7
()= + Alberta Ed Learning Outcome: Graph and analyze radical functions. โ€ข Transformations of radical functions also includes sketching and analyzing the transformation of = () to = ๏ฟฝ() . The function = () should be limited to linear or quadratic functions. Consider the coordinates of the 6 indicated points on the graph below. Do not label. Transform each point by the mapping rule (, ) โ†’ (, ๏ฟฝ ). Plot each new point. Sketch the resulting transformed graph. A radical function can have the form = ๏ฟฝ() . In this topic weโ€™ll examine the characteristics of the graph of a radical function, along with the domain and range. ()= Follow the same steps indicated in the task box for Explore 1. State the equation of the transformed function State the domain and range of both = () and = ๏ฟฝ() Explain how you can derive the domain of a function = ๏ฟฝ() , given the graph of equaton of (). State the equation of the transformed function State the domain and range of both = () and = ๏ฟฝ() Explain how the graph of = ๏ฟฝ() differs from the graph of = . Invariant Points (where = or ) (0,2) (10,3) (0,4) (10,16) = ๏ฟฝ + (): ๏ฟฝ() : Domain: {โˆˆ} Domain: { โ‰ฅ โˆ’} Range: {โˆˆ} Range: {โ‰ฅ} Excellent question! The function = ๏ฟฝ() is only de๏ฌned where ()> . So the domain can be found by locatnn the -intercept of = () and determininn where the nraph is positiee (boie the -axis) = ๏ฟฝ (, ) (, ) All points (, ) โ†’ (, ๏ฟฝ ) = ๏ฟฝ + (): ๏ฟฝ() : Domain: {โˆˆ} Domain: {โˆˆ} Range: {โ‰ฅ} Range: {โ‰ฅ} Very similar โ€“ howeier unlike on the nraph of (), the nraph of ๏ฟฝ() is always positiiee Since when x=0 we first SQU(RE the number, then square root it)

Radical Functions Class Booklet SOLUTIONS

Embed Size (px)

DESCRIPTION

Topics 2 and 3 from our class handout

Citation preview

Page 1: Radical Functions Class Booklet SOLUTIONS

๐’‡(๐’™) =๐Ÿ๐Ÿ๐’™ + ๐Ÿ’

Alberta Ed Learning Outcome: Graph and analyze radical functions. โ€ข Transformations of radical functions also includes sketching and analyzing the transformation of

๐’š = ๐’‡(๐’™) to ๐’š = ๏ฟฝ๐’‡(๐’™). The function ๐’š = ๐’‡(๐’™) should be limited to linear or quadratic functions.

Consider the coordinates of the 6 indicated points on the graph below. Do not label. Transform each point by the mapping rule (๐‘ฅ,๐‘ฆ) โ†’ (๐‘ฅ,๏ฟฝ๐‘ฆ). Plot each new point. Sketch the resulting transformed graph.

A radical function can have the form ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ). In this topic weโ€™ll examine the characteristics of the graph of a radical function, along with the domain and range.

๐’‡(๐’™) = ๐’™๐Ÿ

Follow the same steps indicated in the task box for Explore 1.

State the equation of the transformed function

State the domain and range of both ๐‘ฆ = ๐‘“(๐‘ฅ) and ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ)

Explain how you can derive the domain of a function

๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ), given the graph of equaton of ๐‘“(๐‘ฅ).

State the equation of the transformed function

State the domain and range of both ๐‘ฆ = ๐‘“(๐‘ฅ) and ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ)

Explain how the graph of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ) differs from the graph of ๐‘ฆ = ๐‘ฅ.

