25
KIT The Research University in the Helmholtz Association Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany www.kit.edu Frank G. Schröder Radio Detection of High-Energy Cosmic Rays and Neutrinos

Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China [email protected] Institut für

Embed Size (px)

Citation preview

Page 1: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

KIT – The Research University in the Helmholtz Association

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

www.kit.edu

Frank G. Schröder

Radio Detection of High-Energy Cosmic Rays and Neutrinos

Page 2: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

2 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

gn

What is the origin of the highest energy

particles in the Milky Way and in the Universe?

p, He, …, Fe

~1015 eV

~1014 eV

~1020 eV

Page 3: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

3 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

SKA-low

KASCADE-Grande: New component at 1017 eV

Radio (today) GRAND

Light and heavy

knees consistent

with scaling by Z

Most energetic

Galactic CR

around 1017 eV?

Light ankle due to

extragalactic CR

inflow at 1017 eV?

Need more precise

measurements…

+ Tibet Asg, ARGO, LHASSO

Page 4: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

4 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Prog. Part. Nucl. Phys.

93 (2017) 1-68

arXiv: 1607.08781

Radio detection of air showers:

Sensitive to electromagnetic

shower component

Low systematic uncertainties

High duty cycle

Air shower

Page 5: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

5 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Emission mechanisms

Askaryan effect:

dominant in ice, 10 – 20 % in air

Geomagnetic effect:

dominant in air

Page 6: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

6 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Forward beamed, asymmetric radio emission

CoREAS simulations By T. Huege et al., ARENA2012

shower

inclination:

q = 45°

43 – 74 MHz

Page 7: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

7 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Radio emission beamed in forward cone

Auger Coll.

ICRC 2017

Page 8: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

8 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Radio pulse

CoREAS simulation, full bandwidth LOPES measurement, 43-74 MHz

T. Huege Schröder et al., NIM A 615 (2010) 277

Page 9: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

9 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Radio Experiments

Page 10: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

10 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Location of selected experiments and geomagnetic field

Prog. Part. Nucl. Phys.

93 (2017) 1-68

arXiv: 1607.08781

Page 11: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

11 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

1 km

CODALEMA3

(57)

Compilation by A. Zilles

Designs of modern radio arrays for air showers

See also talks on:

• TREND

• ARIANNA

• GRAND

(63)

Page 12: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

12 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Detectors: antennas

Many working solutions with only slight differences in

typical frequency band 30-80 MHz (higher band will lower detection threshold)

accuracy (systematic uncertainties, e.g., due to ground conditions)

SALLA at

Tunka-Rex LPDA at Auger

Dipole at TREND, China

Butterfly at

CODALEMA

Page 13: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

13 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Accurate time calibration (1 ns) enables digital radio interferometry

Direction precision better than 0.5° (by comparing LOPES to KASCADE)

Sophisticated techniques for detection close to noise

LOPES Coll., Astroparticle Physics 50-52 (2013) 76 + Nature 435 (2005) 313

cross-

correlation

total power

Page 14: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

14 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Energy: 0.4 EeV

Zenith: 48°

Reconstruction of energy and Xmax tuned against CoREAS

Energy and Xmax reconstruction with Tunka-Rex

corr

ecte

d

Page 15: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

15 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Direct experimental proof; confirmed also by AERA at Auger

JCAP 01

(2016) 052

Correlation of Radio and Cherenkov-light measurements

energy precision:

15%

Xmax precision:

40 g/cm²

(20 g/cm² for LOFAR)

Page 16: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

16 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Tunka-Rex + LOPES Colls.,

PLB 763 (2016) 179

Comparing energy

scales of KASCADE

and Tunka-133 via

their radio arrays

Calibration by same

external reference

Energy scales of both

experiments agree

within 10%

Page 17: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

17 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Pierre Auger Observatory in Argentina

3000 km²

Page 18: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

18 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Hybrid detection for highest accuracy

Page 19: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

19 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

750 m

LPDA

Auger Engineering Radio Array (AERA)

153 autonomous stations on 17 km²

Page 20: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

20 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Enables sparse antenna arrays for highest energies at reasonable costs

Huge footprint for inclined showers

vertical

50°

75°

E = 1018 eV

CoREAS simulationAuger measurement

E = 3.6.1018 eV, q = 75.7°

Pierre Auger Collaboration, PoS (ICRC2015) 615

Page 21: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

21 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Idea to upgrade each Auger detector by antenna

Study mass-sensitivity for inclined showers

by radio Xmax and by radio-muon-ratio

Pathfinder for GRAND cosmic-ray physics

Sparse radio arrays for inclined showers

Page 22: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

22 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

antenna stations

particle detectors

(proposed by us)

The Square Kilometer Array: ultra high precision

Air showers: 1015 - 1018 eV cosmic rays

Moon showers: > 1020 eV neutrinos + CR60,000 antennas on ½ km²

Page 23: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

23 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

ARA Collaboration ARIANNA Collaboration

Neutrino-induced showers in ice

Page 24: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

24 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

GRAND: schedule and sensitivity

Prototype at TREND site in Xinjiang

Inclined showers for CR + neutrinos

Final extension (2030s): 200,000 km²

M. B

usta

me

nte

Ke Fang, et al., ICRC 2017

Page 25: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

25 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Conclusion

Significant progress in radio technique for cosmic rays during last years

high accuracy at almost 100% duty cycle

emission understood to at least 10 - 20 % accuracy

ideal for inclined showers and / or in combination with muon detectors

Competitive accuracy for air shower parameters

direction < 0.5°

energy < 20% (precision + scale)

Xmax < 20 g/cm² (with high antenna density)

Radio becomes the standard technique of the future:

additional accuracy for cosmic rays

search for ultra-high-energy neutrinos

more in: F.G. Schröder,

Prog. Part. Nucl. Phys.

93 (2017) 1-68

arXiv: 1607.08781