43
Radiative heat transfer

Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Radiative heat transfer

Page 2: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Radiative heat transfer

Black body radiation

Page 3: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Radiative heat transfer

Black body radiation

Spec

tral i

nten

sity

(W.m

-2 µ

m-1

)

Pe(�, T ) =2⇡hc2

�5

1

exp(hc/�kBT )� 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Power emitted per unit surface :

Page 4: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Radiative heat transfer

Black body radiation

Spec

tral i

nten

sity

(W.m

-2 µ

m-1

)

Pe(�, T ) =2⇡hc2

�5

1

exp(hc/�kBT )� 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Power emitted per unit surface :

�M (m) =2.88⇥ 10�3

T<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wien’s displacement law

Page 5: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Radiative heat transfer

Black body radiation

PBB(T ) =

Z 1

0Pe(�, T )d� =

2⇡5k4B15 h3c2

T 4 = �T 4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Stefan’s law

Spec

tral i

nten

sity

(W.m

-2 µ

m-1

)

Pe(�, T ) =2⇡hc2

�5

1

exp(hc/�kBT )� 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Power emitted per unit surface :

�M (m) =2.88⇥ 10�3

T<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wien’s displacement law

Page 6: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Radiative heat transfer

Black body radiation

PBB(T ) =

Z 1

0Pe(�, T )d� =

2⇡5k4B15 h3c2

T 4 = �T 4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Stefan’s law

Spec

tral i

nten

sity

(W.m

-2 µ

m-1

)

Pe(�, T ) =2⇡hc2

�5

1

exp(hc/�kBT )� 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Power emitted per unit surface :

Non black bodies

Emissivity ε = absorptivity a

P(λ,T) = Pe(λ,T) ε(λ)

Kirchoff ’s law

�M (m) =2.88⇥ 10�3

T<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wien’s displacement law

Page 7: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Radiative heat transfer

Black body radiation

Grey bodies

Emissivity independent of λ

ε(λ) = a(λ) = C

PBB(T ) =

Z 1

0Pe(�, T )d� =

2⇡5k4B15 h3c2

T 4 = �T 4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Stefan’s law

Spec

tral i

nten

sity

(W.m

-2 µ

m-1

)

Pe(�, T ) =2⇡hc2

�5

1

exp(hc/�kBT )� 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Power emitted per unit surface :

Non black bodies

Emissivity ε = absorptivity a

P(λ,T) = Pe(λ,T) ε(λ)

Kirchoff ’s law

�M (m) =2.88⇥ 10�3

T<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wien’s displacement law

Page 8: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Diameter of the Sun: 1,4 106 kmSurface temperature of the Sun : 5800 KDistance to the Sun: 1,5 108 kmDiameter of the Earth: 12700 km

Effective albedo of the Earth: 0.31

The Donald Trump problem at zeroth order : show that with a completely transparent atmosphere, it would be difficult to grow lawn for a golf course on Earth.

Earth and Sun are assumed to be black bodies

Page 9: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)
Page 10: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

-19°C

Page 11: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Diameter of the Sun: 1,4 106 kmSurface temperature of the Sun : 5800 KDistance to the Sun: 1,5 108 kmDiameter of the Earth: 12700 km

Effective albedo of the Earth: 0.31

The Donald Trump problem at zeroth order : show that with a completely transparent atmosphere, it would be difficult to grow lawn for a golf course on Earth.

Earth and Sun are assumed to be black bodies

Radiative flux from the sun, averaged over entire Earth surface : 342 W/m2

Flux adsorbed : 235 W/m2

Corresponding equilibrium temperature : 254°K

Page 12: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

The Donald Trump problem at order one : show that with a one layer atmosphere adsorbing in the infrared, it would be easier to grow lawn for a golf course on Earth.

Incoming solar radiation

Reflected solar radiation

Atmosphereemissivity εTa

Te Earth surfaceemissivity 1

Write the energy flux balance for the earth + atmosphere system

Write the energy flux balance for the atmosphere at temperature Ta

Determine Ta and Te as a function of ε

Page 13: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

emissivity

210

220

230

240

250

260

270

280

290

300

310

Temperature

TearthTatmos

Te =

(1� a)Js�(1� ✏/2)

�1/4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 14: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

The Donald Trump problem at order 2 : Evaluate the temperature distribution in a stable « grey » non scattering atmosphere

