53
Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November 3,

Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

Embed Size (px)

Citation preview

Page 1: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals

Christiane Grisé

University of Ottawa

November 3, 2005

Page 2: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

2

Radical Chemistry

(CH2-CH2)n

Polyethylene

CH2-CHPh

Polystyrene

HBr +RO-OR Br

I+ CN

Bu3SnHAIBN

CN

IS STEREOSELECTIVITY POSSIBLE WITH ACYCLIC RADICALS???

a

bc

d+

d

ab c

d

ac b

+SnBu3H

Page 3: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

3

Outline

1. Basic concepts of radical chemistry

2. Description of asymmetric methods

ASYMMETRIC SYNTHESIS USING ACYCLIC RADICAL

Substrate-controlled Chiral auxiliary Chiral reagent

Page 4: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

4

Radical Chain Reaction Mechanism

2. Propagation

Br +Br

+ H-BrBr

+ Br

3. Termination2 Br Br Br

+Br

Br

Br Br

Br2

Br Br

a) b)

c)

1. Initiation

Ph

O

OO

O

Ph60-80 °C

Ph

O

O2

Ph H-Br Ph H + Br

+ 2 CO22 Ph

HBr +RO-OR Br

Page 5: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

5

Initiation Dibenzoyl peroxide (60-80 °C) AIBN (azoisobutyronitrile)

Derivative of AIBN developed for reactions at room temperature

(V-70)

Et3B : Initiator at -78 °C

Inorganic compounds : ZnCl2, SmI2 and other transition metals (Mn, Ni, Cu, Fe)

NC NN CN

CN2 + N2

66-72 °C

R3B + O2 + RR2BOO

NN CN

CN OMeMeO

Page 6: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

6

Propagation – Types of Reactions Abstraction

Addition

Fragmentation

Rearrangement

R1 + X-R2 R1-X + R2

R1 + Non-radical R2

R1 Non-radical + R2

R1 R2

+ Br-R Bu3SnBr + R

R + H-SnBu3 R-H + Bu3Sn

Bu3Sn

R + CN CNR

R + SnBu3 R + Bu3Sn

Page 7: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

7

Radical Stability

Can predict radical stability by looking at the bond dissociation energy

Alkyl radical : tertiary>secondary>primary Conjugating groups also stabilize radicals

Both electron-withdrawing and electron-donating groups stabilize radicals

O

N OEt

X Y X + Y G

Page 8: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

8

Explanation by Frontier Molecular Orbitals

Radicals have Singly Occupied Molecular Orbitals (SOMO) Most radicals are uncharged and are considered soft species

Oex.

SOMOradical(p orbital)

*

Stabilizationenergy

OEt

SOMOradical(p orbital)

n orbital

Page 9: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

9

Reactivity and Frontier Molecular Orbitals

O

OEtex.

Low energySOMO

HighenergySOMO

HOMO

LUMO

HOMO

LUMO

strong

strong

Electrophilic radical Nucleophilic radical

Page 10: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

10

Radical Addition to α,β-Unsaturated Compounds

HighenergySOMO

HOMO

LUMO

O

OMe

O

OMe

O

OMe

• Nucleophilic radical

• Orbital interactions are important

• Size of coefficient explains the regioselectivity

O

OMe

+ O

OMe

Page 11: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

11

Stereoselectivity and Radicals

N

SO O

CO2MeO

SnBu3

AIBN, 80 °C

93 % N

SO O

CO2MeO

Br

Cyclic radicals : The anti Rule

Acyclic radicals : substrate controlled, chiral auxiliaries and chiral reagents

a

bc

d+

d

ab c

d

ac b

+SnBu3H

Page 12: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

12

Substrate Control : Ester Substituted Radicals

R1

OR O

OMeH Br

SnBu3DOR O

OMeR2

SnBu3D

R1

OR O

OMeR3

OR O

OMeR2 D

R2= H or alkyl

A B C

D FE

H R1

OR

CO2MeR2RO H

R1

CO2MeR2R1 OR

H

CO2MeR2

H R1

OR

R2MeO2CRO H

R1

R2MeO2CR1 OR

H

R2MeO2C

Page 13: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

13

Important Factors for Diastereoselective Reduction

Delocalization of the radical with the adjacent ester Minimization of 1,3-allylic strain Dipole-dipole repulsions are decreased Stabilization by hyperconjugation