Invariant Points (where ๐’‡ = ๐ŸŽ or ๐Ÿ)

(0,2) (10,3)

(0,4)

(10,16) ๐’š = ๏ฟฝ๐Ÿ๐Ÿ๐’™ + ๐Ÿ’

๐’‡(๐’™):

๏ฟฝ๐’‡(๐’™):

Domain: {๐’™ โˆˆ ๐‘น}

Domain: {๐’™ โ‰ฅ โˆ’๐Ÿ–}

Range: {๐’š โˆˆ ๐‘น}

Range: {๐’š โ‰ฅ ๐ŸŽ}

Excellent question! The function ๐’š = ๏ฟฝ๐’‡(๐’™) is only defined where ๐’‡(๐’™) > ๐ŸŽ. So the domain can be found by locatnn the ๐’™-intercept of ๐’š = ๐’‡(๐’™) and determininn where the nraph is positiee (boie the ๐’™-axis)

๐’š = ๏ฟฝ๐’™๐Ÿ

(๐Ÿ’,๐Ÿ๐Ÿ”)

(๐Ÿ’,๐Ÿ’)

All points (๐’™,๐’š) โ†’ (๐’™,๏ฟฝ๐’š)

๐’š = ๏ฟฝ๐Ÿ๐Ÿ๐’™ + ๐Ÿ’

๐’‡(๐’™):

๏ฟฝ๐’‡(๐’™):

Domain: {๐’™ โˆˆ ๐‘น}

Domain: {๐’™ โˆˆ ๐‘น}

Range: {๐’š โ‰ฅ ๐ŸŽ}

Range: {๐’š โ‰ฅ ๐ŸŽ}

Very similar โ€“ howeier unlike on the nraph of ๐’‡(๐’™), the nraph of ๏ฟฝ๐’‡(๐’™) is always positiiee Since when x=0 we first SQU(RE the number, then square root it)

Page 2: Radical Functions Class Booklet SOLUTIONS

Given the graph or equation of a function ๐‘ฆ = ๐‘“(๐‘ฅ), we

can obtain the graph of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ) by transforming all

points (๐‘ฅ,๐‘ฆ) โ†’ (๐‘ฅ,๏ฟฝ๐‘ฆ). See points ( and B

The domain of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ) can be found by considering the zeros / ๐‘ฅ-intercepts of ๐‘ฆ = ๐‘“(๐‘ฅ).

Since we canโ€™t square root negatives, ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ) is defined wherever ๐‘“(๐‘ฅ) โ‰ฅ 0, that is, wherever the graph is above the ๐‘ฅ-axis. See point D

(D is the โ€œstart pointโ€ for the domain)

๐’‡(๐’™) = โˆ’๐Ÿ๐’™ + ๐Ÿ’

๐’š = ๏ฟฝ๐’‡(๐’™)

(โˆ’๐Ÿ.๐Ÿ“,๐Ÿ—)

(โˆ’๐Ÿ.๐Ÿ“,๐Ÿ)

๐‘จ๐Ÿ

๐‘จ๐Ÿ ๐‘ฉ๐Ÿ

๐‘ฉ๐Ÿ ๐‘ช ๐‘ซ

The invariant points in the transformation from ๐‘ฆ = ๐‘“(๐‘ฅ) to ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ) can be found by considering where the value of ๐‘“(๐‘ฅ) is 0 or 1. See points C and D.

(The square root of 0 is 0, and the square root of 1 is 1.)

Working from the equation of ๐‘ฆ = โˆš4 โˆ’ 2๐‘ฅโ€ฆ The domain is:

And the invariant points occur wherever we are square rooting 0 or 1. (โˆš0 = 0 and โˆš1 = 1)

1st invariant point is where ๐‘“(๐‘ฅ) = 0โ€ฆ 2nd invariant point is where ๐‘“(๐‘ฅ) = 1โ€ฆ

Whatever we are square rooting cannot be negative. (That is, it must be โ‰ฅ 0)

4 โˆ’ 2๐‘ฅ โ‰ฅ 0

โˆ’2๐‘ฅ โ‰ฅ โˆ’4

๐’™ โ‰ค ๐Ÿ

-2 -2 *When dividing (or multiplying) both sides of an inequality by 0, reverse the inequality direction!

4 โˆ’ 2๐‘ฅ = 0

โˆ’2๐‘ฅ = โˆ’4

๐’™ = ๐Ÿ

4 โˆ’ 2๐‘ฅ = 1

โˆ’2๐‘ฅ = โˆ’3

๐’™ = ๐Ÿ.๐Ÿ“

Recall

๐‘“(๐‘ฅ) is โ€œ4 โˆ’ 2๐‘ฅโ€

So, coordinates of invariant point are (๐Ÿ,๐ŸŽ ) So, coordinates of invariant point are (๐Ÿ.๐Ÿ“,๐Ÿ )

1. For each given graph of ๐‘ฆ = ๐‘“(๐‘ฅ), sketch the graph of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ), and state its domain, range, and any invariant points.

