3

CH3

CH3

CH3

CH3

O

SiO

Si

OSi

CH3

CH3

CH3

CH3

CH3

CH3

Si

CH3

CH3

O n

n + 4 H2O- HCl

D3

D4

Dn

Page 162: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Silicon Rubber: Silicon Rubber: ProductionProduction

OSi

O

SiO

Si

O

Si

CH2

CH3CH

3

CH2

CH3

CH2

CH3

CH

2

CF3

CF3

CF3CF

3

OSi

O

SiO

Si

O

Si

CHCH

3CH3

CH

CH3

CH

CH3

CH

CH2

CH2

CH2CH

2

OSi

O

SiO

Si

O

Si

CH3CH

3

CH3

CH3

After short-stopping of the „polymerization“ residual monomers are removed under vacuum.For standard grades residual monomer contents are specified < 1 wt.% (for specialities: <0,5 wt.%)

O Si

CH3

CH3

O Si OH

CH3

CH3

n

OSi

O

SiO

Si

O

Si

CH3

CH3CH

3

CH3

CH3

CH3

CH3

CH3

Übliche Temperaturen:KOH 140°C NaOH 170°C

85 %

15 %

Katalysatoren:Säuren, Lewis Säuren, Saure Silikate,Basen

Modified silicon rubbers are obtained by the copolymerization with the respective cyclic monomers. As a consequence multibloc copolymers are obtained initially. At extended reaction times randomization occurs.

Silicon Rubber: Silicon Rubber: VulcanizationVulcanization

Chain length [nSi]Viscosityprocessing

Crosslinking methodPeroxidesAddition

Cure temperature

HTV-Kautschuk10.000

Greasy/Highly viscousTransfer moulding

ExtrusionTransfer Moulding

predominantly1C- und 2C-systems

110 -300 °C

Liquid Rubber1.000

Highly viscousTransfer moulding

predominantly2C-Systeme

110 - 200 °C

RTV-Rubber200

liquid / pourable

RTV-1: CondensationRTV-2: Addition

25 - 150 °C

Vulcanization Method Products

Condensation at room temperature Silanol containing(RTV) Silicon rubbers

Platinum catalyzed hydrosilylation Silicon rubbers withat low or elevated temperature silanol and vinyl(RT to 80°C, LSR: 110-200°C) groups

High temperature-Vulcanization MQ, PVMQ, MVQ, with peroxides (HTV: 120-180°C) FVMQ

Page 163: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

RTRT--VulcanizationVulcanization of Silicon Rubber (2Kof Silicon Rubber (2K--System)System)

1a) Condensation of polysiloxanes which contain silanol groups by multifunctionalalkoxysilanes

Si OH

R

R

SiOH

R

R

Si OH

R

R

SiOH

R

R

Si OR

OR

OR

RO

S i

R

R

O

S i

R

R O

S i

O

S i

R

R

O

S i

R

R

- 4 ROH

Typical mulftifunctional alkoxysilanes are:

Si OR

OR

OR

RO Si OR

R

OR

RO Si

OR

OR

RO O Si

OR

OR

O( )n

R = Me, Et

Metal carboxylates are often used for catalysis :

Metals: Pb, Zn, Zr, Sb, Fe Sn Ba, Ca

Carboxylates: Naphthenate, Octoate, Hexoate, Laurate, Acetate

Typical examples are:

Tin-(II)-octoate und Dibutyl tin dilaurate in the presence of chloroacetic acid

RTRT--VulcanizationVulcanization of Silicon Rubber of Silicon Rubber

(1K(1K-- und 2Kund 2K--Systems) Systems)

1b) Condensation of polysiloxanes which contain capped silanol groups bymultifunctional alkoxysilanes

SiO

R

R

CCH3

O

SiO

R

R

CCH3

O

Si O

R

R

C CH3

O

Si O

R

R

C CH3

O

Si

OR

OR

RO

RO

Si

R

R

O

Si

R

R O

Si

O

Si

R

R

O

Si

R

R

+ H2O

- CH3COOH

For the condensation reaction the catalysts quoted under 1a) are being used.

Page 164: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

RTVRTV--VulcanizationVulcanization of Silicon Rubber of Silicon Rubber (2K(2K--System)System)

1c) Condensation of polysiloxanes with silanol groups by means of multifunctionalsilanes (with evolution of hydrogen)

Si OH

R

R

SiOH

R

R

Si H

O

R

Si R

O

O

H

Si

O

R

Si R

O

O

Si O

R

R

SiO

R

R

- H2

For the condensation reaction the catalysts quoted under 1a) are being used.

Application for Bladder coatings

LTLT--VulcanizationVulcanization of Silicon Rubberof Silicon Rubber(1K und 2K(1K und 2K--Systems) Systems)

Si O Si O

CH3

CH3

CH3

CH2

CH2

Si O Si O

CH3

CH3

CH3

Si O Si O

CH3

CH3

CH3

CHCH

2

O Si O

CH3

CH3

H

CH3

Si

Pt-Compounds as H2PtCl6 (ca. 10 ppm)

)(n

)(n

)(n

)(n

2) Platinum catalyzed hydrosylization (50-150°C)

Inhibitors:

Page 165: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

HTHT--VulcanizationVulcanization of Silicon Rubber of Silicon Rubber

3) Peroxide Cure (120-180°C)

Si O

R

Si O

R

R R

Si

R

R

Si O

R

Si O

R

R R

Si

R

R

Si O

R

Si O

R

R R

Si

R

R

Si O

R

Si O

R

R R

Si

R

R

Si O

R

Si O

R

R R*

Si

R

R

Si O

R*

Si O

R

R R

Si

R

R

Peroxide

- 2 H*

Typical Peroxides

Bis(2,4-dichlorobenzoyl)Peroxide

Di-Benzoylperoxide

Di-Cumylperoxide

2,5-Dimethyl-2,5-bis(t-butyl peroxy) hexane

Di-t-Butylperoxide

Temperature °F(t1/2) = 1 min.)

234

271

340

354

379

Impact of Impact of VulcanizationVulcanization MethodMethod on on CostCost of of ArticlesArticlesComparisonComparison of of PeroxidePeroxide-- (HTV) and (HTV) and platinumplatinum catalysedcatalysed LTVLTV--CureCure

HTV3,50

120

60,00

12,00

10

8

3

59,5

7200

885

3.097,31

8.857,31

1,23

0

44.286,55

0

LTV5,00

60

60,00

12,00

10

8

3

59,5

14.400

1.770

8.849,45

14.609,45

1,01

21,25

230.563,76

420,62

Cost FactorRaw materials [$/pound]

Vulcanization time [sec]

Overhead-Costs [$/h]

salaries [$/h]

Hours per shift

Shifts per week

Number of nests per mould

Weight per article + 10% loss

Number of articles per week

Material consumption per week

Raw material costs per week [$]

Total cost per week [$]

Cost per article [$]

Savings per article [%]

Financial result per year [$]

Increase of financial result [%]

Source: Rubber World, 12/1994, S. 20-24

Page 166: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

5.3. 5.3. HydrogenatedHydrogenated NitrileNitrile Rubber (HNBR)Rubber (HNBR)

Overview:• Microstructure, Property Profile and Appliecation Areas

• Catalytic Hydrogenation of NBR

• Sequence of Process Steps in NBR- and HNBR-Production

• Producers and Production Capacities

• Chemical and Physical Properties

• Comparison of NBR- and HNBR Properties

»Speed of Ageing

»Tg

»Crystallization

»Stress/strain-Performance

• Vulcanizate Properties of Sulfur- und Peroxide crosslinked Vulcanizates

• Performance of HNBR in Power Transmission Belts

Range of Products: HNBR (partially and fully hydrogenated grades)XHNBRLow-Tg-HNBRLow-Mooney-HNBR

HNBR: HNBR: MicrostructureMicrostructure

CH2

C H

CH2

CH3

CHCH

2

CH

CH

2

HH

Butylidene-Moiety Ethylidene-Moiety Nitrilo-Ehylidene-Moiety

CN

CH2CH

21

δ +δ +δ +δ +

δ δ δ δ −−−−

C

N

CN

Page 167: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

HNBR: Property Profile and HNBR: Property Profile and ApplicationApplication AreasAreasPositive:• Broad range of grades (Mooney, degree of hydrogenation, acrylonitile content)• excellent mechanical properties of vulcanizates (high TS, high abrasion resistance and high dynamic resistance)

• high oil resistance (depending on acrylonitrile content)• good adhesion to fibres and cords (Covulcanization)• Low temperature flexibility• High filler loadability of compounds

Negativ:• Max. service temperature < 155°C• High Tg >-30°C• Bad incorporation of softeners• High price (~ € 20/kg)

Ship Couplings

Roll Covers

Blow Out PreventerExpansion Joints

HNBR: HNBR: ApplicationApplication AreasAreas and and ArticlesArticles

15%

25%

4%4%7%

45%

Riemen Schläuche Dichtungen

Kabel Ölförderung Sonstige

Oil well Packers

Rotor/Stator- Pumps

Page 168: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CatalyticCatalytic HydrogenationHydrogenation of NBRof NBR

Homogenous Catalyst Systems:(PPh3)3 RhI Cl and (PPh3)4RhI H (US 3700637, DE 2539132, EP 134023, DE 3541689, DE 3540918, EP 298386, DE 3529252, DE 3433 392, US 4,464,515, US 4,503,196, DE 3921264, US 6084033)

Heterogenous(Supported) Catalyst Systems:Pd/SiO2; Pd/C; Pd/CaCO3; Pd/BaSO4(DE 3229871, US 4337329, US 4384081, US 4510293, DE 3227650, DE 3046008, EP 0298386)

Relative prices of noble metals [€/g]:Rh (150) > Ru (75) > Pd (12,50)

C

N

CN

C

N

CN

H2/Catalyst

Selective Hydrogenation of C=C bonds

C NH2

NH

H

N

H

C- NH3

+

Unselective Hydrogenation of Nitrile-Groups Results in Gel Formation

Requirements for Hydrogention Catalyst:• Selective and quantitative hydrogenation

of C=C- double bonds in the presence of nitrile groups without gel formation

• Low catalyst loadings and/or catalystrecovery

HNBR Grades HNBR Grades withwith Low Low MooneyMooney ViscositiesViscosities

C

N

CNR

C

N

CH2

CN

CH

R

Catalyst

During hydrogenation the Mooney viscosity

increases by a factor 2. Due to high stickiness

the production of NBR-grades with a Mooney

viscosity > 30 MU is not possible. Therefore

the range of standard HNBR viscosities was

limited to >60 MU until recently.

Cross-metathesis of NBR with olefins allows

for the production of NBR with Mooney

viscosities < 30 MU. In-situ hydrogenation of

theseNBR-feedstocks yields HNBR-grades

with Mooney viscosities < 60 MU.