PhCO2Me

OMe

Me Br

HSnBu3

Initiator PhCO2Me

OMe

MePh

CO2MeOMe

Me

HSnBu3

CO2EtMe CO2Et

H

Me

Ph

MeO H

Ph

MeO H

Transition state :

90 % yield32 : 1

Guindon, Y.; Yoakim, C.; Gorys, V.; Ogilvie, W.W.; Delorme, D.; Renaud, J.; Robinson, G.; Lavallée, J.-F.; Slassi, A.; Rancourt, J.; Durkin, K.; Liotta, D. J. Org. Chem. 1994, 59, 1166. Guindon, Y.; Slassi, A.; Rancourt, J.; Bantle, G.; Bencheqroun, M.; Murtagh, L.; Ghiro, E.; Jung, G. J. Org. Chem. 1995, 50, 288.

Page 14: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

14

Effect of Substituents on Diastereoselectivity

RO

R1Me X

CO2MeSnBu3H

OCO2Me

Me Me

O O

Ph H

CO2tBu

Me

OMeMeO CO2Me

Me

OO

Me

CO2tBu

Me

RO

R1CO2Me

MeX= Br, I or SePh

TolueneBEt3-78°C

52:1 2:1 43:1 >100:1

Guindon, Y.; Faucher, A-M.; Bourque, E.; Caron, V.; Jung, G.; Landry, S. J. Org. Chem. 1997, 62, 9276.

Page 15: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

15

The Exocyclic Effect

RO

R1CO2MeMe

Definition1 : Increased diastereoselectivity demonstrated by the reactions of a radical adjacent or exo to a ring formed by tethering the β-heteroatom to the R1 substituent in the

radical shown :

1 Guindon, Y.; Faucher, A-M.; Bourque, E.; Caron, V.; Jung, G.; Landry, S. J. Org. Chem. 1997, 62, 9276.

H

MeO

MeH

HCO2MeMe

HSnBu3

H

MeO

MeH

HCO2MeMe

HSnBu3

O

MeH

HCO2MeMe

HSnBu3

O

MeH

H

CO2MeMe

HSnBu3

ANTI

SYN

Page 16: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

16

Lewis Acid Can Reverse Diastereoselectivity

O MOMe

OR1

R2

HSnBu3

R1H

OR2

Me

OMeO

M

R2

HMeOCO2MeR1

HSnBu3

HSnBu3 H

R1 CO2MeR2

HMeO

Acyclic control :

Lewis acid :

Lewis acid : MgI2, MgBr2-OEt2, AlCl3

R2 CO2MeOMe

R1

Anti

R2 CO2MeOMe

R1

Syn

H

R2

OMe

CO2Me

H

R1

Endocyclic effect

Guindon, Y.; Lavallée, J.-F.; Llinas-Brunet, M.; Horner, G.; Rancourt, J.

J. Am. Chem. Soc. 1991, 113, 9701.

Page 17: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

17

Exocyclic vs Endocyclic Effect

O

MeH

HCO2

tBuMeM

NEt

CO2tBu

ON

Me

Et M

Me

CO2tBu

OH

SePhMe

NH

Me

Et

CO2tBu

OHNH

Me

Et

Me

AdditiveExocyclic

SnBu3H

MO

OMe

OtBu

HN

Et MeH

ONH

Me

EtO

OtBu

M

Me

CO2tBu

OHNH

Me

Et

Me

Lewis acid Endocyclic

SnBu3H

Reagent Anti:Syn

Me2SiCl2 100:1

Ph2SiCl2 85:1

Me2BBr 22:1

Bu2BOTf 32:1

MgBr2-OEt2 1:3

Page 18: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

18

Synthesis of Proprionate Motif Using Radicals

OR

Me

OH

Me

O

OMe

OR

Me

OH

Me

O

OMe

OR

Me

OH

Me

O

OMe

OR

Me

OH

Me

O

OMe

2

3

4n n

n n

Diastereoselective Mukaiyama and Free-Radical Hydrogen Transfer

OR O

HMe

nMe

X

OSiMe3

OMe

OR

Me

OH

Me

O

OMen

X = SePh or Br

* **

*

1) Guindon, Y.; Houde, K.; Prévost, M.; Cardinal-David, B.; Landry, S.R.; Daoust, B.; Bencheqroun, M.; Guérin, B. J. Am. Chem. Soc. 2001, 123, 8496.2) Guindon, Y.; Prévost, M.; Mochirian, P.; Guérin, B. Org. Lett. 2002, 4, 1019.

