23
Radiation Processes Hiroyuki Hirashita ( 平下 博之 ) Room 1320

Radiation Processes - Sinica

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Radiation Processes - Sinica

Radiation Processes

Hiroyuki Hirashita (平下 博之) Room 1320

Page 2: Radiation Processes - Sinica

1. Electromagnetic Radiation

All wavelengths are important in astronomy!

Page 3: Radiation Processes - Sinica
Page 4: Radiation Processes - Sinica

Radiation Mechanisms

Bremsstrahlung (free–free)

e-

p+

Ionized gas: e.g., H II region Intracluster medium

Synchrotron (magnetic bremsstrahlung)

B

e-

Supernovae AGN jet

Radiation ⇔ Acceleration of electric charge

Page 5: Radiation Processes - Sinica

Radiation as Photonselectric ~ UV, optical molecular vibrational ~ near-IR molecular rotational ~ radio

Radiative transition

(Inverse) Compton Radiation

e- hν hνIntracluster medium (Sunyaev-Zeldovich effect) AGN jet, accretion disk

Page 6: Radiation Processes - Sinica

F⌫ =

II⌫ cos � d�

2. Radiation Transfer EquationDefinition of Intensity (energy flow on a line)   dE = Iν dA dt dΩ dν Iν [erg/cm2/s/sr/Hz]

dA

Definition of Flux (net energy flow through a surface) Fν [erg/cm2/s/Hz]

dA

θn

n

Page 7: Radiation Processes - Sinica

dI⌫ds

= �⌫⇢I⌫ + j⌫

What is Radiation Transfer Equation?

s

absorbing and emitting medium

Iν(s): intensity

Emission jν [erg/cm3/s/Hz]Absorption

κν [cm2/g]: mass absorption coefficient ρ [g/cm3]: density

Page 8: Radiation Processes - Sinica

Absorption

Total absorbing area: σν(n dA ds) n: number density of the absorber σν: absorption cross section of the absorber ⇒ −dIν dA = Iν(nσνdA ds) ⇒ dIν = −nσνIν ds

nσν = ρκν ρ: mass density (= mn; m is the mass of the absorber) κν: mass absorption coefficient

ds

dA

Page 9: Radiation Processes - Sinica

Optical Depth

Optical depth: dτν = ρκνds (= nσνds) dIν /dτν= −Iν + Sν

Sν = jν/(ρκν): source function

τν

absorbing and emitting medium

Iν(τν): intensity

Page 10: Radiation Processes - Sinica

3. Thermal Equilibrium

T

dIν/dτν = −Iν + Sν Iν = Bν is satisfied only if Sν = Bν: Local thermodynamic equilibrium (LTE).

T

Bν(T)

Thermal Radiation: Sν = Bν

(jν = ρκνBν): Kirchhoff’s law

Intensity = Planck function:

Blackbody radiation

Page 11: Radiation Processes - Sinica

The Properties of Bν(T)(1) Monotonic increase

with T. (2) Peak (∂Bλ/∂λ|λ = λmax =

0): λmaxT = 0.29 cm deg (Wien displacement law).

(3) hν << kT ⇒ Bν(T) ~ (2ν2/c2)kT (Rayleigh-Jeans law)

(4)

πBν (T)dν =σT 40

∫σ = 2π5k4/(15c2h3) Stefan-Boltzmann constant

Bν (T) =2hν 3 /c 2

exp(hν /kT) −1

Bλ(T) =2hc 2 /λ5

exp(hc /kλT) −1

Page 12: Radiation Processes - Sinica

4. Some Simple Solutions of the RT Equation

For thermal radiation with a constant T,

I⌫(⌧⌫) = I⌫(0)e�⌧⌫ +B⌫(1� e�⌧⌫ )

τν

absorbing and emitting medium

Iν(τν): intensityIν(0)

dIν /dτν= −Iν + Sν ⇒

Page 13: Radiation Processes - Sinica

I⌫(⌧⌫) = I⌫(0)e�⌧⌫

Ex. 1: Absorption of Background LightIf Iν >> Bν (T) (cold medium in front of a bright source)

Application 1: Absorption lines (measurement of the abundance)

Page 14: Radiation Processes - Sinica

Dark clouds in the Milky Way ← Dust extinction (= absorption + scattering)

Ex. 1: Absorption of Background LightApplication 2: Dust extinction in the Milky Way

Optical (λ ~ 0.5 µm) Lund Observatory

Page 15: Radiation Processes - Sinica

I⌫(⌧⌫) = B⌫(1� e�⌧⌫ )

Ex. 2: Emission and Self-Absorption

No background source:

Optically thin: τν << 1 ⇒ Iν = Bντν = κνρLBν

Optically thick: τν >> 1 ⇒ Iν = Bν

Directly reflects the temperature, but the information on internal details is not obtained (or we can only see the surface).

τνIν(τν): intensity

L

column density

Page 16: Radiation Processes - Sinica

Example of Optically Thick Radiation

Page 17: Radiation Processes - Sinica

Applications of Optically Thin Case

(1) Estimate of column density (ρL) if optical properties are known.

(2) Estimate of optical properties (κν): especially the wavelength dependence.

Optically thin: τν << 1 ⇒ Iν = Bντν = κνρLBν

I⌫(⌧⌫) = B⌫(1� e�⌧⌫ )

Page 18: Radiation Processes - Sinica

Estimate of Column Density: Atomic Hydrogen (21 cm)

Page 19: Radiation Processes - Sinica

Optical Properties of Dust

Li & Draine (2001)

Large grains (LGs) Silicate + carbonaceous material

Excess by very small grains (VSGs)

Wavelength (µm)

Inte

nsity

Page 20: Radiation Processes - Sinica

5. The Einstein Coefficientslevel 2 Spontaneous emission

A21 (transition probability per unit time)

level 1level 2

level 1

Absorption B12J (transition probability per unit time)

level 2

level 1

Stimulated emission B21J (transition probability per unit time)

J = Jνφ(ν)dν0

φ(ν)dν =10

∫φ(ν): line profile function

Page 21: Radiation Processes - Sinica

Einstein Relations

should be the Planck function.

Thermodynamic equilibrium n1B12J = n2A21 + n2B21J ⇒

g1B12 = g2B21 A21 = (2hν3/c2)B21

J =A21 /B21

(n1 /n2)(B12 /B21) −1

n1n2

=g1g2exp(hν /kT)

J =A21 /B21

(g1B12 /g2B21)exp(hν /kT) −1

Page 22: Radiation Processes - Sinica

Absorption and Emission Coefficients

Using the Einstein relations,€

jν =hν4π

n2A21φ(ν)

αν =hν4π

φ(ν )(n1B12 − n2B21)

Sν =n2A21

n1B12 − n2B21

αν =hν4π

n1B12(1− g1n2 /g2n1)φ(ν )

Sν =2hν 3

c 2g2n1g1n2

−1⎛

⎝ ⎜

⎠ ⎟

−1

The above equation holds also for nonthermal emission Derive αν and Sν for LTE!

Page 23: Radiation Processes - Sinica

Further Reading

• Rybicki, G. B., & Lightman, A. P. 1979, “Radiative Processes in Astrophysics”, (Wiley: New York)