(a)

๐’‡(๐’™) = ๐Ÿ๐’™ โˆ’ ๐Ÿ

Domain of ๐‘ฆ = ๐‘“(๐‘ฅ): Domain of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Range of ๐‘ฆ = ๐‘“(๐‘ฅ): Range of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Invariant Points: ๐’š = โˆš๐Ÿ๐’™ โˆ’ ๐Ÿ

(๐Ÿ”,๐Ÿ—)

(๐Ÿ”,๐Ÿ)

{๐’™ โˆˆ ๐‘น}

{๐’š โˆˆ ๐‘น}

{๐’™ โ‰ฅ ๐Ÿ.๐Ÿ“}

{๐’š โ‰ฅ ๐ŸŽ}

Are on the graph of ๐’‡(๐’™) = ๐Ÿ๐’™ โˆ’ ๐Ÿ where the value (y-coordinate) is 0 or 1. POINTS are: and (1.5, 0) (2, 1)

Page 3: Radical Functions Class Booklet SOLUTIONS

(b)

๐’‡(๐’™) = โˆ’๐ŸŽ.๐Ÿ“๐’™ + ๐Ÿ“

(c) ๐’‡(๐’™) = ๐ŸŽ.๐Ÿ“๐’™๐Ÿ โˆ’ ๐Ÿ

Domain of ๐‘ฆ = ๐‘“(๐‘ฅ): Domain of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Range of ๐‘ฆ = ๐‘“(๐‘ฅ): Range of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Invariant Points:

Domain of ๐‘ฆ = ๐‘“(๐‘ฅ): Domain of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Range of ๐‘ฆ = ๐‘“(๐‘ฅ): Range of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Invariant Points:

(d) ๐’‡(๐’™) = โˆ’๐’™๐Ÿ + ๐Ÿ๐Ÿ”

Domain of ๐‘ฆ = ๐‘“(๐‘ฅ): Domain of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Range of ๐‘ฆ = ๐‘“(๐‘ฅ): Range of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Invariant Points:

(e) ๐’‡(๐’™) = ๐ŸŽ.๐Ÿ“๐’™๐Ÿ + ๐Ÿ

Domain of ๐‘ฆ = ๐‘“(๐‘ฅ): Domain of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Range of ๐‘ฆ = ๐‘“(๐‘ฅ): Range of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ):

Invariant Points:

{๐’™ โˆˆ ๐‘น}

{๐’š โˆˆ ๐‘น}

{๐’™ โ‰ค ๐Ÿ๐ŸŽ}

{๐’š โ‰ฅ ๐ŸŽ}

POINTS are: and (10, 0) (8, 1)

{๐’™ โˆˆ ๐‘น}

{๐’š โˆˆ ๐‘น} {๐’™ โ‰ค โˆ’๐Ÿ,๐’๐’“ ๐’™ โ‰ฅ ๐Ÿ}

{๐’š โ‰ฅ ๐ŸŽ}

Are on the graph of ๐’‡(๐’™) where the value (y-coordinate) is 0 or 1. POINTS are: and (-2.45, 1), (-2, 0), (2, 0) (2.45, 1)

๐’š = โˆšโˆ’๐ŸŽ.๐Ÿ“๐’™ + ๐Ÿ“

On the graph of ๐’‡(๐’™) the y-intercept is 5

โ€ฆon ๐’š = ๏ฟฝ๐’‡(๐’™) itโ€™s โˆš๐Ÿ“, or approximately 2.24

๐’š = ๏ฟฝ๐ŸŽ.๐Ÿ“๐’™๐Ÿ โˆ’ ๐Ÿ

DOM(IN: Graph of ๏ฟฝ๐‘“(๐‘ฅ) is defined where 0.5๐‘ฅ2 โˆ’ 2 โ‰ฅ 0

(Solve graphically โ€“ what are the x-intercepts of ๐‘“(๐‘ฅ) = 0.5๐‘ฅ2 โˆ’ 2 / where is the graph above the x-axis?)