Page 19: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

19

Mukaiyama Reaction

R

O

H R3R2

R1 OSiMe3

R

OH O

R3

R1 R2+

Lewisacid

O

HMe

OP

R3R2

R1 OSiMe3

+

Bidentate L.A.

Monodentate L.A.

Me H

OPO

H Enol

L.A.OH O

R3

R1R2

OP

Me

Me

H

O

HEnol

L.A.

OP

OH O

R3

R1R2

OP

Me

Cram chelate

Felkin-Ahn

Page 20: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

20

Tandem Mukaiyama/Hydrogen Transfer :Endocyclic Effect

O

HMe

OP

OMeX

Me OSiMe3

+

OH O

OMeMe

X

BnO

Me

OH O

OMeMe

X

TBDPSO

Me

MgBr2-OEt2

Me2AlCl

Bu3SnHEt3B

Bu3SnHEt3B

OH O

OMeMe

OBn

Me

OH O

OMeMe

TBDPSO

MeX = Br, SePh

70%Ratio 30:1

66%Ratio 11:1

2

3

4

1

2

Endocyclic effect :

O O

OMeMe

X

BnO

Me

L.A.O O

OMeMe

X

BnO

Me

L.A.

Bu3SnH H

BnO

OMe

OMe

OL.A.

Me

HSnBu3

Page 21: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

21

Tandem Mukaiyama/Hydrogen Transfer :Exocyclic Effect

O

HMe

OP

OMePhSe

Me OSiMe3

+

OH O

OMeMe

X

BnO

Me

OH O

OMeMe

X

TBDPSO

Me

BF3-OEt2

Bu3SnHEt3B

Bu3SnHEt3BCH3COOH

OH O

OMeMe

OBn

Me

OH O

OMeMe

TBDPSO

Me

81 %Ratio 20:1

64 %Ratio 11:1

Et2BOTf2

3

4

3

4

O

Exocyclic effect :

Bu3SnH

Me CO2Me

HSnBu3O

CO2Me

MeX

TBDPSO

Me

BF3-OEt2 Et3BCH3COOH O

CO2Me

MeX

PO

Me

BEtH

PO

EtB

MeH

Page 22: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

22

Advantages to the Mukaiyama/Hydrogen Transfer Reaction

E/Z stereochemistry of the enoxysilane is unimportant With appropriate Lewis acid selection, all 4 proprionate

units are accessible Conditions were found for one-pot procedure Iterative process was demonstrated with the synthesis of

the polyproprionate motif :

1) Mochirian, P.; Cardinal-David, B.; Guérin, B.; Prévost, M.; Guindon, Y. Tet. Lett. 2002, 43, 7067.

2) Guindon, Y.; Brazeau, J-F.; Org. Lett. 2004, 4, 2599.

OBnOBnO

HMeMe

TiCl4 OBnOBnOH

MeMeBr OMe

OSiMe3

Me

O

OMeBr

Et2BOTfSnBu3H

OBnOBnOH

MeMe

O

OMeMe

77 %, 100:1 83 %, 20:1

Page 23: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

23

Application to the Synthesis of Zincophorin

OHO2C

HMe

HMe

MeOH OH

Me Me

OH

Me

MeMeMe

OH

Zincophorin

1) Guindon, Y.; Murtagh, L.; Caron, V.; Landry, S.R.; Jung, G.; Bencheqroun, M.; Faucher, A.-M.; Guérin, B. J. Org. Chem. 2001, 66, 5427.2) Guindon, Y.; Mochirian, P. Unpublished results.

