13
Features Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Light Weight ESD Rating: Class 1A per MIL-STD-750, Method 1020 Absolute Maximum Ratings (Per Die) Pre-Irradiation Parameter N-Channel P-Channel Units I D @ V GS = ±12V, T C = 25°C Continuous Drain Current 1.6 -0.96 A I D @ V GS = ±12V, T C = 100°C Continuous Drain Current 1.0 -0.6 I DM Pulsed Drain Current 6.4 -3.84 P D @T C = 25°C Maximum Power Dissipation 1.4 1.4 W Linear Derating Factor 0.011 0.011 W/°C V GS Gate-to-Source Voltage ± 20 ± 20 V E AS Single Pulse Avalanche Energy 130 200 mJ I AR Avalanche Current 1.6 -0.96 A E AR Repetitive Avalanche Energy 0.14 0.14 mJ dv/dt Peak Diode Recovery dv/dt 6.5 7.1 V/ns T J Operating Junction and -55 to +150 T STG Storage Temperature Range Lead Temperature 300 (0.63in/1.6mm from case for 10s) Weight 1.3 (Typical) °C g MO-036AB IRHG567110 1 2017-07-05 Product Summary Part Number Radiation Level RDS(on) I D IRHG567110 100 kRads(Si) 0.29 1.6A IRHG563110 300 kRads(Si) 0.29 1.6A IRHG567110 100 kRads(Si) 0.96 -0.96A IRHG563110 300 kRads(Si) 0.96 -0.96A Channel N N P P RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036AB) PD-94246D Description For Footnotes, refer to the page 2 for N Channel and page 3 for P Channel R 5 100V, Combination 2N-2P CHANNEL TECHNOLOGY IR HiRel R5 technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for Single Event Effects (SEE). The combination of low R DS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

RADIATION HARDENED 100V, Combination 2N-2P · PDF fileFeatures Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Simple Drive Requirements Ease of Paralleling

Embed Size (px)

Citation preview

Features Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Light Weight ESD Rating: Class 1A per MIL-STD-750, Method 1020

Absolute Maximum Ratings (Per Die) Pre-Irradiation Parameter N-Channel P-Channel Units

ID @ VGS = ±12V, TC = 25°C Continuous Drain Current 1.6 -0.96

A ID @ VGS = ±12V, TC = 100°C Continuous Drain Current 1.0 -0.6

IDM Pulsed Drain Current 6.4 -3.84

PD @TC = 25°C Maximum Power Dissipation 1.4 1.4 W

Linear Derating Factor 0.011 0.011 W/°C

VGS Gate-to-Source Voltage ± 20 ± 20 V

EAS Single Pulse Avalanche Energy 130 200 mJ

IAR Avalanche Current 1.6 -0.96 A

EAR Repetitive Avalanche Energy 0.14 0.14 mJ

dv/dt Peak Diode Recovery dv/dt 6.5 7.1 V/ns

TJ Operating Junction and -55 to +150  

TSTG Storage Temperature Range

Lead Temperature 300 (0.63in/1.6mm from case for 10s)

Weight 1.3 (Typical)

°C

 

g

MO-036AB

IRHG567110

1 2017-07-05

Product Summary Part Number Radiation Level RDS(on) ID

IRHG567110 100 kRads(Si) 0.29 1.6A

IRHG563110 300 kRads(Si) 0.29 1.6A

IRHG567110 100 kRads(Si) 0.96 -0.96A

IRHG563110 300 kRads(Si) 0.96 -0.96A

Channel

N

N

P

P

RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036AB)

PD-94246D

Description

For Footnotes, refer to the page 2 for N Channel and page 3 for P Channel

RR 5

100V, Combination 2N-2P CHANNEL TECHNOLOGY

IR HiRel R5 technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for Single Event Effects (SEE). The combination of low RDS(on)

and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

2 2017-07-05

IRHG567110

Pre-Irradiation

Electrical Characteristics for Each N-Channel Device @ Tj = 25°C (Unless Otherwise Specified)

Parameter Min. Typ. Max. Units Test Conditions BVDSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 1.0mA BVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.14 ––– V/°C Reference to 25°C, ID = 1.0mA

