31
INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl INTEGRAL School, Les Diablerets (CH), March/April 2000 “Radionuclides and Gamma-Ray Line Astronomy” “Radionuclides and Gamma-Ray Line Astronomy” Invited Lectures Invited Lectures by Roland Diehl MPE Garching Part I: Part I: Gamma-Rays and Nucleosynthesis Gamma-Rays and Nucleosynthesis Nucleosynthesis Processes Nucleosynthesis Processes Radioactive Decay Radioactive Decay Cosmic Nucleosynthesis Sites Cosmic Nucleosynthesis Sites Part II: Part II: Observed Cosmic Radioactivities Observed Cosmic Radioactivities Supernovae Supernovae Diffuse Radioactivities & Various Connections Diffuse Radioactivities & Various Connections

“Radionuclides and Gamma-Ray Line Astronomy”

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

INTEGRAL School, Les Diablerets (CH), March/April 2000

“Radionuclides and Gamma-Ray Line Astronomy”“Radionuclides and Gamma-Ray Line Astronomy”

Invited LecturesInvited Lecturesby

Roland DiehlMPE Garching

•• Part I:Part I: Gamma-Rays and NucleosynthesisGamma-Rays and Nucleosynthesis–– Nucleosynthesis ProcessesNucleosynthesis Processes

–– Radioactive DecayRadioactive Decay

–– Cosmic Nucleosynthesis SitesCosmic Nucleosynthesis Sites

•• Part II:Part II: Observed Cosmic RadioactivitiesObserved Cosmic Radioactivities–– SupernovaeSupernovae

–– Diffuse Radioactivities & Various ConnectionsDiffuse Radioactivities & Various Connections

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Nucleosynthesis Processes: Reading the AbundancesNucleosynthesis Processes: Reading the Abundances

� Observed Abundances Show Striking Patterns:�Abundances Vary Much for Light Elements uf to ~ Fe-Group,

are ~Similar Order of Magnitude for Elements >65�H and He are by far the Most Abundant Elements�Li, Be, B Fall in a Deep Minimum (9 Orders of Magnitude)�Elements C....Ca Show Exponentially-Declining Abundances�There is a Abundance Clear Peak Around Fe�Upon Close Look, There are Two Local Peaks Around Ba and Pb

� Nuclear Processes / Reactions “Connect” NeighbouringIsotopes (Reactions −−−−>>>> n, p, or αααα capture or stripping)

=>�Big-Bang Nucleosynthesis

Formed H and He�Nuclear Equilibrium Burning

Formed Fe Elements�An “αααα-Process” Plays a Leading

Role for Elements C...Ca�Elements Heavier Than Fe

Formed from Fe Elements

Standard Abundances

Bi

Th

PbPt

KrGe

Zn

Ni

Fe

CaAr

SSi

NeC

O

N

Ti

V

Sc

F

Be

LiB

H

Dy

Eu

Ba

Sr

He

0

2

4

6

8

10

12

0 20 40 60 80 100

Element (Z)

Abundance

(lo

g N

, H

=12)

R.Diehl_696_abundnc

fragile elements

αααα elements

...Fe group elements

(most tightly bound)

tighter-bound elements(closed shells)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Cosmic Matter CompositionCosmic Matter Composition

Matter Composition

76

24

8.00E-08

70.683

27.431

1.886

0

20

40

60

80

H He Metals

Mas

s F

ract

ion

(%

)

after Big Bang Nucleosynthesis

in Solar System

R.Diehl / '96 abundnc

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Abundances in Different Parts of the UniverseAbundances in Different Parts of the Universe

Abundances: Solar vs. Supernova Ejecta

H

CN

O

F

Ne

Na

Mg

Al

Si

P

S

Ar Ca

Sc

Ti

Fe

Ni

-3

-1

1

3

5

7

9

11

5 10 15 20 25 30 35

Element (atomic number)

Abundan

ce (lo

g N

; Si=

6)

solar

SN87A

rod696abundnc

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Circulation of Matter Circulation of Matter

interstellarmedium

densemolecular

cloudscondensation

star formation (~3%)

mixing

SN explosion

106-1010 y

102-106y

108 y

rod0795 matter

compactremnant

(WD,NS,BH)

M~104...6 Mo

SNIa

~90%

infalldustdust

SNR's &hot

bubbles

winds

starsM > 0.08 Mo

stars

Galactic

halo

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Radioactivity Traces from NucleosynthesisRadioactivity Traces from Nucleosynthesis

• Long-Lived Isotopes DecayOutside Nucleosynthesis Site

• Radioactive-Decay Gamma-Rays Can Be ObservedThrough Gamma-RayTelescopes

• Isotopic Ratios Can BeObservedin Cosmic Rays, MolecularLines, Stellar Surfaces, ...