As a consequnece of low TONs, large

amounts of catalysts are required for the

cross-metathesis of NBR.

Metathesis catalysts which are robust

towards nitrile groups are protected by

patents. Their use implies the payment of

licence fees.

Page 169: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CatalystsCatalysts withoutwithout ActivityActivity in in NBRNBR--MetathesisMetathesis **

Ru

PPh3

Cl

PPh3

Cl

Grubbs-I-Catalyst

Cl

PCy3

Ru

SPCy3

Cl

Ciba-Catalyst

R2

Ru

P+

PCy3

Cl

R1

R3

Cl

BF4

Piers-Catalyst

-

Ru

SnCl3

Cl

SnCl3

Cl

P

N

P

Ph

PhPh

Ph

Ph

Ph

Ru

SnCl3

Cl

SnCl3

Cl

N

2-

2

+ 2-

2

+

Catalyst from Prof. Berke' s group (University of Zurich) Catalyst from Prof. Berke' s group (University of Zurich)

Ru

P

Cl

P

Cl

BH3 Ph

BH3

PhPh

Ph

K+

Catalyst from Prof. Berke' sgroup (University of Zurich)

2-

2

Ru

PCy3

Cl

PCy3

Cl

Ph

Fürstner-(I)-Nolan-Catalyst (Umicore)

*Source: Julia-Maria Müller, Dissertation TU München

CatalystsCatalysts whichwhich areare ActiveActive in in NBRNBR--MetathesisMetathesis* * ((„„NumberNumber of of CatalyticCatalytic StepsSteps (TON)(TON)““))

CF3COO

RuCF

3COO

O

N N MesMes

R2

Ru

P+

Cl

R1

R3

Cl

N N MesMes

Ru

PCy3

Cl

Cl

N N MesMes

Buchmeiser-Nuyken-Catalyst Piers-II-Catalyst Grubbs-II-Catalyst

TON = 8 / 23°C TON=12 / 55°C TON=40 / 23°C

Cl

RuCl

O

NO2

N N MesMes

Cl

RuCl

O

N N MesMes

N

N

Ru

Cl

N N MesMes

Cl

Br

Br

Grubbs-Hoveyda-Catalst Grela-Catalyst Grubbs-III-Catalyst

TON=53 / 23°C TON=78 / 23°C TON=120 / 23°C

*Sources: Julia-Maria Müller, Dissertation TU München; M. Schneider, Dissertation TU München,M. Kellner, MSc-Thesis TU München; K. Langfeld, MSc-Thesis TU München; C. Gantner, MSc-Thesis TU München

Page 170: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

SequenceSequence of of ProcessProcess StepsSteps in NBR and in NBR and HNBRHNBR--ProductionProduction

Emulsions-

polymerization

Removal of

residual

monomers

Latex-

coagulation

+ crumb wash

Mechanical

dewatering

Thermal

dryingBale

pressing

Bale wrapping

Packaging

and storage

Bale cuttingCemement

preparation-

Removal of

oxygen and

hydrogenation

dilution Catalyst recoverySolvent removal

by evaporation

Bale wrappingPackaging

and storage

Mechanical

dewatering

of crumbs

Thermal

crumb-

drying

Bale

pressing

NBR-Production: Sequence of Process Steps:

HNBR-Production: Sequence of Process Steps

Catalyst recovery

Make-up of

Hydrogenation

catalyst solution

Wet

solvent

stripping

HNBRHNBR--ProducersProducers and and CapacitiesCapacities

Company Site Capacity [t]

Takaoka Japan 2.800

Houston USA 2.000

Leverkusen Germany 3.000

Orange USA 3.600

Total 11.400

Lanxess

Zeon

Producers and Capacities

0

2000

4000

6000

8000

10000

12000

14000

1992 1994 1996 1998 2000 2002 2004

Vo

lum

e [

t]

Consumption

capacity

Markt- und Marktentwicklung

Page 171: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

AgeingAgeing of of UnvulcanizedUnvulcanized NBR and HNBRNBR and HNBR((IncreaseIncrease of of MooneyMooney ViscosityViscosity ML 1+4/100ML 1+4/100°°C))C))

lnV

br

1/T *103 [K-1]2,0 2,4 2,6 2,8 3,0 3,2

180 160 140 120 100 80 60 40

T [°C]

+1

+0

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

NBR Hydriergrad: 0 %HNBR Hydriergrad: 96 %HNBR Hydriergrad: 99,5 %

Source: W. Obrecht, H. Buding, U. Eisele, Z. Szentivani, J. Thörmer, Angew. Makromol Chem. 145/146 (1986) 161-179 (2373)„Hydrierter Nitrilkautschuk: Ein Werkstoff mit neuen Eigenschaften“

TgTg of HNBR and NBRof HNBR and NBR

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Acrylonitrile Cont. [wt.%]

Tg

[°C

]

E/ACN-Copolymers

HNBR (fully hydrogenated)

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Acrylonitrile Cont. [wt.%]

Data for Ethene/Acrylonitrile-Copolymers from: R. E. Uschold, I. B. Finlay, Appl. Polym. Symp. 25 (1974) 205

NBR

Page 172: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

TgTg of of Ethene/VinylacetateEthene/Vinylacetate-- und und Ethene/VinylchlorideEthene/Vinylchloride--CopolymersCopolymers

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Vinylacetate Cont. [wt.%]

Tg

[°C

]

Levapren

Nielsen et al.*

Source: Ethene/Vinylacete Copolymers: L. E. Nielsen, J. Pol. Sci. 42 (1960) 357-366Ethene/Vinylchloride Copolymers: F. P. Reding, J. A. Faucher, R. D. Whitman, J. Pol. Sci. 57 (1962) 483-498

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Vinylchloride Cont. [wt.%]

Ethene/Vinylacetate-Copolymers Ethene/Vinylchloride-Copolymers

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

Acrylonitrile Content [wt. %]

Cry

sta

llin

ity [

%]

1. DSC-Aufheizung

2. DSC-Aufheizung

InfluenceInfluence of of ACNACN--ContentContent on on CrystallinityCrystallinity of HNBR (DSC)of HNBR (DSC)

Page 173: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

TgsTgs of of EthyleneEthylene--CopolymersCopolymers

-200

-150

-100

-50

0

50

100

0 10 20 30 40 50 60 70 80 90 100

Comonomer Content [wt.%]

Tg

[°C

]

EPM

HNBR

EVC

EVM

InfluenceInfluence of of NitrileNitrile ContentContent on on TgTg of HNBRof HNBR

-150

-100

-50

0

50

100

0 10 20 30 40 50 60 70 80 90 100

Acrylonitrile Content [wt. %]

Tg

[°C

]

HNBR (fully hydrogenated)

NBR

?

Page 174: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DependenceDependence of of TgTg on on DegreeDegree of of NBRNBR--HydrogenationHydrogenation ((ACNACN--ContCont.: 34 wt. %).: 34 wt. %)

-34

-32

-30

-28

-26

-24

-22

-20

0 20 40 60 80 100

Degree of Hydrogenation [%]

Tg

[°C

]dyn. mech. (11 Hz)

DSC

Source: U. Eisele. Z. Szentivanyi, W. Obrecht J. Appl. Pol. Sci.: Appl. Polym. Symp. 50, 185-197 (1992) „Correlation BetweenNetwork Structure and Properties of Sulfur- and Peroxide-Cured HNBR Vulcanizates“

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

strain [%]

str

ess [

MP

a] 11,0%

7,9%

4,0%

1,9%

0,5%

InfluenceInfluence of Residual Double Bond of Residual Double Bond ContentContent on on Stress/StrainStress/Strain--PropertiesProperties of of HNBRHNBR--basedbased VulcanizatesVulcanizates

(34 wt.% ACN; (34 wt.% ACN; unfilledunfilled; ; sulfursulfur vulcanizedvulcanized))

100 phr HNBR0,07 phr Schwefel2,63 phr TMTD2,07 phr DTDC** Dithiodicaprolactam

Source: U. Eisele. Z. Szentivanyi, W. Obrecht J. Appl. Pol. Sci.: Appl. Polym. Symp. 50, 185-197 (1992) „Correlation BetweenNetwork Structure and Properties of Sulfur- and Peroxide-Crosslinked HNBR Vulcanizates“

Page 175: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

0,1

1

10

100

1000

10000

-200 -150 -100 -50 0 50 100

Temperature [°C]

E' a

nd

ta

n δδ δδ

[M

Pa

] E'

E''

DependenceDependence of Eof E‘‘ and Eand E‘‘‘‘ on on TemperatureTemperature (HNBR (HNBR withwith38,5 38,5 wtwt .% ACN).% ACN)

NBR and HNBR: Impact of NBR and HNBR: Impact of ACNACN--ContentContent on on Stress/StrainStress/Strain--PropertiesProperties of of UnvulcanizedUnvulcanized RawRaw RubbersRubbers

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 1000 2000 3000 4000

elongation [%]

Str

es

s [

MP

a]

19,2 wt.%

28 wt.%

34,2 wt.%

39,1 wt.%

49 wt.%

NBR

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500

elongation [%]

str

es

s [

MP

a]

18,9 wt.%

28 wt.%

33,9 wt.%

38,5 wt.%

48,3 wt.%

HNBR

Page 176: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Influence of ACNInfluence of ACN--Content of Content of UnvulcanizedUnvulcanized NBR and HNBR on NBR and HNBR on Maximum Stress (YieldMaximum Stress (Yield--Stress) on Stress) on ““TrueTrue““ Tensile StrengthTensile Strength

0

50

100

150

200

250

300

"Tru

e"

Tensile S

trength

[M

Pa]

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50

Acrylonitrile Content [wt.%]

Yie

ld-S

tre

ng

th

[MP

a]

InfluenceInfluence of of ExtentionExtention on Permanent on Permanent ElongationElongation of of FullyFullyHydrogeantedHydrogeanted, , UnvulcanizedUnvulcanized HNBR (Variation of HNBR (Variation of ACNACN--ContentContent))

0

20

40

60

80

100

120

140

160

0 100 200 300 400

elongation [%]

perm

an

en

t elo

ng

ati

on

[%

] ε =ε bleibend

ASTM D 1566 - 98Kautschukdefinition

48,3 %

18,8 %

34,9 %

28,2 %

39,0 %

0

20

40

60

80

100

120

0 20 40 60

ACN-content [wt.%]

perm

an

en

t elo

ng

ati

on

[%

]

extension

280%

200%

120%

80%

Page 177: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

HNBR-Grade (Therban)ACN-content [wt.%]RDB-content [Mol.%]ML 1+4(100°C) [MU]Compound PropertiesCompound Mooney/ ML 1+4(100°C)Mooney-Scorch (120°C) [min.]Fmax [N]Vulcanizate-PropertiesShore A Hardness(23°C)Shore A Hardness (70°C)M 100 [MPa]M 200 [MPa]M 300 [MPa]TS [MPa]elongation [%]Rebound [%]Compression Set70h/-10°C [%]70h/23°C [%]70h/100°C [%]70h/150°C [%]Hot air ageingD/D0 (150°C/ 5 d) [%]D/D0 (150°C/24 d) [%]Degree fo vol. swelling in fuel100*(V/ V0-1) (48h/50°C) [%]