OH

Me

Me

Me Me

OP OP OP

CHOMeO2C

HMe

BtO2SMe

OP

Me Me

Me

+

Me Me Me

OBnOBnOBnMeO2C

Bt = benzothiazole

Page 24: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

24

Can this Methodology be Applied to Other Free Radical Reactions?

PhCO2Me

OMe

Me I

MgBr2-OEt2

allylBu3Sn Et3B Ph

CO2MeOMe

MeO H

PhMe

Me

MeOO

Mg

Bu3Sn

ENDOCYCLIC :

PhCO2Me

OMe

Me IallylBu3Sn Et3B

R1 = H, Me

Ph

H OMeMeMeO2C

Bu3Sn

ACYCLIC STEREOCONTROL :

PhCO2Me

OMe

Me

76 %>100:1

75 %1:16

Page 25: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

25

Synthesis of Tertiary and Quaternary Centers

O

HMe

OP

OMeX

R OSiMe3

+

Bidentate L.A.

OH O

OMeR X

OP

Me

R = H or MeX = Br or SePh

SnBu3

Endocyclic

Exocyclic

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

5

6

Monodentate L.A. OH O

OMeR X

OP

MeR = H or MeX = Br or SePh Exocyclic

Endocyclic

SnBu3

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

7

8

OMeX

R OSiMe3O

HMe

OP O

HMe

OP

Cardinal-David, B.; Guérin, B.; Guindon, Y. J. Org. Chem. 2005, 70, 776.

Page 26: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

26

Tandem Mukaiyama and Allylation Reactions (Endocyclic Effect)

O

HMe

BnO

OMePhSe

R OSiR'+

HO O

OMeR

BnO

Me

11, R=H, R'=Et312, R=Me, R'=Me3

1. MgBr2-OEt22. CH3COOH Me2AlCl3. AllylSnBu3Et3B, O2, CH2Cl2 13, R=H 85 % (>20:1)

14, R=Me 52 % (>20:1)

O

HMe

TBDPSO

OMePhSe

R OSiR'+

11, R=H, R'=Et312, R=Me, R'=Me3

1. Me2AlCl2. AllylSnBu3Et3B, O2, CH2Cl2

15, R=H 40 % (10:1)16, R=Me 55 % (14:1)

OH O

OMeR

TBDPSO

Me

1. Cram chelate

2. Felkin-Ahn

Page 27: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

27

Future Work : 2,3-syn Products

O

HMe

OP

Bidentate L.A.

OH O

OMeR X

OP

Me

R = H or MeX = Br or SePh

SnBu3

Endocyclic

Exocyclic

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

OMeX

R OSiMe3

Monodentate L.A. OH O

OMeR X

OP

MeExocyclic

Endocyclic

SnBu3

OH O

OMeR

OP

Me

OH O

OMeR

OP

Me

+

5

6

7

8

Page 28: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

28

Summary – Substrate Control

Important factors for stereoselective radical reactions: allylic strain, dipole-dipole interactions, hyperconjugation, exocyclic effect and endocyclic effect

Combination of stereoselective Mukaiyama and radical reduction or allylation produced a powerful method to generate polyproprionates, tertiary and quaternary centers

SnBu3HO O

Ph H

CO2tBu

MeX= Br, I or SePh

TolueneBEt3-78°C 43:1

O O

Ph H

CO2tBu

MeX

PhCO2Me

OMe

Bri-Pr

MgBr2-OEt2Bu3SnHEt3BCH2Cl2

PhCO2Me

OMe

i-Pr84:171 % yield

OR O

HMe

nMe

X

OSiMe3

OMe

OR

Me

OH

Me

O

OMen

X = SePh or Br

* **

*

OR O

HMe

nR

X

OSiMe3

OMe

OR

Me

OH

R

O

OMen

X = SePh or BrR = Me or H

* ** *

Page 29: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

29

Chiral Auxiliaries

O

N

O

N

N

ON

Ot-BuHgBrNaBH4

O

N

O

N

t-Bu H

[98.8 : 1.2]

2,5-dimethylpyrrolidine : Porter and Giese (1991)