• Isotopic-Ratio ModificationsCan Be Measuredin Meteorites (Solar Material,but also Interstellar Grains)

p n

γ

26Al, 44Ti, 56Co, 57Co

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Stellar Classification and Radiation OriginStellar Classification and Radiation Origin

• Spectral Classification Encodes Temperature• Plasma Radiation Mechanism Depends on Temperature

�Molecules and Dust�Neutral Atoms� Ionized Atoms

O B A F G K M R N SO B A F G K M R N S Spectral ClassSpectral Class

spectrallineintensity

spectrallineintensity

molecules (T,O,..)

ionized .... neutral metals

hydrogenionized .... neutral helium

after Abell ‘64

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Radioactive DecayRadioactive Decay

26Al26Al 26Mg26Mgm 0.228 MeV (T ~ 4 108K)

γγγγ2.938 MeV( 0.3 % )*

e- - captureββββ+ - decay ( 97.3 % )

e- - capture ( 2.7 % )

ββββ+ - decay ( 100 % )

γγγγ1.130 MeV ( 2.4 % )*

γγγγ1.809 MeV ( 99.7 % )* γγγγ1.809 MeV ( 99.7 % )*

ττττ = 9.15 sττττ = 1.04 106 y

2+

2+

0+

0+5+

p n

γ

Al

Mg

Mg

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Studies of NucleosynthesisStudies of Nucleosynthesis

• Gamma-Rays from Radioactive Decays Relate Directly to Isotopic Abundance• Different Isotopes Probe Different Parameters of Nucleosynthesis Sites

. .

NucleosynthethisEvent

• MeteoriticStudies

• Atomic Lines inPhotosphere &Corona (opt,UV, X)

• Bolometric Lightin DifferentFrequency Ranges(Comptonized,Thermalized, Dust)

• Gamma-Ray Linesfrom RadioactiveIsotopes

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Objectives of Radioactivity Gamma-Ray Astronomy:Objectives of Radioactivity Gamma-Ray Astronomy:Relevant IsotopesRelevant Isotopes

Isotope Decaytime Decay Chain γγγγ -Ray Energy (keV)

7Be 77 d 7Be →→→→ 7Li* 478

56Ni 111 d 56Ni →→→→ 56Co* →→→→56Fe*+e+ 847, 1238

57Ni 390 d 57Co→→→→ 57Fe* 122

22Na 3.8 y 22Na →→→→ 22Ne* + e+ 1275

44Ti 89 y 44Ti→→→→44Sc*→→→→44Ca*+e+ 1157, 78, 68

26Al 1.04 106y 26Al →→→→ 26Mg* + e+ 1809

60Fe 2.0 106y 60Fe →→→→ 60Co* 1173, 1332

e+ …. 105y e++e- →→→→ Ps →→→→ γγγγγγγγ.. 511, <511

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

COMPTEL Detections of RadioactivityCOMPTEL Detections of Radioactivity

Gamma-Ray Line at 1.809MeV

Attributed to 26Al Decay(Decay Time ττττ ~ 1 MioYears)

Detected and Mapped in the Full Sky

Gamma-Ray Line at 1.157MeV

Attributed to 44Ti Decay(Decay Time ττττ ~ 89 Years)

Detected from317-y-old SN Cas A at 3.4 kpc

SRC Dataset ID: MPE-RFR-20663

Sky circle 1 centered at

Longitude .....: 111.70 deg

Latitude ......: -2.10 deg

with radius 2.00 deg

EHA=0-180 deg;

Number of selected events: 21253

Sky circle 2 centered at

Longitude .....: ???.70 deg

Latitude ......: >40.10 deg

with radius 5.00 deg

chi sq.=36.33, 43 d.o.f.