1706 S33,74,360

6412,556,4

72693,48,8

14,72751038

73-

73-

55-

75

1706 S33,74,360

6614

51,2

72705,6

17,8-

2629536

6810-

27

-54

65

H-NBR 100,0 phrSulfur 0,5 phrStearic acid 1,0 phrZnO 2,0 phrMgO 2,0 phrOCD 1,0 phrZMB-2 0,4 phrN 550 45,0 phrTMTD 2,0 phrCBS 0,5 phr

Vulcanization time: 20 mintemperature: 160°C

H-NBR 100,0 phrZnO 2,0 phrMgO 2,0 phrDDA 1,0 phrZMB-2 0,4 phrN 550 45,0 phrTAIC 1,5 phrPerkadox 1440* 7,0 phr

Vulcanization time: 15 minTemperature: 180°CAnnealing: 6h/150°C

Perkadox 1440Bis(t-butylperoxyisopropylbenzol 40%ig

InfluenceInfluence ofof SulfurSulfur-- and and PeroxidePeroxide VulcanizationVulcanizationon on PropertiesProperties of of PartiallyPartially HydrogenatedHydrogenated HNBRHNBR

VulcanizateVulcanizate PropertiesProperties ofof SulfurSulfur-- and and PeroxidePeroxideCuredCured HNBR (HNBR (PartiallyPartially and and FullyFully HydrogenatedHydrogenated))

HNBR-Grade (Therban)ACN-content [wt.%]Residual double bond cont. [Mol.%]ML 1+4(100°C) [ME]Compound PropertiesCompound Mooney [ML 1+4(100°C)]Mooney-Scorch (120°C) [min.]Fmax [N]Vulcanizate PropertiesSulfur Core (Press 160°C/20`)Peroxide Cure (Press 180°C/15`)Shore A Härte (23°C)Shore A Härte (70°C)M 100 [MPa]M 200 [MPa]M 300 [MPa]Tensile Strength [MPa]Elongation [%]Rebound [%]Compression Set70h/-10°C [%]70h/23°C [%]70h/100°C [%]70h/150°C [%]Hot Air AgeingD/D0 (150°C/ 5 d) [%]D/D0 (150°C/24 d) [%]Degree of Vol. Swelling in Fuel100*(V/V0 -1) (48h/50°C) [%]

1706 S33,74,360

6412,556,4

72693,48,814,72751038

73-

73-

55-

75

1706 S33,74,360

6614

51,2

72705,617,8

-2629536

6810-

27

-54

65

1706 34,50,463

741652

73716,917,7

-2428034

-12-

28

-59

70

Page 178: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Performance of HNBR in Power Transmission BeltsPerformance of HNBR in Power Transmission Belts

Source:M. Mezger; D. Achten “Therban: The high performance elastomer in power transmission systems”9. Tagung “Zahnriemengetriebe” am Institut für Feinwerktechnik und Elektronik-Design der TU Dresden

log

t/h

fo

ε

ε

ε b

= 5

0%

2,1 2,2 2,3 2,4 2,5 2,6

[°C]

HNBR / peroxide cured

HNBR / sulfur cured

10

100

1.000

10.000200 180 160 140 120 100

CR

10 ( K )-3 -11

T

0 20 40 60 80 100-20

Temperature [°C]

0,1

1

10

100

1000-1

CR HNBR

rate

of

cra

ck

gro

wth

Tear-Analyzer-Test / Exp. ConditionsFrequency: 4 Hz Strain Ampli tude: 20%Attenuation mode: sinuoidalRate of crack growth: 1/co (dc/dn)

Materials used forpower transmission

belts

Leather

SBR

CR

HNBR(Sulfur cured)

HNBR(Peroxide cured)

Page 179: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

5.4. EVM: Profile of 5.4. EVM: Profile of PropertiesProperties and and ApplicationsApplications

Positive:� Ozone-, UV-, and weather resistance

� Maximum service temperature 175°C

� High filler loadability

� FRNC-applicability

(Flame resistant non corrosive)

� Resistance to water/glycole

� Braod range of grades

� No necessity for post cure in oven

Negative:� fair mechanical properties

� Low temperature flexibility (depending on VAc-

content)

� Fair oil resistance

� Range of products limited to ML 1+4 = 20 - 35

� Vulcanization only peroxides

O O O

CO

CH3

CO

CH3

C

CH3

O

� VAc-content: 40-90 wt.% � radical polymerization in solution� Random monomer incorporation� Low molar masses� Significant degree of short chain branches

Application Araeas:� Automotive- and engineering: seals and

membrandes

� Hoses in high temperature environment

� FRNC-products: cables and floorings

� Sound protection

� FRNC Conveyor belts

� Hot Melt and pressure sensitive adhesives

� Protecting foils

� Blending component for HNBR, EPDM, CM, NBR)

� Rubber modification of thermoplasts (PVC, TPU, SAN, PC etc.)

� Oil additive

� Shoe soles

Source: H. Bartl, J. Peter, Über Äthylen/Vinylacetat-Copolymerisate und ihre Vernetzung; Kautschuk und Gummi, Jahrgang 14, 2 (1961) WT 23-32

1

10

100

1000

10000

0 20 40 60 80 100

Vinylacetate content [wt.%]

pre

ss

ure

[b

ar]

ProductionProduction RoutesRoutes TowardsTowards EVM and EVAEVM and EVA

Emulsion process10-100 bar

30-70°C

Solution process100-500 bar

50-120°C

Producer Process Products

Exxon, BP, High pressure EscoreneMitsui ctc.

Du Pont High pressure ElvaxUSI High pressure Vynathene

Lanxess Solution LevaprenMitsui Solution

High pressure process:• Preferred mprocess for EVA

(thermoplastic polymers with

VAc-content <40 wt.%)

• Monomer conversion: < 20%

• Molar mases decrease with

increasing VAc-content

Solution process:• Preferred process for EVM-r

rubbers (VAc-cont. 40-90%)

• Monomer conversion: 60- 70%

• Solvents: t-Butanol; Methanol

Emulsion Process:• Preferred process for latices with

high gel content (paints)

• Monomer conversion: ~ 100%

EVM-Rubbers

High pressure bulk process750-3000 bar

120-300°C

High Pressure Bulk Process:

US 5089579 (Bayer AG), Prio.: 11. 12.1989; Erf.: H. Sutter, A. Kolwert, W. Obrecht

Solution Process:

US 4937303 (Bayer AG), Prio.: 01.05.1989; Erf.: B. A. Wolf, B. Will, W. Obrecht, R. Casper, W. Baaade, G. Sylvester, K-P. Meurer, H. Zimmermann

EP 0632067 (Bayer AG), Prio.: 30.06.1993; Erf.: R. Steiger, E. Asch, W. Baade, W. Obrecht

Page 180: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EVM: EVM: PhysicalPhysical PropertiesProperties

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Vinyl acetate content [wt.%.]

Gla

ss

Tra

ns

itio

n

Te

mp

era

ture

(T

g)

[°C

]

En

thalp

yo

f fu

sio

n(D

H)[

J/g

]

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Vinyl acetate content [wt.%]

Tem

pera

ture

of

Fu

sio

n

(Fp

)[°C

]

Thermoplast Rubber

OCN N C106

N NCO

n

Elastostab H 02

n = ca. 4Stabaxol P 200

n = ca. 4

OCH3 n

N N C

135N N

n

O

O

HH

O

O

O CH3n

EVM: Maximum Service EVM: Maximum Service TempeatureTempeature

The addition of acid scavengers

such as carbodiimides and

isocyanates does not improve hot

air performance

- HAc

O

O

CH3

O

O

CH3

O

O

CH3

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

200 300 400 500 600

Temperature [°C]

weig

ht

loss [

wt.

%]

350 °C

tim

e till

elo

ngation b

ecom

es <

50 %

in h

temperature in °C

200 190 180 170 160 150 140 130 120 110

137°C

20000 h

100

1000

10000

100000

> 170°C

1000 h

Page 181: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EVM: EVM: DependenceDependence of Oil of Oil SwellSwell and LOI (and LOI (LimitingLimitingOxygenOxygen Index) on Vinyl Acetate Index) on Vinyl Acetate ContentContent

LOI according to ASTM-D 2863

0

10

20

30

40

50

60

0 20 40 60 80 100

Vinyl acetetate content [wt.%]

Lim

itin

g O

xy

ge

n I

nd

ex

(L

OI)

[%

]

Al2O3: 190 phr

Al2O3: 0 phr

Source: E. Rohde; DKG-Bezirksgruppentagung; NRW in Bad Honnef; 07.-08. Mai 1992

Storage time in SAE-oil SAE 90 (3 d/125°C)

-40

-20

0

20

40

60

80

0 20 40 60 80 100

Vinyl acetate content [wt.%]

Ch

an

ge

of

Pro

pe

rtie

s [

%]

Delta F/F0 x 100 [%]

Delta D/D0 x 100 [%]

Delta V/ V0 x 100 [%]

Vinyl acetate content [wt.%]

Compound propertiesMooney ML 1+4(100°C)t10/180°C [min]t90/180°C [min]FH-FL/180°C [N]

Vulcanised properties(ISO-Stab Nr. 2, 2mm)Shore A Härte (23°C)S 100 MPa]Elongation at break [%]Tenjsile Strength [MPa]

Compression Set70h/100°C [%]70h/125°C [%]70h/150°C [%]

Hot air ageing (14d/150°C)∆∆∆∆F/F0 x100 [%]∆∆∆∆D/D0 x100 [%]∆∆∆∆H/H0 x100 [%]

Storage in SAE Oil90 (3d/150°C)∆∆∆∆F/F0 x100 [%]∆∆∆∆D/D0 x100 [%]∆∆∆∆V/V0 x100 [%]