0.5๐‘ฅ2 โˆ’ 2 = 1 0.5๐‘ฅ2 = 3

๐‘ฅ = ยฑ๏ฟฝ3

0.5

Find ๐‘ฅ where ๐‘“(๐‘ฅ) = 1

{๐’™ โˆˆ ๐‘น}

{๐’š โ‰ค ๐Ÿ๐Ÿ”} {โˆ’๐Ÿ’ โ‰ค ๐’™ โ‰ค ๐Ÿ’}

{๐Ÿ’ โ‰ค ๐’š โ‰ค ๐ŸŽ}

Are on the graph of ๐’‡(๐’™) where the value (y-coordinate) is 0 or 1. POINTS are: and (-3.87, 1), (-4, 0), (4, 0) (3.87, 1)

โˆ’๐‘ฅ2 + 16 = 1 15 = ๐‘ฅ2

๐‘ฅ = ยฑโˆš15

Find ๐‘ฅ where ๐‘“(๐‘ฅ) = 1

๐’š = ๏ฟฝโˆ’๐’™๐Ÿ + ๐Ÿ๐Ÿ”

{๐’™ โˆˆ ๐‘น}

{๐’š โˆˆโ‰ฅ ๐Ÿ} {๐’™ โˆˆ ๐‘น}

{๐’š โ‰ฅ ๐Ÿ}

Are on the graph of ๐’‡(๐’™) where the value (y-coordinate) is 0 or 1. EXCEPT ๐’‡(๐’™) is never 0! POINT is: (0, 1)

๐’š = ๏ฟฝ๐ŸŽ.๐Ÿ“๐’™๐Ÿ + ๐Ÿ

Page 4: Radical Functions Class Booklet SOLUTIONS

3.

4. NR If the domain of the radical function ๐‘“(๐‘ฅ) = โˆš23 โˆ’ 5๐‘ฅ + 71 is ๐‘ฅ โ‰ค ๐‘˜, then the value of ๐‘˜, correct to the nearest tenth, is _______.

2.

Domain of ๏ฟฝ๐’‡(๐’™) is defined by the zeros of ๐’‡(๐’™), as ๏ฟฝ๐’‡(๐’™) is not defined between these points. (Not defined where ๐‘“(๐‘ฅ) is negative, canโ€™t square root a negative!)

Invariant points where value of ๐’‡(๐’™) is 1 or 0. (4 total)

Domain of ๏ฟฝ๐’‡(๐’™): ๐’™ โ‰ค โˆ’๐Ÿ or ๐’™ โ‰ฅ ๐Ÿ

Range of ๏ฟฝ๐’‡(๐’™): ๐’š โ‰ฅ ๐ŸŽ

Invariant points where ๐’‡(๐’™) is 1 or 0โ€ฆ. ๐’‡(๐’™) = ๐Ÿ:

๐Ÿ๐Ÿ๐’™ โˆ’ ๐Ÿ = ๐Ÿ

๐Ÿ๐Ÿ๐’™ = ๐Ÿ’

๐’™ = ๐Ÿ–

๐’‡(๐’™) = ๐ŸŽ:

๐Ÿ๐Ÿ๐’™ โˆ’ ๐Ÿ = ๐ŸŽ

๐Ÿ๐Ÿ๐’™ = ๐Ÿ

๐’™ = ๐Ÿ” *This question can also be solved graphically

23 โˆ’ 5๐‘ฅ โ‰ฅ 0

23 โ‰ฅ 5๐‘ฅ

235โ‰ฅ ๐‘ฅ ๐‘œ๐‘Ÿ: ๐‘ฅ โ‰ค

23

5

Whatever is under the square root sign must be positive. (More specifically, โ€œgreater than or equal to 0!โ€)