RDS(on) Static Drain-to-Source On-State

––– ––– 0.29 Resistance

VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 1.0mA Gfs Forward Transconductance 1.0 ––– ––– S VDS = 15V, ID = 1.0A IDSS Zero Gate Voltage Drain Current

––– ––– 10 µA

VDS = 80V, VGS = 0V ––– ––– 25 VDS = 80V,VGS = 0V,TJ =125°C

IGSS Gate-to-Source Leakage Forward ––– ––– 100 nA

VGS = 20V Gate-to-Source Leakage Reverse ––– ––– -100 VGS = -20V

QG Total Gate Charge ––– ––– 17

nC  

ID = 1.6A

QGS Gate-to-Source Charge ––– ––– 4.4 VDS = 50V

QGD Gate-to-Drain (‘Miller’) Charge ––– ––– 3.9 VGS = 12V td(on) Turn-On Delay Time ––– ––– 21

ns

VDD = 50V tr Rise Time ––– ––– 16 ID = 1.6A td(off) Turn-Off Delay Time ––– ––– 50 RG = 7.5 tf Fall Time ––– ––– 15 VGS = 12V

Ls +LD Total Inductance ––– 10 ––– nH  

Measured from Drain lead (6mm / 0.25 in from package) to Source lead (6mm/ 0.25 in from package) with Source wire internally bonded from Source pin to Drain pad

Ciss Input Capacitance ––– 370 ––– pF  

VGS = 0V Coss Output Capacitance ––– 110 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 3.4 ––– ƒ = 1.0MHz

VGS = 12V, ID = 1.0A

Source-Drain Diode Ratings and Characteristics for Each N-Channel Device Parameter Min. Typ. Max. Units Test Conditions

IS Continuous Source Current (Body Diode) ––– ––– 1.6

ISM Pulsed Source Current (Body Diode) ––– ––– 6.4

VSD Diode Forward Voltage ––– ––– 1.2 V TJ = 25°C,IS = 1.6A, VGS = 0V

trr Reverse Recovery Time ––– ––– 110 ns TJ=25°C, IF = 1.6A, VDD ≤ 25V

Qrr Reverse Recovery Charge ––– ––– 380 nC di/dt = 100A/µs

ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

A  

* Values established by Thermal Modeling

 Footnotes:

 Repetitive Rating; Pulse width limited by maximum junction temperature.

VDD = 25V, starting TJ = 25°C, L =100mH, Peak IL = 1.6A, VGS = 12V

ISD 1.6A, di/dt 340A/µs, VDD 100V, TJ 150°C

Pulse width 300 µs; Duty Cycle 2%

Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

Total Dose Irradiation with VDS Bias. 80volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, Method 1019, condition A.

Thermal Resistance for Each N-Channel Device   Parameter Min. Typ. Max. Units

RJA Junction-to-Ambient (Typical socket mount) ––– ––– 90 °C/W

RJC Junction-to-Case * ––– 7.5 ––– °C/W

RJ-LEAD Junction-to-Lead (Measured at shoulder of the Lead) * ––– 29 ––– °C/W

RJ-LID Junction-to-Lid * ––– 17 ––– °C/W

3 2017-07-05

IRHG567110

Pre-Irradiation

Electrical Characteristics for Each P-Channel Device @ Tj = 25°C (Unless Otherwise Specified)

Parameter Min. Typ. Max. Units Test Conditions BVDSS Drain-to-Source Breakdown Voltage -100 ––– ––– V VGS = 0V, ID = -1.0mA BVDSS/TJ Breakdown Voltage Temp. Coefficient ––– -0.14 ––– V/°C Reference to 25°C, ID = -1.0mA

RDS(on) Static Drain-to-Source On-State

––– ––– 0.96 Resistance

VGS(th) Gate Threshold Voltage -2.0 ––– -4.0 V VDS = VGS, ID = -1.0mA Gfs Forward Transconductance 1.1 ––– ––– S VDS = -15V, ID = -0.6A IDSS Zero Gate Voltage Drain Current