50

231,26,619

684,428512,6

202541

-10211

-8-431

60

251,26,221

715,428012,8

222640

-11-212

8213

40

201,27,217

755,029511,7

232541

-3-210

-26-1969

45

241,26,620

745,727513,6

202338

-12-29

-12-447

70

201,36,919

684,230011,5

212446

10-715

683

80

201,36,117

724,730010,5

273151

-8-1514

10-12-4

EVM 100,0 phr

MgO 2,0 phr

Stearic acid 1,0 phr

Carbon black/N 550 65,0 phr

Vulkanox DDA 1) 1,0 phr

Plasticizer DOS 2) 7,5 phr

Plasticizer ODTM 7,5 phr

PE-Wax 2,0 phr

Aktiplast PP 2,0 phr

TAIC 1,5 phr

Peroxide (40%ig) 3) 6,0 phr

Vulkanization time: 10 min

Temperature: 180°C

no post vulcanization storagein hot air

EVM: EVM: DependenceDependence PropertiesProperties on Vinyl Acetat on Vinyl Acetat ContentContent

1) Styrenated Diphenyl amine (SDPA)2) Dioctylsebacate (DOS)3) 1,3-Bis(tert.-butylperoxyisopropyl)-

benzene (Perkadox 14/40)

Source:

E. Rohde

DKG-Bezirksgruppentagung

NRW in Bad Honnef

07.-08. Mai 1992

Page 182: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Therban 1707Levapren 500Rhenogran P 50

Compounc propertiesRelative compound priceML 1+4(100°C) [ME]t2/177°C [min]t90/177°C [min]

Vulcanized propertiesShore A Härte (23°C)S 100 [MPa]Elongation at break [%]Tensile Strength [MPa]

Compression Set70h/23°C [%]70h/150°C [%]70h/175°C [%]

Hot air ageing(14d/150°C)F/F0 x100 [%]D/D0 x100 [%]H/H0 x100 [%]

Storage in ASTM oil Nr. 3(7d/150°C)

∆∆∆∆F/F0 x100 [%]∆∆∆∆D/D0 x100 [%]∆∆∆∆V/V0 x100 [%]

50503

60581,5

10,2

8012,617022,5

1217

25,5

-10-29+4

-36-29+49

25754,5

40401,6

10,2

8112,014518,8

141420

-7,5-21+3

-50-34+67

100--

1001231,511,7

7810,724026

122027

-2,3-37+6

-10-4

+24

75251,5

80991,611,0

8013,119024

121727

-3,8-26+5

-17-11+34

-1006

20321,69,5

778,316518,5

149

15

-1,6-12+2

-56-45+83

EVM/HNBREVM/HNBR--BlendsBlends

Source:

Test Report WR 26/83

(Mobay, Chem. Corp.)

EVM/HNBR 100,0 phr

Rhenogran P 50 1) var.

Carbon black/N 550 50,0 phr

Carnuba Wax 2,0 phr

MgO 10,0 phr

ZnO 2,0 phr

TAIC 1,75 phr

Peroxide (40%ig) 2) 7,0 phr

Vulcanization time: 15 min

Temperature: 177°C

Anealing: 16 h

1) Carbodiimide

2 Vulcup 40 KE

EVM: EVM: InfluenceInfluence of Post of Post CureCure on on PhysicalsPhysicals

0

5

10

15

0 50 100 150 200 250 300

with

post c

ure

without p

ost cure

strain [%]

Str

ess [M

Pa]

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160 180 200 220 240

time [sec ]

torq

ue

[d

Nm

]

cycle timefor IM

= 75 % of = 75 % of

total total curecure

without post

cure

with post

cure

Tensile Strength [MPa] 10,4 11,8

εεεεb [%] 285 230

M100 [MPa] 1,8 3,1

CS 72 h / 150°C [%] 63 31

CS 168 h / 150°C [%] 71 50

O-Ring: Mechanical properties

Sources:

H. Meisenheimer, Kautschuk Gummi Kunststoffe, 52 (1999) 724

P. J- Pazur, L. Ferrari, H. Meisenheimer, ACS Rubber Div. 165th Spring Meeting, Grand Rapids, Michigan

H. Magg, A. Welle, Nordic Rubber Conf. 2005, Köge, Denmark

Page 183: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Levapren gradeLevaprenTMQN 762ZnOZMB-2Ficon 153 1)

Saret SR 633 2)

Vul-CUP 40 KE

Compound propertiesMooney ML 1+4(100°C) [MU]

Vulcanized properties(ISO-Stab Nr. 2, 2mm)Shore A Härte (23°C)Shore A Härte (150°C)Tensile strength [MPa]Elongation at break [%]M 50 [MPa]M100 [MPa]Rebound/23°C [%]Rebound/100°C [%]

Hot air ageing (14d/150°C)F/F0 x100 [%]D/D0 x100 [%]H/H0 x100 [%]

Storage in SAE-oil 90 (3d/150°C)∆∆∆∆F/F0 x100 [%]∆∆∆∆D/D0 x100 [%]∆∆∆∆V/V0 x100 [%]

500100

3)

23

68-

12,6285

-4,4--

-102

11

-8-431

EVM: EVM: „„AcrylateAcrylate ReinforcingReinforcing TechnologyTechnology““ (ART)(ART)

1) 1,2-BR (liequid rubber)2) Zn diacrylate 3)

For further ompound ingredients see

„Stuey on variation of vinyl acetate

content“

Source:

T. A. Brown, Polysar Rubber Corporation,

Technical Report TR 552.92,17 vom

22.05.92

500HV1001,035101,020-

6,5

9,9

7772

13,5806,6-

4362

1-86

-13-6

13,7

500HV1001,035101,0-

206,5

26,8

7773

20,81754,210,54661

-5-298

-22-2912,1

CH2

CH C

O

O2

Zn2+

Z inc diacrylate Saret 633 Sartom er 705

„Acrylate-Reinforcing“ is used for

golf ball cores based on high

ART based “Golf-Ball-Core“-PatentsEP 0496947, Prior.: 29.01.1991 (Bridgestone)

US 6426387, Prior.: 04.08.2000 (Taylor Made Golf

Co.

EP 1227121, Prior.: 24.01.2001 (JSR)

US 6525141, Prior.: 02.04.2001 (Bridgestone)

US 6270428, Prior.: 07.08.2001

US 6517451, Prior.: 11.02.2003 (Titleist)

Page 184: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

6. 6. ThermoplasticThermoplastic ElastomersElastomers (TPE)(TPE)

• Principle of Physical Crosslinking, Phase Morphology and Property Profile

• Nomenclature and Range of Available Grades

• Selection of Commercially Available TPEs, Producers and Brand Names

• Market, Areas of Applications and Prices

• Phase Morphology of Rubber Modified Thermoplastics and Thermoset Resins

• Comparison of Technological Properties of Different Classes of Engineering Polymers

– Dependence of Shear Modulus on Temperature

– Dependence of Residual Elongation on Original Elongation

– Comparison of Technological Properties of Chemically and PhysicallyCrosslinked Rubbers (Data from Product Data Sheets)

• TPE-O and TPE-V

– PP-Performance and Price of EPDM/PP-Blends

– Mechanical Properties

• Advanced technologies for the production of PP-based TPEs

• TPEs from the viewpoint of a producer of technical rubbber goods

Positve:• Good vulcanizate properties at low / moderate temperatures• No compounding and vulcanization know-how necessary• Short cycle times no time consuming vulcanization• Recycling of waste (due to thermo labile/reversible crosslinks)

Negative:• High permanent set after (tension set, compression set)• Poor mechanical properties at elevated temperatures (tensile strength, compression set) • Deterioratioon of mechanical properties in appropriate solvents• High heat-build-up in dynamic applications• Limited range of grades (particularly no soft grades available) • Anisotropic properties of injection moulded articles (particularly for TPEs with uncrosslinked rubber phase)

TPE: Phase TPE: Phase MorphologyMorphology and Property Profileand Property Profile

Soft SegmentHard Segment

A coherent soft or rubber phase (coherent matrix) isrepresentative for most TPEs

The hard phase which contains the physical cross-linksis dispersed within the soft phase. The hard phase isonly physically and never chemically crosslinked

The soft phase can either be uncrosslinked orcrosslinked

Examples for physical crosslinks• Hydrogen bonds /Crystallization• Dipol/Dipol - Interaction• Glassy Hardening (vitrification)• Ionomers

Scheme of the Phase Morphologyof A-B-A, (A-B)n and (A-B)x-

Multiblock Copolymers

Type of Bond energy

bond [kJ / Mol]

covalent 260 - 350physical 10 - 20

Page 185: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Nomenclature and Range of Available Nomenclature and Range of Available TPEsTPEs

1 Consists of an elastomer finely dispersed in a thermoplastic matrix 2 Rubber and thermoplastic segments are chemically bonded by block- or graft copolymerization

Sources: SRI Elastomers Overview 2008; Stratley Consultants

Thermoplastic Elastomers

TPE-O mechanical and reactor-blends (unvulcanized)

TPE-SStyrenic Block-Copolymers

Polyblends1

Multi-Block-Copolymers2

Thermoplastic

Polyolefins

TPE-UPolyurethane Block Copolymers

TPE-ECopolyester Block Copolymers

TPE-A Polyamide Block Copolymers

Olefin TPE-V (dynamically vulcanized)

High Performance TPE-V

(without polyolefines(dynamically vulcanized)

PVC based blends(without dynamic vulcanization)

Examples

EPM / PPEPDM / PP

EPDM / PPNBR/ PP

NBR / PVCEVM / PVCACM / PVC

HNBR / PA HNBR / PBTNBR / PA EVM / PAEVM / PBT

SBC (SBS, SIS, SEBS, SIBS)

Polyester-Urethanes, Polyether-Urethanes

COPE based on aromatic Polyesters (Terephthalates) PBT´/ PTHF; PET / PTHF

PEBA based on PA 6 and PA 12

SelectionSelection of of CommerciallyCommercially AvailableAvailable TPEsTPEs, , ProducersProducersand Brand and Brand NamesNames

Kraton®Styrolux®

ShellBASFFirestone, PolimeriDow

Glassy hardening(vitrification)

TPE-S SBS, SIS, SEBS

Surlyne®

Pebax®Estamid®

Hytrel®Pelprene®

Desmopan/Texin®Elastollan®Estane®

Sibstar®Taxus®SIBS®

?

Denka LS®

Santoprene®Geolast®

Flexomer®Spherilene®Exxtral®

Brand Name

AES (Advanced Elastomer Systems)AES (Advanced Elastomer Systems)

CrystallizationTPE-V

UCCBassellExxon

CrystallizationTPE-O (reactor blends)

Du PontIonomer

AtochemDow

Hydrogen bonds /Crystallization

TPE-A

DuPontToyobo

CrystallizationTPE-E

BayerBASFGoodrich

Hydrogen bonds /Crystallization

TPE-U

KanekaBoston ScientificInnovia

SIBS

ZeonHigh performance TPE-V

Denki KKDipol/DipolPVC-based blends

ProducerCrosslinking

Principle

Type of TPE

Page 186: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

TPE: Market, TPE: Market, ApplicationApplication AreasAreas and Range of Pricesand Range of Prices

IRP

18%Hoses

5%

Cables

3%

Medical

Appl.