4.6

Page 5: Radical Functions Class Booklet SOLUTIONS

5. 6. MC: If ๐‘“(๐‘ฅ) = โˆš3๐‘ฅ and ๐‘”(๐‘ฅ) = ๐‘ฅ2 + 2๐‘ฅ + 1, then an expression for ๐‘”(๐‘“(๐‘ฅ)) is:

A. 3๐‘ฅ + 2โˆš3๐‘ฅ + 1

B. 9๐‘ฅ2 + 2โˆš3๐‘ฅ + 1

C. 3๐‘ฅ + โˆš6๐‘ฅ + 1

D. 9๐‘ฅ2 + โˆš6๐‘ฅ + 1 7. If ๐‘“(๐‘ฅ) is a quadratic function in the form ๐‘ฆ = ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ with ๐‘Ž > 0 and a vertex on the ๐‘ฅ-axis,

determine the domain and range of ๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ).

Invariant points where value of ๐’‡(๐’™) is 1 or 0. (4 total)

One option is to graph the horizontal lines ๐‘ฆ = 1 and ๐‘ฆ = 0 and count the intersections!

= (โˆš3๐‘ฅ)2 + 2๏ฟฝโˆš3๐‘ฅ๏ฟฝ + 1

= (โˆš3)2(๐‘ฅ)2 + 2โˆš3๐‘ฅ + 1

If the vertex is on the ๐‘ฅ-axis (and the lead coefficient ๐‘Ž is positive) then ๐‘“(๐‘ฅ) is never negative. So the domain of

๐‘ฆ = ๏ฟฝ๐‘“(๐‘ฅ) is all reals.

{๐’™ โˆˆ ๐‘น}

{๐’š โ‰ฅ ๐ŸŽ}

Page 6: Radical Functions Class Booklet SOLUTIONS

Like all equations in this course, radical equations can be solved either alnebraically, or nraphically. The solutions (or roots) of a radical equation are the same as the ๐‘ฅ-intercpets of the function.

1. Algebraically solve the following equations:

(a) ๏ฟฝโˆš5 โˆ’ 3๐‘ฅ๏ฟฝ2

= (11)2 (b) 3 โˆ’ 4โˆš7 โˆ’ 2๐‘ฅ = โˆ’13

โ€ข Alberta Ed Learning Outcome: Find the zeros of a radical function graphically and explain their โ€ข relationship to the ๐‘ฅ-intercepts of the graph and the roots of an equation.

Consider the equation โˆš๐‘ฅ โˆ’ 4 = 3

We can solve this equation by:

Mathematical Reasoning:

Squarinn both sides:

First think โ€“ what number do we square root to get 3? Answer: 9

Then think, what number ๐‘ฅ would we subtract 4 from to get 9?

Answer: ๐’™ = ๐Ÿ๐Ÿ

Graphing:

๏ฟฝโˆš๐’™ โˆ’ ๐Ÿ’๏ฟฝ2

= (๐Ÿ)2

๐‘ฅ โˆ’ 4 = 9

Our goal is to rid the left side of the square root sign, so that we can isolate ๐‘ฅ

Answer: ๐’™ = ๐Ÿ๐Ÿ

Option 1

Graph ๐‘ฆ1 = โˆš๐‘ฅ โˆ’ 4 & ๐‘ฆ2 = 3 Find point(s) of intersection

Option 2

Set equation to zero: โˆš๐‘ฅ โˆ’ 4 โˆ’ 3 = 0

Graph ๐‘ฆ1 = โˆš๐‘ฅ โˆ’ 4 โˆ’ 3 and find zeros.

Set ๐‘ฅ max to some value greater than 10, since the solution must lay between the ๐‘ฅ min and max.

๐Ÿ“ โˆ’ ๐Ÿ๐’™ = ๐Ÿ๐Ÿ๐Ÿ

โˆ’๐Ÿ๐’™ = ๐Ÿ๐Ÿ๐Ÿ”

๐’™ = โˆ’๐Ÿ๐Ÿ๐Ÿ”๐Ÿ

๏ฟฝ5 โˆ’ 3(โˆ’116

3) = 11

Check: substitute ๐‘ฅ โˆ’ 1163

back in the original equationโ€ฆ

โˆš121 = 11

First: isolate the square root term (Move the radical term to the Right Side so the lead

coefficient can be made positive.)