Atmosphere clear to solar radiation ; all absorption takes place at the ground.Gray atmosphere with no clouds in the IR (no scattering of light)Layers of atmosphere are grey thermal radiatorsPlane parallel or stratified atmosphereEddington approximation for the IR emission : I(z,θ ) = I0(z) + I1(z) cos θ

z

z+dz θ

Page 15: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

s

ds

I(s)

I(s+ds)

Page 16: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

s

ds

I(s)

I(s+ds)Extinction (absorption, scattering)

dIext = �ext I ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 17: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

s

ds

I(s)

I(s+ds)Extinction (absorption, scattering)

dIext = �ext I ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Augmentation (emission, scattering)

dIaug = aug J ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 18: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

s

ds

I(s)

I(s+ds)

If no scattering, emission by thermal radiation

dIaug = ext�T 4

⇡= extB(T )

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Extinction (absorption, scattering)

dIext = �ext I ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Augmentation (emission, scattering)

dIaug = aug J ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 19: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

s

ds

I(s)

I(s+ds)

If no scattering, emission by thermal radiation

dIaug = ext�T 4

⇡= extB(T )

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Extinction (absorption, scattering)

dIext = �ext I ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Augmentation (emission, scattering)

dIaug = aug J ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dI

ds= ext(�I +B)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 20: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)
Page 21: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

dI

ds= ext(�I +B)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 22: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

dI

ds= ext(�I +B)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d⌧ = �ext ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path length (dimensionless) τ

Page 23: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

dI

ds= ext(�I +B)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d⌧ = �ext ds<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path length (dimensionless) τ

dI

d⌧= I �B

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 24: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)
Page 25: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Js (1-a)

Page 26: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Js (1-a)

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 27: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Js (1-a)

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 28: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Js (1-a)

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧ =

Z 1

zext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path from atmosphere top

Page 29: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Atmosphere top τ = 0

Js (1-a)

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧ =

Z 1

zext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path from atmosphere top

Page 30: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Atmosphere top τ = 0

Js (1-a) Fdown(0) = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧ =

Z 1

zext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path from atmosphere top

Page 31: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Ground τ = τ*

Atmosphere top τ = 0

Js (1-a) Fdown(0) = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧ =

Z 1

zext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path from atmosphere top

Page 32: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Ground τ = τ*

Atmosphere top τ = 0

Js (1-a) Fdown(0) = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧⇤ =

Z 1

0ext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical depth of atmosphere

⌧ =

Z 1

zext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path from atmosphere top

Page 33: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Ground τ = τ*

Atmosphere top τ = 0

Js (1-a) Fdown(0) = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup = Fup(⌧⇤) = ⇡B(Tg)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Radiation going up :

⌧⇤ =

Z 1

0ext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical depth of atmosphere

⌧ =

Z 1

zext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path from atmosphere top

Page 34: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Ground τ = τ*

Atmosphere top τ = 0

Js (1-a) Fdown(0) = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fdown(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup(z)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fup = Fup(⌧⇤) = ⇡B(Tg)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Radiation going up :

Jsa+ Fdown(⌧⇤)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Radiation going down :

⌧⇤ =

Z 1

0ext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical depth of atmosphere

⌧ =

Z 1

zext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical path from atmosphere top

Page 35: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

ext = 0 exp(�z/Hw)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Hw = 1.6 km (water vapor)

Page 36: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

ext = 0 exp(�z/Hw)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Hw = 1.6 km (water vapor)

Page 37: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Ground Temp.

�T 4g = Js(1� a)

✓1 +

3⌧⇤

4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ext = 0 exp(�z/Hw)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Hw = 1.6 km (water vapor)

Page 38: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Ground Temp.

�T 4g = Js(1� a)

✓1 +

3⌧⇤

4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧⇤ =

Z 1

0ext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical depth of atmosphere

ext = 0 exp(�z/Hw)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Hw = 1.6 km (water vapor)

Page 39: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

Ground Temp.

�T 4g = Js(1� a)

✓1 +

3⌧⇤

4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧⇤ =

Z 1

0ext dz

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Optical depth of atmosphere

ext = 0 exp(�z/Hw)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Hw = 1.6 km (water vapor)

Steep temperature gradient leads to convective instability

Page 40: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)
Page 41: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)
Page 42: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)

390 W/m2

Page 43: Radiative heat transfer - ESPCI ParisRadiative heat transfer Black body radiation P BB(T )= Z 1 0 P e(,T)d = 2⇡5k4 B 15 h3c2 T 4 = T 4 (null)