3%Asphalt

Mod.

12%

Ad-

hesives

12%

Auto-

motive

32%

Shoe

15%TPO-V SBC

TPO-

Blends

COPE

TPU

PEBA

Rest

WO-TPE-Market: 1,5 Mio t

W.-Europe:: 576a t (2001)

Type 2.000 2.005 Growth

[%]

SBC's 195 226 3

TPO's 135 172 5

TPV's 36 59 10,5

TPU's 62 79 5

COPE's 20 30 8

COPA's 7,5 10 5

Sonstige

Sum 455,5 576 4,5

PP/EPM-Reactor Blends 0,90-1,20

PP/EPM-TPE-V 2,00-2,50

SBC 1,00-3,30

SBS 1,30-1,50

SIS 1,50-1,70

SEBS 2,60-3,30

TPE-U (TPU) 3,00-4,00

TPE-E (COPE) 3,50-4,40

TPE-A (PEBA) 3,60-7,00

TPE Price [€/kg]

Areas of Application

Source:European Rubber Journal 184,no.1 (January 2002)

SofteningTemperature of

Thermoplast Phase

SchematicSchematic PresentationPresentation of of thethe DependenceDependence of of thetheShearShear ModulusModulus on on TemperatureTemperature

Sh

ear

Mo

du

lus

[MP

a]

10-1

100

101

102

103

104

TemperatureTg of Rubber Phase

Tempeatureof Use

Temperature of Processability

Page 187: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

DependenceDependence of of ModulusModulus on on TemperatureTemperature: Target and : Target and RealityReality

Sh

ear

Mo

du

lus

[MP

a]

10-1

100

101

102

103

104

-100 - 50 0 50 100 150

Temperature [°C]200

Target

Reality

SchematicSchematic PresentationPresentation of of thethe DependenceDependence of of thethe ShearShearModulusModulus on on TemperatureTemperature forfor Different Engineering PolymersDifferent Engineering Polymers

Sh

ea

rM

od

ulu

s[M

Pa

]

10-1

100

101

102

103

104

Temperature

0 50 100 150 200- 50- 100

4 3 2 15

6

7

8

Page 188: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

1. Thermoplastic Polymer(Polycarbonate, PP.PA)

2. Thermoplastic(Polystyrene, PMMA)

3. Rubber ModifiedThermoplastic

4. Elastomer (crosslinked)

5. TPE

6. TPE

7. Elastomer (crosslinked)

8. Unvulcanized Rubber

Sh

ea

rM

od

ulu

s[M

Pa

]

10-1

100

101

102

103

104

Temperature

0 50 100 150 200- 50- 100

4 3 2 15

6

7

8

DependenceDependence of of ShearShear ModulusModulus on on TemperatureTemperature forfor Different Different Engineering PolymersEngineering Polymers

SchematicSchematic PresentationPresentation of of Stress/StrainStress/Strain Diagrams Diagrams of Block of Block CopoymersCopoymers

str

es

s [

MP

a]

strain [%]

A-B-A, (A-B)n und (A-B)x-Block Copoymers

A-B Block Copolymers

Residual elongation

elongation

Page 189: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

original elongation ( ) [%]

300

resid

ual

elo

ng

ati

on

(

)

[%

]

vulcanized gum stock (unfilled NR)

TPE-O (EPDM / PP: 60/40)

0 100 2000

100

200

300 εoriginalεresidual =

DependenceDependence of Residual of Residual ElongationElongation on Original on Original ElongationElongation forfor Different Engineering PolymersDifferent Engineering Polymers

ASTM D 1566 - 98„Definition of Rubber“ TPE-V (EPDM / PP: 78/22)

SBS with 27 wt.% styrene

NR/BR-tyre tread (with filler)

εoriginal

εR

es

idu

al

CompressionCompression -- SetSet

ho h2h1

hoh2

h1

ho- h1

ho- h2

CS = x 100 [%]ho- h2

ho- h1

In compression set (CS) measurements ho , h1, compression, exposition time, and exposition temperature are well defined(DIN, ASTM). Most commonly, thedeformation is 25%. In order to achieve thesame deformation „ho-h1“ the pressure has to be adjusted to the degree of x-linking

Page 190: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

ComparisonComparison of of TechnologicalTechnological PropertiesProperties of of ChemicallyChemically and and PhysicallyPhysically CrosslinkedCrosslinked Rubbers Rubbers

(Data (Data fromfrom ProductProduct Data Data SheetsSheets))

SBC T PE-U T PO

mech. T PV T PV

EPDM/PP EPDM/PP EPDM/PP

blend (pa rtia lly (highly

x-linked) x-linked)

Shore A 10 to 80 71 52 75 92 93 78 72 75

Shore D - 44 42 25 40 63 32 54

T ensile Stre ngth [MPa ] 10 to 35 32 20 34 45 40 79 36 51 15,4 47 12 5,5 8,5

Elongation a t brea k [%] 300 to 800 880 1200 500 450 380 715 485 380 880 660 650 350 490

CS (22h/70°C) 5 to 30 75 60 38

CS (24h/70°C) 5 to 40 60 60 62 21 5 90 53

CS (22h/100°C) 5 to 40 88 44

CS (70h/150°C) 30 (HNBR, FKM)

T PE-ESEBS Este r Ether

T PE-APropertiesClassica l

Elastome rs SBS SIS

Technologische Eigenschaften von Technologische Eigenschaften von TPEsTPEsund von und von HauptvalenzelastomerenHauptvalenzelastomeren

-100

0

100

200

0 50 80

Geb

rau

ch

ste

mp

era

tur

[°C

]

Shore D Härte

Shore A Härte30 50 7040 60 80

100

SBC

TPO

PEBA

TPU

COPE

klassische Elastomere

Page 191: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

PPPP--Performance and Price of Performance and Price of EPDM/PPEPDM/PP--BlendsBlends

Source: Robert Eller Associates, Inc. 1996

0

1

2

3

4

5

6

7

0 0,5 1 1,5 2

Price [$/kg]

Perf

orm

an

ce [

arb

itra

ry u

nit

s]

TPE-O (Reactor-Blends)

TPE-O (mechanical

blends)

TPE-V (EPDM/PP partially

cross-linked)

TPE/SEBS-Blends

TPE-V (EPDM / PP-blend, highly crosslinked)

0

20

40

60

80

100

120

140

160

180

20 40 60 80 100

Isotacticity [%]

Me

ltin

g t

em

pe

ratu

re [

°C]

Source: T. Sasaki, T. Ebara, H. Johoji; Polymers for AdvancedTechnologies 4, pp. 406-414 „New Polymers from New Catalysts“

PP-Properties:• Low Price• High Softening Temperaure• Good Ageing Resistance(Residual Catalyst Content)

PP-Properties:• Low Price• High Softening Temperaure• Good Ageing Resistance(Residual Catalyst Content)

TPETPE--O and TPEO and TPE--V: Basic V: Basic PropertiesProperties

PropertiesTPE-O

(Mechanical PP/EPDM Blend)

TPE-V (PP/EPDM-Blend withpartially crosslinked

EPDM-phase)

TPE-V(PP/EPDM-Blend with

highly crosslinkedEPDM-Phase)

Shore A-Hardness

Tensile Strength [MPa]

Elongation at break [%]

Compression Set

(22 h /70°C) [%]

Volume Swell in ASTM-

Oil Nr. 3 [Vol%]

78

12

650

75

soluble

72

5,5

350

60

90

75

20

490

38

50

Direction

of Flow Direction

of Flow

Uncrosslinked rubber phase Crosslinked rubber phase

Page 192: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

TPETPE--O and TPEO and TPE--V: V: MechanicalMechanical PropertiesProperties

Str

es

s [

MP

a]

Elongation [%]

0

5

10

15

20

100 200 300 400 5000

10

15

20

25

35

0

30

600

Elongation at break [%]

400

5

Te

ns

ile

Str

en

gth

[MP

a]

0 200

1,0-1,5

5,4

17

39 72

µm]Particle diameter [

535505500495Elongation at break [%]

1590150015201530Tensile Strength [psi]

600620630650M100 [psi]

5321

no. of recyclesProperties

Shore D Hardness: 50

Shore A Hardness: 87

Shore A Hardness: 64

TPETPE--O: O: PP/EPMPP/EPM--ReactorReactor--BlendsBlends

Propylene

Ethylene

Supported

catalyst

ventilator

packaging

Cooler

Temperature: < 90 °C (40°C-60°C)

Pressure: 9-15 bar

Residence time per reactor: 0,5 - 1 h

Filter

Removal of

residual monomer

Filter ventilator

Cooler

Gas Phase Technology

PE* PP**UCC Montell

BASF Fina

BP Phillips

Hoechst Solvay

Exxon UCC

Amoco BASF

Montell Amoco/Chisso

Sumitomo

Source: T. W. Klimek (Quantum Chemical Corp.) ANTEC `91, 1382-1384

purification

purification

Product

outlet

Sources:* Ind Eng. Res. 33 (1994) 449-479 ** Chem. Systems (April 1992)

"Polypropylene"

Page 193: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Rubber Content [wt.%]

6040 503020

300

700

600

500

400

800

900

1000

E-M

od

ulu

s[M

Pa

]

Catalyst Fragmentationduring Polymerization

PropertiesProperties of PP/EPMof PP/EPM-- ReactorReactor--BlendsBlends

Catalyst System A

Catalyst System B

Source: H. Schwager (BASF); Kunststoffe 82, 499 (1992)T. Sasaki, T. Ebara, H. Johoji; Polymers for Advanced Technologies 4, pp. 406-414 „New Polymers from New Catalysts“

PreparationPreparation of of TPETPE--VsVs byby ReactiveReactive ProcessingProcessingBlendingBlending

Definitions:

1) “Reactive Processing” stands for a chemical reaction in the course of which

polymers are modified without the use of solvents.

2) “Dynamic Blending” stands for the solvent free blending process during which

a chemical reaction occurs.

3) “Dynamic Vulcanization” is used for vulcanization reactions (without solvent)

with simultaneous shearing.

4) Every vulcanization method can be performed dynamically

5) Resin cure was the first vulcanization method applied for the production of

EPDM/PP based TPE-V

Page 194: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

1. Preparation of a PP/EPDM-Block Copolymer in order to partially compatibilizePP and EPDM

1a) Reaction of PP with Dimethylol Phenol Resin in order to “activate” PP

PreparationPreparation of a TPEof a TPE--V V byby thethe DynamicDynamic VulcaniztionVulcaniztionof a EPDM/PP blend of a EPDM/PP blend withwith Phenol Phenol ResinResin

PP

1) Melting PP at 185°- 190°C2) Addition of dimethylol resin at 185°-190°C (5 Min.)3) Addition of the catatalyst SnCl2 x 2H20 (2 Min.)