––– ––– -10 µA

VDS = -80V, VGS = 0V ––– ––– -25 VDS = -80V,VGS = 0V,TJ =125°C

IGSS Gate-to-Source Leakage Forward ––– ––– -100 nA

VGS = -20V Gate-to-Source Leakage Reverse ––– ––– 100 VGS = 20V

QG Total Gate Charge ––– ––– 13.4

nC  

ID = -0.96A

QGS Gate-to-Source Charge ––– ––– 3.7 VDS = -50V

QGD Gate-to-Drain (‘Miller’) Charge ––– ––– 3.0 VGS = -12V td(on) Turn-On Delay Time ––– ––– 21

ns

VDD = -50V tr Rise Time ––– ––– 17 ID = -0.96A td(off) Turn-Off Delay Time ––– ––– 50 RG = 7.5 tf Fall Time ––– ––– 90 VGS = -12V

Ls +LD Total Inductance ––– 10 ––– nH  

Measured from Drain lead (6mm / 0.25 in from package) to Source lead (6mm/ 0.25 in from package) with Source wire internally bonded from Source pin to Drain pad

Ciss Input Capacitance ––– 390 ––– pF  

VGS = 0V Coss Output Capacitance ––– 100 ––– VDS = -25V Crss Reverse Transfer Capacitance ––– 7.0 ––– ƒ = 1.0MHz

VGS = -12V, ID = -0.6A

Source-Drain Diode Ratings and Characteristics for Each P-Channel Device Parameter Min. Typ. Max. Units Test Conditions

IS Continuous Source Current (Body Diode) ––– ––– -0.96

ISM Pulsed Source Current (Body Diode) ––– ––– -3.84

VSD Diode Forward Voltage ––– ––– -3.5 V TJ=25°C,IS = -0.96A, VGS=0V

trr Reverse Recovery Time ––– ––– 86 ns TJ=25°C, IF =0.96A, VDD ≤-25V

Qrr Reverse Recovery Charge ––– ––– 240 nC di/dt = 100A/µs

ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

A  

 Footnotes:

 Repetitive Rating; Pulse width limited by maximum junction temperature.

VDD = -25V, starting TJ = 25°C, L = 430mH, Peak IL = -0.96A, VGS = -12V

ISD -0.96A, di/dt -290A/µs, VDD -100V, TJ 150°C

Pulse width 300 µs; Duty Cycle 2%

Total Dose Irradiation with VGS Bias. -12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

Total Dose Irradiation with VDS Bias. -80volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, Method 1019, condition A.

Thermal Resistance for Each P-Channel Device   Parameter Min. Typ. Max. Units

RJA Junction-to-Ambient (Typical socket mount) ––– ––– 90 °C/W

RJC Junction-to-Case * ––– 7.5 ––– °C/W

RJ-LEAD Junction-to-Lead (Measured at shoulder of the Lead) * ––– 29 ––– °C/W

RJ-LID Junction-to-Lid * ––– 17 ––– °C/W

* Values established by Thermal Modeling

4 2017-07-05

IRHG567110

Pre-Irradiation

Table1. Electrical Characteristics for Each N-Ch. Dev.@ Tj = 25°C, Post Total Dose Irradiation

Parameter 100 kRads (Si)1 

Units Test Conditions Min. Max. Min. Max.

BVDSS Drain-to-Source Breakdown Voltage 100 ––– 100 ––– V VGS = 0V, ID = 1.0mA

VGS(th) Gate Threshold Voltage 2.0 4.0 2.0 4.0 V VDS = VGS, ID = 1.0mA  

IGSS Gate-to-Source Leakage Forward ––– 100 ––– 100 nA VGS = 20V

IGSS Gate-to-Source Leakage Reverse ––– -100 ––– -100 nA VGS = -20V

IDSS Zero Gate Voltage Drain Current ––– 10 ––– 10 µA VDS = 80V, VGS = 0V

RDS(on) Static Drain-to-Source On-State Resistance (TO-3)

––– 0.226 ––– 0.246 VGS = 12V, ID = 1.0A

RDS(on) Static Drain-to-Source On-State Resistance (MO-036AB)