O

N

MeO2C

MeO2C

ON

O

NO

O

N O

MeO2C

MeO2C

R

Other auxiliaries :

40-70 %

Page 30: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

30

Oxazolidinone Chiral Auxiliary

Yamamoto and co-workers (1994)

Sibi and co-workers (1995)

O N

OO

Ph

Ph

R i-PrI, Bu3SnHLewis acidEt3B/O2, -78°C

O N

OO

Ph

Ph

R

Lewis acid Yield Ratio

ZnCl2 70 9:1

MgBr2 90 20:1

Yb(OTf)3 89 45:1

O N NH

OO SnBu3

ZnCl2-OEt2 O N NH

OO85 %[87:13]

CO2Me

Br

CO2Me

Page 31: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

31

Selectivity with N-Enoyloxazolidinone

O N

OO

Ph

Ph

R

O N

OO

Ph

Ph

R

O N

OO

PhPh

O N O

O

Ph

Ph

R

A B C

Lewis acid

O N

OO

Ph

Ph

R

LA

NO

O

OLA

H

H

RTop face addition

i-PrISnBu3H

R O N O

O

Ph

Ph

R

D

Page 32: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

32

Application to the Synthesis of (-)-Enterolactone

O N

O

CO2Et

O

PhPh

Sm(OTf)3

BrMeO

CH2Cl2/THFBu3SnH, Et3B/O2-78 C°

O N

O

CO2Et

O

PhPh

OMe

71 %

1. NaHMDS, THF3-OMeC6H4-CH2I, 50 %2. LiOH/H2O2, 88 % HO

O

CO2Me

OMe

OMe

1. BH3/THF2. PPTS78 % (2 steps)3. BBr388 %

O

O

OH

OH

(-)-EnterolactoneNO

O

O

H

CO2MeR

Na

IR

R= CH2-(3-OMe)C6H4Sibi, M.P.; Liu, P.; Ji, J.; Hajra, S.; Chen, J.-x. J. Org. Chem. 2002, 67, 1738.

Page 33: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

33

Camphorsultam Auxiliary and Radical-Ionic Reactions

SO2

N

ONOBn

i-PrIPhCHOMe3Al, Et3BCH2Cl2, reflux

OO

i-Pr

Ph

NOBn

O

BnHNNHOBn

Ph OH

Et

OO

Et

Ph

NOBn

1. BnNH2, 2-pyridinol2. NaBH3CN, HCl

61 %, 2:1

Ueda, M.; Miyabe, H.; Sugino, H.; Miyata, O.; Naito, T. Angew. Chem. Int. Ed. 2005, 44, 2.

γ amino acid

Page 34: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

34

Mechanism

SN

ONOBn

O

O

BEt

Et Et

NBEt2O

PhH

AlMe3OBnH

H

i-Pr

O

X

Et

i-PrI

+ EtI

SO2

N

ONOBn

PhCHO

O Ph

Et2B

H

SO2

N

ONOBnBEt2

OO

i-Pr

Ph

NOBn

Page 35: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

35

Summary : Chiral Auxiliaries

Chiral oxazolidinone are very useful for diastereoselective conjugate addition

Camphorsultam auxiliary used for radical addition/aldol type reaction

Importance of the Lewis acid

O N

OO

Ph

Ph

R O N

OO

Ph

Ph

RLewis acid

NO

O

OLA

H

H

R

i-PrISnBu3H

Page 36: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

36

Enantioselective Free Radical Reactions

Wu, J.H.; Radinov, R.; Porter, N.A. J. Am. Chem. Soc. 1995, 117, 11029.

R-I +O

N O

O+

SnBu3 Zn(OTf)2

Et3B-78 °C

ON N

O

Ph Ph

R N

92 %ee : 90 %

O

O O

Porter and co-workers (1995)

Page 37: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

37

Mechanism-Propagation

R O

N O

O

L2Zn

SnBu3

R NO

O O+ SnBu3

RX

R + XSnBu3

O

N O

O

ON N

O

Ph PhZn

R

Page 38: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

38

Enantioselective Conjugate Addition

O

N O

O MgI2

-78 °C

ON N

O

iBu iBu88 %ee : 82 %

Ph+ i-PrI Bu3SnH

O

N O

O

Ph

Ligand 11

Sibi and Porter (1996)

Sibi, M.P.; Ji, J.; Wu, J.H.; Gürtler, S.; Porter, N.A. J. Am. Chem. Soc. 1996, 118, 9200.