OH

CH2 OHHOCH

2

PP

+

OH

CH2 OHCH

2

1b) Preparation of block copolymer by the reaction of “activated PP” with EPDM

PreparationPreparation of a TPEof a TPE--V V byby thethe DynamicDynamic VulcaniztionVulcaniztion of a of a EPDM/PP blend EPDM/PP blend withwith Phenol Phenol ResinResin

1) Addition of EPDM and additional Phenol Resin at 185°- 190°C (5 Min.)2) Addition of more SnCl2 x 2H20 at 185°- 190°C (5 Min.)

PP

OH

CH2 OHCH

2 + EPDM

PP

OH

CH2

CH2 EPDM

Page 195: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

EPDM-

Phase

2) Addition of PP und EPDM with subsequent vulcanization of the EPDM-Phase

PreparationPreparation of a TPEof a TPE--V V byby thethe DynamicDynamic VulcaniztionVulcaniztion of a of a

EPDM/PP blend EPDM/PP blend withwith Phenol Phenol ResinResin

1) Addition of EPDM and PP at 185°- 190°C (5 Min.)2) Addition of of more SnCl2 x 2H20 at 185°- 190°C (5 Min.)

PP

OH

CH2

CH2 EPDM

PP -

Phase

OH

CH2

CH2 EPDMPP

In reality, the series of reactions from 1a), 1b) to 2) do not occur in a sequenceof reactions, which are well separated but rather in a concurrent fashion

CompatibilisingCompatibilising EffectEffect of of DimethylolphenolDimethylolphenol ResinsResins in in DynamicDynamic VulcanizationVulcanization of of PP/NBRPP/NBR--BlendsBlends

Polypropylene

Dimethylolphenol resin

SnCl2 . 2 H2O

Polypropylene

NBR +

Aminino terminated NBR

Dimethylolphenol resin +

SnCl2 . 2 H2O

Tensile Strength [MPa]

M100 [MPa]

E-Modulus [MPa]

Elongation at break [%]

Permanent elongation [%]

0

0

0

50

50

0

0

0

7,2

0

149

36

0

185-190°C

5 min.

2 min.

185-190°C

5 min.

5 min.

50

2

0,4

0

50

0

0

0

10,1

0

170

66

50

2

0,4

0

50

0

1,67

0

10,1

0

157

170

50

2

0,4

0

45

5

5

0,5

15,3

10,2

107

390

54

Page 196: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

CompatibilisingCompatibilising EffectEffect of of DimethylolphenolDimethylolphenol ResinsResins in in DynamicDynamic VulcanizationVulcanization of of PP/NBRPP/NBR--BlendsBlends

25

1

0,2

67,5

7,5

9,38

1,13

1,13

17,0

15,8

33

330

20

185-190°C

5 min

2 min

5 min 5 min

37,5

1,5

0,3

56,25

6,25

7,81

0,78

0,94

19,6

15,7

92

400

33

50

2

0,4

45

5

6,25

0,5

0,75

23,0

15,2

221

500

50

62,5

2,5

0,5

33,75

3,75

4,69

0,28

0,56

22,7

16,2

320

490

63

75

3

0,6

22,5

2,5

3,13

0,13

0,38

21,5

17,1

456

480

70

Polypropylene

Dimethylolphenol resin

SnCl2 . 2 H2O

Polypropylene

NBR +

Aminino terminated NBR

Dimethylolphenol resin +

SnCl2 . 2 H2O 5 min

Tensile Strength [MPa]

M100 [MPa]

E-Modulus [MPa]

Elongation at break [%]

Permanent elongation [%]

ReactiveReactive BlendingBlending von EPDM/SAN: von EPDM/SAN: ResultsResults

1

10

100

1000

elo

ng

ati

on

at

bre

ak

[%]

0 10 20 30 40 50 60 70 80 90 100

EPDM-content [wt.%]

Reactive Processing2 wt.% PF-Harz/0,2 wt.% Catalyst/130°C

(without fillers/without oils)EPDM-grade: EP T 2370 (Lanxess)

Sources:• M. Vierle: MSc Thesis TU Munic December 2001• DE 10127402, Bayer AG, Prior.: 06.06.2001, Inv.: M. Vierle, N. Steinhauser, O. Nuyken, W. Obrecht• M. Vierle, N. Steinhauser, O. Nuyken, W. Obrecht, Macromol. Mater. Eng. 2003, 288, 209-218„Blend Preparation by Reactive Processing

SAN EPDM

0

10

20

30

40

Te

ns

ile

Str

en

gth

[M

Pa

]

Page 197: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

AdvancedAdvanced technologiestechnologies forfor thethe productionproduction of of PPPP--basedbased TPEsTPEs

R

R595

Zr

R2

R1

R608

Zr

R2

R1

R622

ataktisches Polymer

IsotaktischesPolymer

BP/Amoco BP/Amoco startedstarted to to manufacturemanufacture PPPP--basedbased multimulti--blockblock copolymerscopolymers in in thethe pilotpilot--plantplant scalescale in in CaliforniaCalifornia ((MenloMenlo Park)Park)Baxter Healthcare Corp., Round Lake, IL Baxter Healthcare Corp., Round Lake, IL cooperatescooperates in in thethe performanceperformance of of teststests towardstowards thethereplacementreplacement of soft PVC in of soft PVC in medicalmedical devicesdevicesA. A. KhareKhare; S. Y. Ding; M. T. K. Ling; L. Wood; Modern ; S. Y. Ding; M. T. K. Ling; L. Wood; Modern PlasticsPlastics, September 1999; 94, September 1999; 94--99 99 „„HeatHeat--resistantresistant, flexible , flexible olefinsolefins meetmeet toughtough medicalmedical demandsdemands““--SingleSingle--SiteSite metallocenemetallocene catalystscatalystsyieldyield autoclavableautoclavable, , highhigh--clarityclarity elastomerselastomers withwith cost/performancecost/performance benefitsbenefits of flexible PVC.of flexible PVC.

Preparation of PP-Blockcopolymers by the

use of the „Waymouth-Catalyst“

The length of building blocks is determined

by the ratio of propagation rates versus

Rotation rate

Source:R. Waymouth, J. Coates, A-L. Mogstad, K. Stein, D. Fischer,

S. Borkowsky

Stepol `94; Milano June 6-10, 1994 "Stereospecific

Polymerization and Copolymerization of Functionalized Olefins"

AdvancedAdvanced technologiestechnologies forfor thethe productionproduction of of PPPP--basedbased TPEsTPEs

ZrCl

Cl

P

EtEt

B

ClCl

PEt

Et

ZrCl

Cl

B

ClCl

Polymers with high tacticity atactic polymers

PP-based multi-block copolymer

Temperature

PreparationPreparation of of PPPP--basedbased multiblockmultiblock copolymerscopolymers byby thetheuseuse of of Donor/AcceptorDonor/Acceptor MetallocenesMetallocenes ((OstojaOstoja StarzewskiStarzewski))

Page 198: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

100

101

102

103

104

Elastomeric PP

Schubm

odul (M

Pa)

G''

G'

-160 -120 -80 -40 0 4010

-2

10-1

100

-120 -80 -40 0 40

Temperatur (°C)

tan δ

PPPP--BasedBased TPETPE

Sample Sample fromfrom Prof. Prof. AladyshevAladyshev

Temperature [°C]

Ko

mp

lex m

od

ulu

s(G

*) [

MP

a]

PPPP--BasedBased TPETPE

0 200 400 600 800

0

2

4

6

Elast.PP

Spannung σ

[N

/m

m 2

]

Abb.

Probenform: S1-Stab

Anlieferzustand: Platte

Meßdatum: 05.06.02

Dateiname: S14308sd (Graph 1)

Dehnung ε [%]

Sample Sample fromfrom Prof. Prof. AladyshevAladyshev

strain (εεεε) [%]

str

ess σσ σσ

[N/m

m2]

Page 199: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

10-1

100

101

102

103

104

G' G" HAIFA 1

G' G" HAIFA 2

kom

ple

xer

Sch

ub

mod

ul

[MP

a]

-160 -120 -80 -40 0 40 80 12010

-3

10-2

10-1

100

-120 -80 -40 0 40 80

tan

( δδ δδ)

Temperatur [°C]

PPPP--BasedBased TPETPE

Sample Sample fromfrom Prof. Eisen/HaifaProf. Eisen/HaifaTemperature [°C]

Ko

mp

lex m

od

ulu

s(G

*) [

MP

a]

PPPP--BasedBased TPETPE

0 100 200 300 400 500 600 700 800 900

0

2

4

6

HAIFA-1

HAIFA-2

Spannung σ

[N

/m

m2

]

Dehnung ε [%]

Sample Sample fromfrom Prof. Eisen/HaifaProf. Eisen/Haifastrain εεεε [%]

str

ess σσ σσ

[N/m

m2]

Page 200: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

• Reduction of Manufacturing Costs– Reduction in number of raw materials and associated costs for logistics (ordering,

transportation and storage,)

– Reduction/elimination of compounding costs including energy savings

– Significant reduction of cycle time and increase of output (seconds instead of minutes)

– Cost reduction by recycling of waste (no costs for incineration and land fill)

• New Technology for Rubber Processors– Installation of equipment for the processing of thermoplastic materials

– Know-how in thermoplastics and their processing not available

– Know-how for the compounding and processing of rubbers becomes abundant

• TPE- Range of Products and Proeprties– Limited availability of soft grades with Shore A Hardness < 50

– Open questions on the production of composites

– High hysteresis which results in p high permanent set (after elongation and compression)

– Losses on dynamic stress bei dynamischer Beanspruchung

– Irreversible damage of articles if service temperature is increased above thresholdtemperature

TPEsTPEs fromfrom thethe ViewpointViewpoint of a of a ProducerProducer of of TechnicalTechnicalRubber Rubber GoodsGoods

Page 201: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

1

7. Test 7. Test QuestionsQuestions

Given Name

Family Name

PleasePlease do do notnot forgetforget to to writewrite youryour namename

on on eacheach pagepage of of thethe questionnairequestionnaire

2

WhichWhich AbbreviationsAbbreviations Are Are UsedUsed forfor thethe FollowingFollowingRubbers?Rubbers?

AbbreviationRubberNr.