––– 0.29 ––– 0.31 VGS = 12V, ID = 1.0A

VSD Diode Forward Voltage ––– 1.2 ––– 1.2 V VGS = 0V, ID = 1.6A

300 kRads (Si) 2 

Table 2. Typical Single Event Effect Safe Operating Area for Each N-Channel Device

LET (MeV/(mg/cm2))

Energy (MeV)

Range (µm)

VDS (V)  

@VGS=0V @VGS=-5V @VGS=-10V @VGS=-15V @VGS=-20V

38 ± 5% 300 ± 7.5% 38 ± 7.5% 100 100 100 100 100

61 ± 5% 330 ± 7.5% 31 ± 10% 100 100 100 35 25

84 ± 5% 350 ± 10% 28 ± 7.5% 100 100 80 25 –––

1. Part number IRHG567110

IR HiRel radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Fig a. Typical Single Event Effect, Safe Operating Area

For Footnotes, refer to the page 2.

2. Part number IRHG563110

IR HiRel Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at IR Hirel is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

 Radiation Characteristics

020406080

100120

-20-15-10-50

Bia

s V

DS

(V

)

Bias VGS (V)

LET=38 ± 5%

LET=61 ± 5%

LET=84 ± 5%

5 2017-07-05

IRHG567110

Pre-Irradiation

Table1. Electrical Characteristics for Each P-Ch. Dev. @ Tj = 25°C, Post Total Dose Irradiation

Parameter 100 kRads (Si)1 

Units Test Conditions Min. Max. Min. Max.

BVDSS Drain-to-Source Breakdown Voltage -100 ––– -100 ––– V VGS = 0V, ID = -1.0mA

VGS(th) Gate Threshold Voltage 2.0 4.0 2.0 4.0 V VDS = VGS, ID = -1.0mA  

IGSS Gate-to-Source Leakage Forward ––– -100 ––– -100 nA VGS = -20V

IGSS Gate-to-Source Leakage Reverse ––– 100 ––– 100 nA VGS = 20V

IDSS Zero Gate Voltage Drain Current ––– -10 ––– -10 µA VDS = -80V, VGS = 0V

RDS(on) Static Drain-to-Source On-State Resistance (TO-3)

––– 0.916 ––– 0.936 VGS = -12V, ID = -0.6A

RDS(on) Static Drain-to-Source On-State Resistance (MO-036AB)

––– 0.96 ––– 0.98 VGS = -12V, ID = -0.6A

VSD Diode Forward Voltage ––– -3.5 ––– -3.5 V VGS = 0V, ID = -0.96A

300 kRads (Si) 2 

Table 2. Typical Single Event Effect Safe Operating Area for Each P-Channel Device

LET (MeV/(mg/cm2))

Energy (MeV)

Range (µm)

VDS (V)  

@VGS=0V @VGS=5V @VGS=10V @VGS=15V @VGS=20V

38 ± 5% 270 ± 7.5% 35 ± 7.5% -100 -100 -100 -100 -100

61 ± 5% 330 ± 7.5% 30 ± 7.5% -100 -100 -100 -100 -25

84 ± 5% 350 ± 7.5% 28 ± 7.5% -100 -100 -100 -30 –––

1. Part number IRHG567110

IR HiRel radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Fig a. Typical Single Event Effect, Safe Operating Area

For Footnotes, refer to the page 3.

2. Part number IRHG563110

IR HiRel Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at IR Hirel is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

 Radiation Characteristics

-120-100

-80-60-40-20

00 5 10 15 20

Bia

s V

DS

(V

)

Bias VGS (V)

LET=38 ± 5%

LET=61 ± 5%

LET=84 ± 5%

6 2017-07-05

IRHG567110

Pre-Irradiation

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 1. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

0.1

1

10

0.1 1 10 100

20µs PULSE WIDTHT = 150 CJ °

TOP

BOTTOM

VGS15V12V10V9.0V8.0V7.0V6.0V5.0V

V , Drain-to-Source Voltage (V)

I ,

Dra

in-t

o-S

ou

rce

Cu

rre

nt (

A)

DS

D

5.0V

N-Channel Q1, Q3

0.1

1

10

0.1 1 10 100

20µs PULSE WIDTHT = 25 CJ °

TOP

BOTTOM

VGS15V12V10V9.0V8.0V7.0V6.0V5.0V

V , Drain-to-Source Voltage (V)