Number of selected events: 2650

Cas A COMPTEL Phase 1-5

Energy (keV)

Cou

nts

/ bi

n

800 1000 1200 1400 1600 1800

-100

0

100

200

Gamma-Ray Lines at 0.847 and 1.238 MeVAttributed to 56Co Decay(Decay Time ττττ ~ 111 Days)

Detected (marginally) from SN 1991T at ~17MpcDistance

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Gamma-Ray Line Astrophysics - The GoalsGamma-Ray Line Astrophysics - The Goals

• Utilize / Open a New Astronomical Window– Penetration of Gamma-Rays– Unique/Direct Inference of Isotope Abundances

• Calibrate Engines of Stars / Novae / Supernovae– Nuclear Reactions as Root Energy Source– Radio-Isotopes Emit Gamma-Ray Lines

• Study Parameters of Nucleosynthesis Sites– Identify Operating Nuclear Reaction Chains per Site

– Constrain Environmental Par’s (T,ρ,τconv)

• Study Energetic-Particle Processes– Acceleration Mechanisms (Solar Flares)– Cosmic Ray Source Regions (Nuclear-Excitation

Lines)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Cosmic RadioactivitiesCosmic Radioactivities

Goals:� Understand the Physical Processes which Shaped the

Pattern of Abundances in (different parts of) the Universe� Provide Complementary Measurements on Cosmic Sites of

Nucleosynthesis

Standard Abundances

Bi

Th

PbPt

KrGe

Zn

Ni

Fe

CaAr

SSi

NeC

O

N

Ti

V

Sc

F

Be

LiB

H

Dy

Eu

Ba

Sr

He

0

2

4

6

8

10

12

0 20 40 60 80 100

Element (Z)

Abu

ndan

ce (

log

N,

H=1

2)

R.Diehl_696_abundnc

fragile elements

αααα elements

...Fe group elements

(most tightly bound)

tighter-bound elements(closed shells)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

The Stable Isotopes of MatterThe Stable Isotopes of Matter

Isotope Chart

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180

No. of Neutrons

No. of

Pro

ton

s

rod696abundnc

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Nuclear Reactions in Cosmic NucleosynthesisNuclear Reactions in Cosmic Nucleosynthesis

• Strong Interactions�p Capture�n Capture�Heavy-Ion Reactions�Resonances

� Nuclear Force Range: ~10-15 m = fm� Reaction Times 10-16...10-22 s� Coulomb Repulsion -> Tunneling (‘Gamov Peak’)� Stellar Reaction Cross Sections Interpolated from

Measurements at Lab. Energies (‘astrophysical S-Factor’)

• Weak Interactions�n + ννννe �������� p + e- ‘ββββ Decays’

� ‘Slow’ Compared to Strong Reactions� log (ft) values with (t >> 10-16s)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

The Nuclear Binding Force in Different NucleiThe Nuclear Binding Force in Different Nuclei

Nuclear Binding Energy

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

0 50 100 150 200 250

No of Nucleons

Bin

din

g E

ner

gy (M

-A;

12C

.=0

.0)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Cosmic Nucleosynthesis EnvironmentsCosmic Nucleosynthesis Environments

Nuclear Burning Requirements:• <σσσσv> * Q ≥≥≥≥ Local Cooling Rate=>• Dense & Hot Environments

for a Stellar Mass Range of 1-30 Mo:

• Nuclear Burning in Stellar Cores andShells (top)

• Nuclear Burning in Explosive Sites(bottom)

• Gamov Windows (righthand side)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Elementary Nuclear-Reaction CyclesElementary Nuclear-Reaction Cycles

• H Burning: p-p Chains

1H

p2D

p

3He

3He

γ

4He

1H

1H

++++ ++

4He

++

7Be

γ

e- 7Lie+

ν ++ν

++

++p

4He

4He

1H8B

γ

8Be

e+

ν

4He

4He

PP I

PP II

PP III

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Elementary Nuclear Burning CyclesElementary Nuclear Burning Cycles

• H Burning: CNO Cycle

12C

13N

13C 14N 17O 18F

19F 20Ne

15O 17F

15N 16O 18O

p,γγγγ p,αααα p,γγγγ

p,γ γγγ

p,γ γγγ

e+ν ννν

e+ν ννν

p,γ γγγ

e+ν ννν

p,αααα

p,αααα

p,αααα

e+ν ννν

p,γγγγp,γγγγ

I II IIIIV

p,γγγγ

slow!

slow!

slow!!!