๐Ÿ๐Ÿ” = ๐Ÿ’โˆš๐Ÿ• โˆ’ ๐Ÿ๐’™

(๐Ÿ’)๐Ÿ = ๏ฟฝโˆš๐Ÿ• โˆ’ ๐Ÿ๐’™๏ฟฝ๐Ÿ

๐Ÿ๐Ÿ” = ๐Ÿ• โˆ’ ๐Ÿ๐’™ ๐Ÿ๐’™ = โˆ’๐Ÿ—

๐’™ = โˆ’๐Ÿ—๐Ÿ

Page 7: Radical Functions Class Booklet SOLUTIONS

2. Use your graphing calculator to determine the ๐‘ฅ-intercept(s) of the functions. State any restrictions on the

variable. (a) ๐‘ฆ = โˆ’1

2โˆš2๐‘ฅ โˆ’ 6 + 3 (b) ๐‘ฆ = โˆš2๐‘ฅ2 + 1 โˆ’ 11

3. Algebraically solve the following equations. Nearest hundredth where necessary.

(a) 12 โˆš2๐‘ฅ โˆ’ 6 = 3 (b) ๏ฟฝโˆš2๐‘ฅ2 + 1๏ฟฝ

2= (11)2

4. Solve the following equation algebraically and graphically.

(๐‘ฅ + 3)2 = ๏ฟฝโˆš2๐‘ฅ2 โˆ’ 7๏ฟฝ2

You will have to adjust (enlarge) your window to see the ๐‘ฅ-intercept. Copy your graph and label the intercept here. (Provide a scale on each axis.)

๐’™ = ๐Ÿ๐Ÿ ๐’™ โ‰ˆ ยฑ๐Ÿ•.๐Ÿ•๐Ÿ“

Restriction: ๐’™ โ‰ฅ ๐Ÿ No Restriction

โˆš๐Ÿ๐’™ โˆ’ ๐Ÿ” = ๐Ÿ”

๏ฟฝโˆš๐Ÿ๐’™ โˆ’ ๐Ÿ”๏ฟฝ๐Ÿ

= (๐Ÿ”)๐Ÿ

๐Ÿ๐’™ โˆ’ ๐Ÿ” = ๐Ÿ๐Ÿ” ๐Ÿ๐’™ = ๐Ÿ’๐Ÿ

๐’™ = ๐Ÿ๐Ÿ

First: isolate the square root term (multiply both sides by โ€œ2โ€)

๐Ÿ๐’™๐Ÿ + ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐’™๐Ÿ = ๐Ÿ๐Ÿ๐ŸŽ

๏ฟฝ๐’™๐Ÿ = โˆš๐Ÿ”๐ŸŽ

๐’™ = ยฑโˆš๐Ÿ”๐ŸŽ

๐’™ โ‰ˆ ยฑ๐Ÿ•.๐Ÿ•๐Ÿ“

๐’™๐Ÿ + ๐Ÿ”๐’™ + ๐Ÿ— = ๐Ÿ๐’™๐Ÿ โˆ’ ๐Ÿ•

๐ŸŽ = ๐’™๐Ÿ โˆ’ ๐Ÿ”๐’™ โˆ’ ๐Ÿ๐Ÿ” ๐ŸŽ = (๐’™ โˆ’ ๐Ÿ–)(๐’™ + ๐Ÿ)

๐’™ = ๐Ÿ– or โˆ’๐Ÿ

( ) + 3 = ๏ฟฝ2( )2 โˆ’ 7 ๐Ÿ– ๐Ÿ–

CHECK each solution:

11 = โˆš121

(โˆ’ ) + 3 = ๏ฟฝ2(๐Ÿ โˆ’ )2 โˆ’ 7 ๐Ÿ

1 = โˆš1

๐‘ฆ1 = (๐‘ฅ + 3) โˆ’ ๏ฟฝ2๐‘ฅ2 โˆ’ 7

๐‘ฆ2 = 0

Graphically:

๐’™ = ๐Ÿ–