O

N O

OMgI2

-78 °C

Ph+ i-PrI

Bu3SnH

O

N O

O

PhEt3B/O2

Ligand 294 %ee : 97 %

ON N

O

2

Sibi, M.P.; Ji, J. J. Org. Chem. 1997, 62, 3800.

Sibi (1997)

Page 39: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

39

Application : Synthesis of (+)-Ricciocarpin A

O

NO

O

OBn

BrCl

MgI2, Bu3SnHEt3B/O2

O

NO

O

OBn

Cl

84 %, (97 % ee)O

N N

O

1. Sm(OTf)3 CH3OH (95%)2. NaI, acetone (98 %)

O

MeO OBn

I LHMDS-78 to RT(97 %)

OMe

H

HO

OBn

1. Pd(OH)2/H2, Hex/EtOAc2. TEMPO, KBr, NaOCl, std. NaHCO3 (76 % over two steps)

OMe

H

HO

OH

O

H

HO

O

O

Ti(OiPr)3

85 %[5.7:1]

Sibi, M.P.; He, L. Org. Lett. 2004, 6, 1749.

O

H

HO

O

Page 40: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

40

Scope of the Conjugate Addition

ON N

O

O

NO

O cat. MgI2

-78 °C

Ph + i-PrIAllylSnBu3

O

NO

O

PhEt3B/O2

93 %dr : [37:1]ee : 93 % 1

Ligand 1

ON N

OO

NO

O MgI2

-78 °C

OCOPh+ i-PrI O

NO

O

OEt3B/O2

90 %ee : 93 % 2

Ligand 2

Bu3SnH

Ph

O

Sibi, M.P.; Chen, J. J. Am. Chem. Soc. 2001, 123, 9472.Sibi, M.P.; Zimmerman, J.; Rheault, T. Angew, Chem. Int. Ed. 2003, 42, 4521.

Page 41: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

41

Limitation of the Oxazolidinone Template

ON N

O

O

NO

O cat. MgI2

-78 °C

Ph + i-PrIAllylSnBu3

O

NO

O

PhEt3B/O2

93 %dr : [37:1]ee : 93 % 1

Ligand 1

No substituent

O N

OO

R2 O N

OO

A B

R1

R1

R2

LA LA

Page 42: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

42

New Imide Template for Conjugate Addition

O

NH

Ocat. MgI2

-78 °C

Me Bu3SnH

O

NH

O

Et3B/O2

Ligand 1

+ i-PrI

Me

Me

Me

ON N

O

79 %dr : [99:1]ee : 92 % 1

X MgN

OO

X

N

O

NHMe

Me

OO

NH

O Me

Me

HMeMe

O

NO

Mg2+

HHSnBu3

Mg2+

Sibi, M.P.; Petrovic, G.; Zimmerman, J. J. Am. Chem. Soc. 2005, 127, 2390.

79 %dr : [99:1]ee : 92 %

Page 43: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

43

Acyclic Radicals and Asymmetric Synthesis

Substrate control

Chiral auxiliary

Chiral lewis acids

O O

Ph H

CO2tBu

Me

PhCO2Me

OMe

i-Pr

OR

Me

OH

Me

O

OMen*

* *

OR

Me

OH

R

O

OMen*

* *

R= H or Me

O N

OO

Ph

Ph

R

OO

iPr

Ph

NOBn

O

NO

O

Ph

O

NO

O

O

Ph

O

O

NH

O Me

Me

O

NO

O

Ph

Page 44: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

44

Acknowledgements Prof. Louis Barriault Nathalie Goulet Guillaume Tessier Steve Arns Effie Sauer Maxime Riou Rachel Beingessner Roch Lavigne Patrick Ang Louis Morency Mélina Girardin Maude Boulanger Jeff Warrington Lise-Anne Prescott Josée-Lyne Ethier Tushar Tangri

Dr. Irina Denissova and Philippe MochirianFrom Professor Yvan Guindon’s group

Page 45: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

45

Page 46: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

46

Ester substituted radicals and allylic strain

H

X R1

CO2Et

R2X

R2

HCO2EtR1

O

OEtR1

R2

X

Minimize allylic strain

Side of attack

depends on

R1, R2 and XH

MeH H

HMe

MeMe

H H

HMe

Me

Allylic strain : Control of a conformation by a cis substituent

In alkenes :

Eclipsed form is lowest in energy

Giese, B.; Bulliard, M.; Zeitz, H.-G. Synlett 1991, 425.