I ,

Dra

in-t

o-S

ou

rce

Cu

rre

nt (

A)

DS

D

5.0V

0.1

1

10

5.0 5.5 6.0 6.5

V = 50V20µs PULSE WIDTH

DS

V , Gate-to-Source Voltage (V)

I ,

Dra

in-t

o-S

ou

rce

Cu

rre

nt (

A)

GS

D

T = 25 CJ °

T = 150 CJ °

-60 -40 -20 0 20 40 60 80 100 120 140 1600.0

0.5

1.0

1.5

2.0

2.5

T , Junction Temperature ( C)

R

, D

rain

-to

-So

urc

e O

n R

esi

sta

nce

(No

rma

lize

d)

J

DS

(on)

°

V =

I =

GS

D

12V

1.6A

1 10 1000

200

400

600

800

V , Drain-to-Source Voltage (V)

C, C

ap

aci

tan

ce (

pF

)

DS

VCCC

====

0V,CCC

f = 1MHz+ C

+ C

C SHORTEDGSiss gs gd , dsrss gdoss ds gd

Ciss

Coss

Crss

0 4 8 12 160

4

8

12

16

20

Q , Total Gate Charge (nC)

V

, G

ate

-to

-So

urc

e V

olta

ge

(V

)

G

GS

FOR TEST CIRCUITSEE FIGURE

I =D

13

1.6A

V = 20VDS

V = 50VDS

V = 80VDS

7 2017-07-05

IRHG567110

Pre-Irradiation

 

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 10. Maximum Avalanche Energy Vs. Drain Current

N-Channel Q1, Q3

1 10 100 1000

VDS , Drain-toSource Voltage (V)

0.1

1

10

I D,

Dra

in-t

o-S

ourc

e C

urre

nt (

A)

Tc = 25°CTj = 150°CSingle Pulse

1ms

10ms

OPERATION IN THIS AREA LIMITED

BY RDS(on)

0.1

1

10

0.4 0.6 0.8 1.0 1.2 1.4

V ,Source-to-Drain Voltage (V)

I

, Re

vers

e D

rain

Cu

rre

nt (

A)

SD

SD

V = 0 V GS

T = 25 CJ °

T = 150 CJ °

25 50 75 100 125 1500.0

0.3

0.6

1.0

1.3

1.6

T , Case Temperature ( C)

I ,

Dra

in C

urr

en

t (A

)

°C

D

25 50 75 100 125 1500

50

100

150

200

250

300

Starting T , Junction Temperature ( C)

E

,

Sin

gle

Pu

lse

Ava

lan

che

En

erg

y (m

J)

J

AS

°

ID

TOP

BOTTOM

0.7A 1.0A 1.6A

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100 1000

Notes:1. Duty factor D = t / t2. Peak T = P x Z + T

1 2

J DM thJA A

P t

t

DM

1

2

t , Rectangular Pulse Duration (sec)

Th

erm

al R

esp

on

se(Z

)

1

thJA

0.01

0.02

0.05

0.10

0.20

D = 0.50

SINGLE PULSE(THERMAL RESPONSE)

8 2017-07-05

IRHG567110

Pre-Irradiation

 

Fig 12a. Unclamped Inductive Test Circuit Fig 12b. Unclamped Inductive Waveforms

Fig 13b. Gate Charge Test Circuit Fig 13a. Gate Charge Waveform

Fig 14b. Switching Time Waveforms Fig 14a. Switching Time Test Circuit

tp

V(BR)DSS

IAS

N-Channel Q1, Q3

9 2017-07-05

IRHG567110

Pre-Irradiation

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 1. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

P-Channel Q2, Q4

0.1

1

10

0.1 1 10 100

20µs PULSE WIDTHT = 25 CJ °

TOP

BOTTOM

VGS-15V-12V-10V-9.0V-8.0V-7.0V-6.0V-5.0V

-V , Drain-to-Source Voltage (V)

-I

, D

rain

-to

-So

urc

e C

urr

en

t (A

)