�Net Burning towards 14N�

12C/13C ~4 (SAD:89)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Elementary Nuclear-Burning CyclesElementary Nuclear-Burning Cycles

• He Burning: 3αααα Cycle

4He + 4He 8Be

8Be + 4He 12C* 12C* 12C

�Lifetime 8Be ~ 7 10-16 s�

8Be(αααα,,,,γγγγγγγγ)12C through Excited Level at 278 keV+ (Salpeter, Hoyle)

� ε ε ε ε ~ T840 −−−−>>>> He Flash

8Be + 4He7.366

12C 0+0.0

12C 2+4.43

12C 0+7.64

12C 3-9.64

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Elementary Nuclear-Burning CyclesElementary Nuclear-Burning Cycles

• He Burning: 3αααα Cycle

4He + 4He 8Be

8Be + 4He 12C* 12C* 12C

�Lifetime 8Be ~ 7 10-16 s�

8Be(αααα,,,,γγγγγγγγ)12C through Excited Level at 278 keV+ (Salpeter, Hoyle)

� ε ε ε ε ~ T840 −−−−>>>> He Flash

8Be + 4He7.366

12C 0+0.0

12C 2+4.43

12C 0+7.64

12C 3-9.64

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

26Alm

28Si26Si

(p,γγγγ)

(p,γγγγ)(p,γγγγ)

(p,γγγγ)(p,γγγγ)

(p,γγγγ)

ββββ+

ββββ+(7.2s)

9.2 s ββββ+

1.07 106 y

ββββ+

(p,αααα)

(p,αααα)

(n,p)

23Na

26Al

27Si

27Al

26Mg25Mg24Mg

25Al

2626Al Nucleosynthesis: Example of a Cosmic Reaction Network,Al Nucleosynthesis: Example of a Cosmic Reaction Network,Common for Intermediate-Mass IsotopesCommon for Intermediate-Mass Isotopes

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Production of Elements Beyond the Fe Peak:Production of Elements Beyond the Fe Peak:r-Process and s-Processr-Process and s-Process

• Seed Nuclei (~ Fe-Group Elements) Capture Neutrons

• ββββ Decays Establish Final Abundances� n capture faster than ββββ-decay −−−−>>>> r-process� n capture slower than ββββ-decay −−−−>>>> s-process

30

40

50

60

70

60 70 80 90 100

No. of Neutrons

No.

of

Pro

ton

s

s-only

r-only

N=Z

r-process path

βββ β-d

ecays

s-process path

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Process Site Key Isotopes

� H burning pp chains, CNO cycle all stars 4He;13C 14N

� He burning 3-αααα process most stars 12C 16O 20Ne 24Mg

� αααα-process hot burning with excess αααα’s mass. stars, SNae 20Ne 24Mg 28Si 32S 36Ar 40Ca

� Fe-group elements:e-process thermal equilibrium (NSE) SNae (thermonucl) Fe-group elements (~56)

� n-rich heavy elements:s-process n capt. slower than ββββ-decay He-burning stars elements >62 close to

valley of stabilityr-process n capt. faster than ββββ-decay SNae (CC) elements >62, also further

from valley of stability� spallation energetic heavy-ion collision ISM / cosmic rays 6Li 8,9Be 10,11B

� p-rich isotopes:rp-process hot H burning novae p-rich elements <Fe groupp-process n depletion ((((‘γγγγ-process’) ?? p-rich elements >62

� ‘normal’ nuclear reactions [(n,γγγγ), (p,γγγγ), (αααα,,,,γγγγ)...] stars, SNae in-between elements� νννν-process νννν excitation of nuclei SNae (CC) various contributions� x-process unknown; make up for ?? (2H Li Be B)

BBN+Spallation definiency

Nucleosynthesis: “Processes”,“Categories”Nucleosynthesis: “Processes”,“Categories”

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Objectives of Radioactivity Gamma-Ray Astronomy:Objectives of Radioactivity Gamma-Ray Astronomy:Nucleosynthesis EnvironmentsNucleosynthesis Environments

Stellar Cores & Shells Nuclear Reaction Networks (T),

Hydrostatic Burning & Convection

Products only from SN & Wind

WR and AGB Stars Convection Enhanced, Wind Feeds

ISM with Products; HBB

Novae Hot Hydrogen Burning

Core Collapse Supernovae Shockfront Burning in Shell-Like Star

Supernovae Type Ia NSE Processing of Stellar Remnant

Interstellar Medium ~Laboratory-like Nuclear Reactions

⇒ Variety of Nucleosynthesis Conditions(Temp., Dens.) and Timescales

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Objectives of Radioactivity Gamma-Ray Astronomy:Objectives of Radioactivity Gamma-Ray Astronomy:Different Objectives per Isotope:Different Objectives per Isotope:

7Be: Novae Nova Convection & Nucleosynthesis

56Ni & 57Ni: SN SN Nucleosynthesis & Envelope

Structure

22Na: Novae Binary Evolution, Nucleosynthesis

44Ti: SN SN Mass Cut, SN Rate

26Al, 60Fe, (e+) Galaxy Nucleosynthesis (Location, Rate)

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Massive Star Core StructureMassive Star Core Structure

(25 Mo)

1H, 4

He

12C, 16

O

4He

16O, 20Ne, 24

Mg

28Si, 32

S

16O, 24

Mg, 28Si

Si−−−−>>>>Fe,Ni

O−−− −>>> >Si

Ne−−− −>>> >O,Mg

C−>

−>−>

−>Ne,Mg

He−−− −>>> >C,O

H−−− −>>> >He

9.9 9.5 8.9 8.7 8.3 7.0 log T

0.08

0.02

0.15

0.05

0.1

0.6

∆ ∆∆∆m/M

��������

��������

����

����

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

ννν

νν

ννν

ννννν

νν

ν

ν

ν

ν

ν

ν

νν

ν

GravitationalCore Collapse

SupernovaShock Wave

Shock RegionExplosive Nucleosynthesis

Proto-Neutron StarNeutrino Heating

of Shock Region from Inside

Shell-StructuredEvolved Massive Star

Core CollapseCore CollapseSupernova ModelSupernova Model

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Core Collapse Supernova EvolutionCore Collapse Supernova Evolution

• Phases and Time Scales– Core Collapse– Convection in Inner Zones 50 ms .....– Shock at Fe/Si Interface 100 ms– End of NSE burning 250 ms– End of Convection 400 ms– End of Nuclear Burning 500...700 ms– Explosive-Product Shell/Shock Detachment– Shock at C-O/He Interface 1..5 s– Rayleigh-Taylor Instability Development 1...50 s– Reverse-Shock Deceleration of Ejecta 50..100 s– Beginning of Ballistic Clump Motions 100 s

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Gamma-Rays from Supernovae and Their RemnantsGamma-Rays from Supernovae and Their Remnants

• SN Nucleosynthesis −>−>−>−> Radioactivity LineEmission

• SNR Particle Acceleration −>−>−>−> Continuum Emission• SN Blast Wave / ISM Impact −>−>−>−> other Characteristic

Emission• Luminosity Evolution (sketch) in Different Radiation Types:

10 100 1000 10000 105

SN:Optical,~X,~γγγγ(57Co)

γγγγ-Rays 44Ti (ττττ~90y)

γγγγ-Rays 26Al (ττττ~106y)optical

X-ray

Radio,~nonthermal X, γγγγ-rays

SNR Age (years)

Log L

INTEGRAL School, Les Diablerets (CH) April 2000 Roland Diehl

Gamma-Ray Lines from NovaeGamma-Ray Lines from Novae• Nova = Thermonuclear Runaway in

White-Dwarf Shell Accumulated fromLow-Level Accretion in Binary System

• dM/dt~10-9 Mo/y ; Maccr~5 10-5 Mo ; Mejected ~2 10-4 Mo

• ~30% Ne-rich Novae, others CO Novae

• Hot H Burning at T>108K−>−>−>−> p-Capture on CNOSeeds

• Gamma-Ray Sources:� ββββ+ Radioactivity Iγγγγ~1 10-2 ph cm-2 s-1 @1kpc�

7Be (from 3He(αααα,,,,γγγγ))Iγγγγ~2 10-6 ph cm-2 s-1 @1kpc�

22Na (from 20Ne(p,γγγγ)) Iγγγγ~4 10-6 ph cm-2 s-1 @1kpc�

26Al (from 25Mg(p,γγγγ)) Iγγγγ~1 10-10 ph cm-2 s-1 @1kpc

2

1

3

Issues:� Dredge-Up from WD� TNR Rise Time� MWD, Maccr

� Mej

� ....� Need CLOSE Nova� Need Early Exposure

0.1 1 10

Optical (arb.norm.)

1.3 MeV γγγγ-Rays 22Na (ττττ~3.75y)

Nova Age (months)

Log L

0.01

478 keV γγγγ-Rays 7Be (ττττ~77d)

511 keV γγγγ-Rays (b+decay)