Page 47: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

47

Dipole-dipole interactions are also important

PhBr

CO2EtX

Bu3SnPh

CO2EtX

Bu3SnHPh

CO2EtX

H

HSnBu3

CO2EtMe

PhCO2Et

X

H

Me CO2Et

HSnBu3

CO2Et

Me CO2Et

H

PhCO2Et

X

Me

anti syn

Ph

X H Ph

XH

Ph

X HPh

XH

A B

X

F

MeOMe

anti:syn66 : 3497 : 395 : 5

Page 48: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

48

Hyperconjugation and selectivity

OYX

Me I

CO2Me

R

SnBu3H

OHN

CO2Me

Me Me

O

OO

CO2Me

Me Me

O

OYX CO2Me

R Me

OCO2Me

Me Me9:1 2:1 52:1

ANTI SYN

N

O

O

HMe

H

H

CO2MeMe

N

O

O

H MeH

HCO2MeMe

Page 49: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

49

Diastereoselective Radical Addition/Allylation

RX Lewis acid Yield Ratio

MeI MgBr2 82 >100:1

i-PrI MgBr2 85 >100:1

C6H11I MgBr2 93 >100:1

MeOCH2Br Yb(OTf)3 70 58:1

PhCOBr MgBr2 90 50:1

O N

OO

Ph

Ph

O N

OO

PhPh

R

MgBr2 or Yb(OTf)3RX, AllylSnBu3CH2Cl2, Et3B/O2-78 °C

Sibi, M.P.; Ji, J. J. Org. Chem. 1996, 61, 6090.

Page 50: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

50

Mechanism

NO

O

OLA

H

HR

Syn

SnBu3

O N

OO

Ph

Ph

Et3B + O2 Et

Et + RX R + EtX

RO N

OO

Ph

Ph

R

SnBu3

O N

OO

PhPh

R + SnBu3

RX

1)

2)

3) R2x R-R

Page 51: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

51

Sequential Mukaiyama and Allylation Reactions – Endocyclic Effect

Low yield for allylation with MgBr2-OEt2 (62 %) compared to Me2AlCl (90 %) or AlMe3 (80 %)

Formation of both tertiary and quarternary carbon centers

O

HMe

OP

OMeX

R OSiMe3+

OH O

OMeR

X

BnO

Me

OH O

OMeR

X

TBDPSO

Me

MgBr2-OEt2or TiCl4

Me2AlCl or

AllylSnBu3Et3B

Bu3SnHEt3B

OH O

OMeR

OBn

Me

OH O

OMeR

TBDPSO

MeX = Br, SePhR= H or Me

MgBr2-OEt2,Me2AlCl orAlMe3

BF3-OEt2

Me2AlCl

9

10

73-97 %>20:1

62-90 %>20:1

76-97 %11:1

85 %>20:1

Page 52: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

52

Ligand Modification and Enantioselectivity

ON

R2 R3

N

OR1

R1O

N

R2 R3

N

O ON N

O

1

O

N O

OMgI2

-78 °C

Ph+ iPrI

Bu3SnH

O

N O

O

Ph

iPr

Et3B/O2

Ligand 194 %ee : 97 %

Sibi, M.P.; Ji, J. J. Org. Chem. 1997, 62, 3800.

Page 53: Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November

53

Ligand and enantioselectivity

ON

R2 R3

N

OR1 R1

ON

R2 R3

N

O

A B

Iodine TransFlexible PhenylGives S product

Iodine CisRigid ligandGives R product

O

NO

O

Ph

O

N O

O

Ph