DS

D

-5.0V

0.1

1

10

0.1 1 10 100

20µs PULSE WIDTHT = 150 CJ °

TOP

BOTTOM

VGS-15V-12V-10V-9.0V-8.0V-7.0V-6.0V-5.0V

-V , Drain-to-Source Voltage (V)

-I

, D

rain

-to

-So

urc

e C

urr

en

t (A

)

DS

D

-5.0V

1

10

5.0 5.2 5.4 5.6 5.8

V = -50V20µs PULSE WIDTH

DS

-V , Gate-to-Source Voltage (V)

-I

, D

rain

-to

-So

urc

e C

urr

en

t (A

)

GS

D

T = 25 CJ °

T = 150 CJ °

-60 -40 -20 0 20 40 60 80 100 120 140 1600.0

0.5

1.0

1.5

2.0

2.5

T , Junction Temperature ( C)

R

, D

rain

-to

-So

urc

e O

n R

esi

sta

nce

(No

rma

lize

d)

J

DS

(on)

°

V =

I =

GS

D

-12V

-0.96A

1 10 1000

100

200

300

400

500

600

-V , Drain-to-Source Voltage (V)

C, C

ap

aci

tan

ce (

pF

)

DS

VCCC

====

0V,CCC

f = 1MHz+ C

+ C

C SHORTEDGSiss gs gd , dsrss gdoss ds gd

Crss

Coss

Ciss

0 2 4 6 8 10 120

4

8

12

16

20

Q , Total Gate Charge (nC)

-V

, G

ate

-to

-So

urc

e V

olta

ge

(V

)

G

GS

FOR TEST CIRCUITSEE FIGURE

I =D

13

-0.96A

V =-20VDS

V =-50VDS

V =-80VDS

10 2017-07-05

IRHG567110

Pre-Irradiation

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 10. Maximum Avalanche Energy Vs. Drain Current

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100 1000

Notes:1. Duty factor D = t / t2. Peak T = P x Z + T

1 2

J DM thJA A

P t

t

DM

1

2

t , Rectangular Pulse Duration (sec)

Th

erm

al R

esp

on

se(Z

)

1

thJA

0.01

0.02

0.05

0.10

0.20

D = 0.50

SINGLE PULSE(THERMAL RESPONSE)

P-Channel Q2, Q4

0.1

1

10

1.0 2.0 3.0 4.0 5.0

-V ,Source-to-Drain Voltage (V)

-I

, R

eve

rse

Dra

in C

urr

en

t (A

)

SD

SD

V = 0 V GS

T = 25 CJ °

T = 150 CJ °

1 10 100 1000

-VDS , Drain-toSource Voltage (V)

0.1

1

10

-ID

, D

rain

-to-

Sou

rce

Cur

rent

(A

)

Tc = 25°CTj = 150°CSingle Pulse

1ms

10ms

OPERATION IN THIS AREA LIMITED BY R DS(on)

25 50 75 100 125 1500

100

200

300

400

500

Starting T , Junction Temperature ( C)

E

, S

ing

le P

uls

e A

vala

nch

e E

ne

rgy

(mJ)

J

AS

°

ID

TOP

BOTTOM

-0.4A -0.6A

-0.96A

25 50 75 100 125 1500.0

0.2

0.4

0.6

0.8

1.0

T , Case Temperature ( C)

-I

, Dra

in C

urr

en

t (A

)

°C

D

11 2017-07-05

IRHG567110

Pre-Irradiation

Fig 12a. Unclamped Inductive Test Circuit

Fig 13a. Basic Gate Charge Waveform

Fig 14b. Switching Time Waveforms Fig 14a. Switching Time Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13b. Gate Charge Test Circuit

-12V

P-Channel Q2, Q4

12 2017-07-05

IRHG567110

Pre-Irradiation

Case Outline and Dimensions — MO-036AB

IR HiRel Headquarters: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105

IR HiRel Leominster: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

IR HiRel San Jose: 2520 Junction Avenue, San Jose, California 95134, USA Tel: (408) 434-5000

Data and specifications subject to change without notice.

13 2017-07-05

IRHG567110

Pre-Irradiation

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s product and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer’s technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/hirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.