Smoked Sheets based on NR

Standardized NR from Vietnam

Polyphosphazene modified with perfluorinated alcohols

Vinylmethylsilicon Rubber, which also contains fluorine

Brominated Isobuylen/Isoprene-Copolymers

Butadiene/Acrylonitrile-Copolymers

Silicon Rubber with Viny Groups

Natural Rubber

Styrene/Butadiene-Copolymers

Isobutene/Isoprene-Copolymers

Synthetic Polyisoprene

Acrylic Rubber

Fluororubber

Epoxydized Natural rubber

Ethene/Propene-Copolymers

Ethene/Propene/Diene-Terpolymers

Chlorosulfonated Polyethylene

Chlorinated Polyethylene

Polychloroprene

Polybutadiene

19

20

17

18

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Given Name

Family Name

Page 202: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

3

PleasePlease AssignAssign thethe followingfollowing Rubbers to Rubbers to thetheCorrectCorrect Position in Position in thethe Matrix:Matrix:

Chemical Features

RadicalPolymerization

Ziegler/Natta-Polymerization

anionicPolymerization

CationicPolymerization

Polyaddition und Polycondensation

Polymer-modification

Process Features

Emulsion Solution Dispersion Mass or Gas-(slurry) Bulk Phase

ACM, BIIR, BR, CM, CSM, EVM, FKM, HNBR, IIR, SBR

Given Name

Family Name

4

WhichWhich of of thethe CurvesCurves Matches Matches thethe Performance of Performance of thetheMaterials Materials MentionedMentioned BelowBelow ? ?

Nr.: Questions Answers1 Thermoplastic Polymer ?

2 Unvulcanized HNBR at 20°C ?

3 Unvulcanized HNBR at 120°C?

4 Unvulcanized BR with Mn = 10 kg/mol at 50°C ?

5 Unvulcanized BR with Mn = 500 kg/mol at 20°C?

6 SBS at 20°C?

7 SBS at 120°C

8 TPU at 20°C

9 NR (unfilled and vulcanized) at 60°C

10 NR (filled and vulcanized) at 60°C

elongation [%]

Resid

ual

Elo

ng

ati

on

[%] 1

2

3

456

300

200

100

00 100 200 300

Given Name

Family Name

Page 203: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

5

Nr.: Frage Right Wrong1 Unvulcanized NR does not crystallize

2 Today, Malaysia is NR-Producer No. 1

3 For NR plantations China is ideal.

4 For NR plantations Brasil is ideal.

5 A smallholder earns ~ 10000 €/a

6 SMR 20 is a NR-grade with high purity

7 SMR CV vulcanizes faster than SMR 10

8 NR has to be masticated before use

9 IR has to be masticated before use

10 For the mastication of NR, mastication aids have to be used

Given Name

Family Name

NaturalNatural RubberRubber

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

6

Nr.: Frage Right Wrong1 A tyre tread based on NR performs well on a wet road

2 A tyre tread based on NR exhibts a low rolling resistance

3 The vulcanizateion of NR with peroxides yields good dynamic properties

4 NR has a lower Tg than ENR

5 NR can be vulcanized with multifunctional isocyantes

6 CV grades can be vulcanized with diisocyantes

7 NR can be vulcanized with phenol/formaldehyde resins

8 NR based compounds have a higher tack than SBR-based compounds

9 NR crystallizes at 35°C

10 NR crystallizes faster at -50°C than at -20°C

Given Name

Family Name

NaturalNatural RubberRubber

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Page 204: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

7

SyntheticSynthetic PolyisoprenePolyisoprene

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Nr.: Question RIGHT WRONG1 The mechanical properties of IR do depend on the 1,4-cis-content

2 Li-based catalysts produce IR with a high 1,4-cis-content

3 Nd-based catalysts produce BR with a high 1,4-cis-content

4 Ti-based catalysts produce IR with the highest 1,4-cis-content

5 Tg of IR does not depend on 1,4-cis content

6 IR has to me masticated before use

7 IR can be crosslinked with diisocyantes

8 IR with a high 3,4-content is good for tyres with a high wt grip

9 IR with a high cis-1,4-content provides tyres with good wet grip

10 Poly-1,4-trans-Isoprene has a lower Tg than Poly-1,4-cis-Isoprene

Given Name

Family Name

8

Emulsion RubbersEmulsion Rubbers

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Nr.: Question Right Wrong

1 The term "emulsion" is used for a dispersion of polymer particles in water

2 The term "latex" is used for a dispersion of rubber particles in water

3 Polymer dispersions are obtained by slurry (precipitation) polymerization

4 Latices are obtained by emulsion poymerization

5 Latices with a solids content > 50 wt. % can not be made

6 The addition of emulsifier increases the stability of latices

7 The addition of emulsifier increases the stability of emulsions

8 At freezing temperatures latex stability is higher than at 23°C

9 At elevated temperatures (>100°C) latex stability is higher than at 23°C

10 The addition of electrolytes increases latex stability

Given Name

Family Name

Page 205: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

9

Rubber recovery from a solution by steam stripping causes waste water9

Emulsion rubbers cause air pollution10

There are no biodegradable emulsifiers6

Emulsion rubbers yield considerable amounts of water water7

Dry finishing of solution rubbers does not cause water pollution8

Wrong

BOD < COD5

COD < BOD4

BOD = COD3

BOD = 02

COD = 01

RightQuestionNr.

Given Name

Family Name

Pollution of Water and Air:Pollution of Water and Air:

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

10

Nr.: Frage Right Wrong

1 Additives can increas the rate of crystallization

2 Additives can reduce the rate of crystallization

3 SBR is a crystallizing rubber

4 NBR is a crystallizing rubber

5 NR is a crystallizing rubber

6 Rubber compounds crystallize slower than raw rubbers

7 Vulcanizate crystallize faster then the respective rubber compounds

8 Strain induced crystallization is a wanted property

9 Low temperature performance of vulcanizates is improved by spontaneous

crystallization

10 The compression set performance of vulcanizates at low temperatures is

is improved by spontaneous crystallization

CrystallizationCrystallization of Rubbersof Rubbers

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

Page 206: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

11

Nr.: Question Right Wrong1 SBR exhibits spontaneous crystallization

2 NBR is a crystallizing rubber

3 CR is a crystallizing rubber

The rate of CR crystallization depends on polymerization temperature

4 NR is a crystallizing rubber

5 Spontaneous crystallization is a wanted property

6 Strain induced crystallization provides high abrasion resistance

7 The rcrystallization rate of CR depends on temperature

The crystallization rate of rubbers shows a temperature maximum

8 The crystallization rate of rubbers shows a temperature minimum

The rate of crystallite nucleation increases with increasing temperature

9 The rate of crstallite growth decreases with increasing temperature

10 The rate of crystallization of vulcanizates can be monitored

by Shore A measurements

CrystallizationCrystallization of Rubbersof Rubbers

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

12

Nr.: Frage Right Wrong1 NBR which is polymerized under azeotropic conditions has 2 Tgs

2 NBR which is polymerized under azeotropic conditions has 1 Tg

3 A batch polymerization with incremental monomer addition can result in 2 Tgs

4 Low monomer conversions result in NBR with chemical heterogenity

5 High amounts of emulsifier improve chemical homogenity

6 High amounts of modifier improve chemical homogenity

7 Rebound of NBR increases with the content of acrylonitrile

8 The degree of oil swelling increases with acrylonitrile content

9 Shore A hardness of NBR vulcanizates dempend on acrylonitrile content

10 The compression set of NBR vulcaniaztes depend on acrylonitrile content

NBRNBR

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

Page 207: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

13

Nr.: Frage Right Wrong1 The properties of NBR depend on the emulsifier used for polymerization

2 The properties of NBR depend on the electrolytes used for latex coagulation

3 The tendency to gelling increases with increasing polymerization temperature

4 The tendency to gelling decreases with increasing polymerization temperature

5 Molar masses increase with increasing monomer conversion

6 Molar masses do not depend on monomer conversion

7 Molar masses do not depend on modifier level

8 Molar masses decrease with increasing amounts of modifier

9 Molar masses increase with increasing amounts of modifier

10 The properties of NBR depend on the modifier used

NBRNBR

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

14

In In thethe literatureliterature youyou find find thethe followingfollowing TgsTgs forfor polybutadienepolybutadiene (BR) and (BR) and

polyacrylonitrilepolyacrylonitrile (PAN:(PAN:

PleasePlease selectselect thethe relevant relevant TgsTgs and and calculatecalculate thethe TgTg of an NBR grade of an NBR grade

whichwhich containscontains 50 wt.% 50 wt.% acrylonitrileacrylonitrile. .

TheThe calculatedcalculated TgTg isis: : ………………....°°CC

NBRNBR

+100°CPAN

-80°CBR (emulsion polymerization)

-110°CBR (Nd-catalysis)

-100°CBR (Ti-catalysis)

-90°CBR (Li-catalysis)

Given Name

Family Name

Page 208: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

15

Nr.: Frage Right Wrong1 The compatability of NBR and PVC depends on acrylonitrile content

2 Vulcanizates based on NBR perform well in ozone containing air

3 Vulcanizates based on CR perform well in ozone containing air

4 NBR/BIIR-Blends are useful for innerliners

5 Blends based on NBR and EPDM are compatible

6 Sulfur cure of NBR/HNBR-Blends result in high temperature resistance

7 Precrosslinked NBR yields compounds with low die swell

8 NBR can be vulcanized with phenol/formaldehyde resins

9 The swelling of NBR vulcanizates in oil increases with acrylonitrile content

10 The swelling of NBR vulcanizates in oil decreases with acrylonitrile content

NBR:NBR:

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

16

Nr. Question Right Wrong1 The properties of CR do not depend on the temperature of polymerization

2 Vulcanization with ETU* results in crosslinks which contain 1 sulfur atom

3 CR-based adhesive grades contain 2-3-Dichlorobutadiene-1,3

4 CR rubber grades are polymerized at a lower temperatures than

CR adhesive grades

5 CR-latices can not be coagulated with electrolytes

6 CR crystallinity is disturbed by copolymerized sulfur

7 Mercaptane modification results in higher tensile strength of vulcanized CR

than the modification with xanthogendisulfides

8 The ageing resistance of vulcanized CR sulfur grades is higher than those of

mercaptane modified CR grades

9 CR-sulfur grades have to be masticated prior to use

10 Precrosslinked CR grades are used for vulcanizates with good dynamic

performance

CRCR

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

Page 209: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

17

Nr.: Question Right Wrong1 Tg of HNBR does depend on the degree of hydrogenation

2 The rebound of HNBR vulcanizates depends on ACN content

3 HNBR and EVM are fully compatible at all copolymer compositions

4 The compatibility of PVC and HNBR depends on the acrylonitrile content of HNBR

5 Compatibility of HNBR and EVM depends on the vinyl acetate content of EVM

6 The crystallinity of HNBR depends on acrylonitrile content

7 Ethene sequences are prone to crystallization

8 Tg of amorphous PE is at -200°C

9 Tg of amorphous PE ist at + 0°C

10 Unvulcanized HNBR with a low acrylonitrile content performs like a TPE

HNBR:HNBR:

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

18

Nr.: Question Right Wrong1 Pd-Catalysats can be used for the selective hydrognation of C=C bonds in NBR

2 Raney-Nickel can be used for the selective hydrogenation of C=C bonds in NBR

3 Li[AlH4] can be used for the selctive hydrogenation of C=C bonds in NBR

4 NN=NH can be used for the selective hydrogenation of C=C bonds in NBR

5 Supported catalaysts can be recovered by centrifugation

6 Supported catalaysts are not quantitatively recovered after hydrogenation

7 Homogeneous catalysts can be recovered by filtration

8 Ethene and acrylonitrile can be radically copolymerized

9 Metallocenene-based catalysts readily copolymerize ethene and propene

10 In the hydrogenation on NBR, gel formation is a major problem

HNBR:HNBR:

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

Page 210: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

19

Nr.: Question Right Wrong1 At a polymerization temperature of -100°C molar masses of IIR are too high

2 At a polymerization temperature of 23°C °C molar masses of IIR are too low

3 IIR is a feedstock for the preparation of BIIR

4 NR/BIIR-Blends are used for the production of innerliners

5 IIR has a good performancde in the covulcanization of layers

6 BIIR has a good performancde in the covulcanization of layers

7 IIR can be vulcanized by the use of peroxides

8 BIIR can be vulcanized by the use of peroxides

9 Bladders which are used for the vulcanization of tyres are based on

resin cured IIR

10 Bromination of IIR is performed in CH3Cl

IIR, CIIR and BIIR:IIR, CIIR and BIIR:

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

20

Nr. Question Right Wrong

1 The hard phase is not crosslinked

2 The hard phase is crosslinked

3 The soft phase can be polar

4 The soft phase can be crsslinked

5 Tg of soft phase > Tg of hard phase

6 Tg of soft phase < Tg of hard phase

7 Hard- and soft phase have to be mechanically coupled

8 Hard- and soft phase have to be compatible

9 Dynamic vulcanization can be performed in a twin

screw extruder

10 Dynamic vulcanization can be performed on a mixing mill

ThermoplasticThermoplastic ElastomersElastomers::

PleasePlease Mark Mark „„RIGHTRIGHT““ oror „„WRONGWRONG““

Given Name

Family Name

Page 211: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

21

PleasePlease assignassign thethe CurvesCurves

Sch

ub

mod

ul

[MP

a]

Temperatur

-100 -50 0 50 100 150 200

104

103

102

101

100

10-1

Nr.: Frage Number of curve(s)1 Which curve(s) matches the performance of unvulcanized NR ?

2 Which curve(s) matches the performance of unvulcanized SBR ?

3 Which curve(s) matches the performance of vulcanized SBR ?

4 Which curve(s) matches the performance of unvulcanized NBR ?

5 Which curve(s) matches the performance of vulcanized NBR ?

6 Which curve(s) matches the performance of isotactic Polypropylene?

7 Which curve(s) matches the performance of Polycarbonate?

8 Which curve(s) matches the performance of atactic Polytyrene?

9 Which curve(s) matches the performance of ABS with 30 wt.% BR ?

10 Which of the curve(s) matches the performance of SBS ?

1

234

5

6

7

8

9

22

Rubber A [phrRubber B [phr]Rubber C [phr]

Carbon black (N 220) [phr]

Shore A Hardness/23°C Modulus300 [MPa]Tensile Strength [MPa]Elongation at break [%]Rebound/23°C [%]Goodrich HBU [°C]CS (24h/70°C) [%]

Volume swell (70h/70°C)ASTM-oil Nr. 1 [%]ASTM-oil Nr. 2 [%]ASTM oil Nr. 3 [%]

Air permeation/23°C [1018 x m4/s.N]

WhichWhich seriesseries of of modifiedmodified rubbersrubbers and and whichwhich modificationmodificationresultsresults in in thethe followingfollowing propertiesproperties

100--

30

597,827,1550784417

66114191

27,0

-100

-

30

566,9

25,9590256046

7328

108

8,0

--

100

30

598,8

27,8560155217

-5621

1,98

Given Name

Family Name

Rubber B

Rubber A

Rubber C

modification

Page 212: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

23

Metal

Microstructure [%]

1,4-cis 36-38 97 97 93 98 12,9

1,4-trans 52 1 2 3 1 68,3

Vinyl 10-11 2 1 3-4 <1 18,8

Vinyl/1H-NMR*** 10,4 1,9 4,0 <1 18,1

Vinyl/FT-IR*** 11,4 1,0 5,4 0,6 17,7

Vinyl/Metathese*** 10,7 1,7 4,6 0,7 17,8

Tg -93 -106 -107 -103 -109 -80

WhichWhich Metal Metal isis usedused forfor thethe productionproduction of BR in order to of BR in order to obtainobtain thethe PropertiesProperties belowbelow ??

CH2

1

CH2

CH3

CH2

4

CH2

1

CH2

CH3

CH24

CH21

CH2

CH3

CH24

24

Rubber ARubber B

Compound PropertiesML 1+4(100°C) [MU]t2/177°C [min]t90/177°C [min]

Vulcanizate PropertiesShore A Härte (23°C)Modulus 100 [MPa]Elongation at break [%]Tensile Strength [MPa]

Compression Set70h/23°C [%]70h/150°C [%]70h/175°C [%]

Heat ageing (14d/150°C)F/F0 x100 [%]D/D0 x100 [%]H/H0 x100 [%]

Oil swelling (7d/150°C)ASTM-Öl Nr. 3∆∆∆∆F/F0 x100 [%]∆∆∆∆D/D0 x100 [%]∆∆∆∆V/V0 x100 [%]

5050

581,5

10,2

8012,617022,5

1217

25,5

-10-29+4

-36-29+49

2575

401,6

10,2

8112,014518,8

141420

-7,5-21+3

-50-34+67

100-

1231,511,7

7810,724026

122027

-2,3-37+6

-10-4

+24

7525

991,611,0

8013,119024

121727

-3,8-26+5

-17-11+34

-100

321,69,5

778,316518,5

149

15

-1,6-12+2

-56-45+83

PleasePlease AssignAssign Rubber A and Rubber BRubber A and Rubber B

Given Name

Family Name

Rubber B

Rubber A

Page 213: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

25

Rubber A

Rubber B

Fmin. [Nm]

Fmax.

ts [min]

t90 [min]

t95 [min]

Shore A

Modulus100 [MPa]

Modulus200 [MPa]

Modulu300 [MPa]

Tensile Strength [MPa]

Elongation at break [%]

Abrasion Index

Ageing at 70h/121°C

∆ Dehnung [%]

CS (70 h/121°C) [%]

100,0

0

9,0

86,3

3,0

10,0

21,5

83

5,2

11,0

18,6

25,5

430

493

- 42

34,1

50,0

50,0

10,2

78,7

2,7

7,0

11,0

80

4,5

10,0

15,5

21,0

415

159

- 35

27,1

0

100,0

8,0

60,0

2,8

6,8

8,3

67

1,7

4,8

11,0

18,2

500

73

- 30

14,7

PleasePlease AssignAssign Rubber A and Rubber BRubber A and Rubber B

Given Name

Family Name

Rubber B

Rubber A

26

Hard phase(coherent phase or matrix)

Soft phase(dispersed phase)

PleasePlease assignassign 5 polymer 5 polymer blendsblends forfor whichwhich thetheschemescheme belowbelow appliesapplies

Nr.: Hard phase Soft phase

1

2

3

4

5

Given Name

Family Name

Page 214: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

Rubber

Compound propertiesMooney ML 1+4(100°C)t10/180°C [min]t90/180°C [min]FH-FL/180°C [N]

Vulcanised properties(ISO-Stab Nr. 2, 2mm)Shore A Härte (23°C)S 100 MPa]Elongation at break [%]Tenjsile Strength [MPa]

Compression Set70h/100°C [%]70h/125°C [%]70h/150°C [%]

Hot air ageing (14d/150°C)∆∆∆∆F/F0 x100 [%]∆∆∆∆D/D0 x100 [%]∆∆∆∆H/H0 x100 [%]

Storage in SAE Oil90 (3d/150°C)∆∆∆∆F/F0 x100 [%]∆∆∆∆D/D0 x100 [%]∆∆∆∆V/V0 x100 [%]

C

231,26,619

684,428512,6

202541

-10211

-8-431

D

251,26,221

715,428012,8

222640

-11-212

8213

A

201,27,217

755,029511,7

232541

-3-210

-26-1969

B

241,26,620

745,727513,6

202338

-12-29

-12-447

E

201,36,919

684,230011,5

212446

10-715

683

F

201,36,117

724,730010,5

273151

-8-1514

10-12-4

WhichWhich SeriesSeries of Rubbers of Rubbers YieldsYields thethe PropertiesProperties GivenGiven in in thethe Table Table BelowBelow??

Given Name

Family Name

Variation

Rubber

28

PleasePlease AssignAssign Rubber A and Rubber BRubber A and Rubber B

80

20

5,7

10,0

620

7,6

9,8

420

5,4

14,7

10,0

23,6

60

40

7,1

12,8

560

8,4

9,3

320

9,2

15,2

14,7

0,3

100

-

4,2

9,3

740

6,8

10,0

550

2,9

16,8

7,5

61,8

Rubber A [phr]

Rubber B [phr]

Unaged:

M300 [MPa]

Tensile Strength [MPa]

Elongation at break [%]

Aged (168h/100°C)

M300 [MPa]

Tensile Strength [MPa]

Elongation at break [%]

Air permeation at

50psi/65°C (Q x 10-8]

Adhesion at 100°C

Self adhesion / tack [kN/m]

Adhesion to NR [kN/m]

Fatigue to failure after

ageing at 168h/120°C [kcycles]

40

60

8,9

14,7

490

6,7

8,8

370

13,8

15,4

20,8

0,0

Given Name

Family Name

Rubber B

Rubber A

Page 215: Quingdao 09.05. -15.05rubber.qust.edu.cn/__local/A/1F/19/DDD83A7120762612D0483...•Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World, 21916 (1999) 13-14 • European

29

Rubber A [phr]Carb. black (N 774) [phr]

VulcanizationCompound PropertiesML 1+4 (100°C) [MU]MS5 (125°C) [min]

MS5 (135°C) [min]

Physical PropertiesShore A HardnesM100 [MPa]M300 [MPa]Tensile Strength [MPa]Elongation at break [%]CS (70h/150°C) [%]

10050

ZnO

83-

16

480,95,2

12,458058

10050

DCP

88-

12

400,51,88,968053

10050

DCP/BMI

88-

14

540,129,5

10,532528

10050

ZnO/BMI

89-

16

580,1910,213,636013

PleasePlease AssignAssign Rubber A Rubber A

Given Name

Family NameRubber A