28
GraSMech – Multibody – Part II Computer-aided analysis of multibody dynamics (part 2) Railway vehicle dynamics Paul Fisette ([email protected]) GraSMech – Multibody – Part II Contents Part I : Wheel-rail contact in railway dynamics Contact geometry Contact forces Wheelset dynamic behavior Part II : Railway dynamics - multibody approach Multibody representation Wheel/rail contact – independent wheel model Flange contact model Validations - Applications Other topics Kluwer Academic Publishers, 2003 Chapter 9

Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

Embed Size (px)

Citation preview

Page 1: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

1

GraSMech – Multibody – Part II

Computer-aided analysis ofmultibody dynamics (part 2)

Railway vehicle dynamics

Paul Fisette([email protected])

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics

Kluwer Academic Publishers, 2003

Chapter 9

Page 2: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

2

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics

GraSMech – Multibody – Part II

Contact geometry

Wheelset with conical wheel on « knife-edge » rails

Rolling radii :

Equivalent conicity :

Rolling radii difference (left-right) :

Roll angle :

( In practice : δ0 ~ 1/20e … 1/40e )

Page 3: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

3

GraSMech – Multibody – Part II

Contact geometry

Wheelset kinematic motion (~ first order kinematics)

Hypothesis : pure rolling motion (no slip)

Kinematic relations (first order)

Constraints (in y and ψ) :

Lateral (y) :

Yaw (ψ) :

Motion of a wheelset initially centered on the track

Combined lateral-yaw motion of a wheelset

GraSMech – Multibody – Part II

Contact geometry

2 d.o.f. kinematic equations (= constraints at « velocity level »)

Periodic Solution :

frequency :

Wheelset kinematic yaw (under pure rolling assumption)

Wheelset kinematic motion (next)

Wave length :(Klingel formula, 1883 !)

Page 4: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

4

GraSMech – Multibody – Part II

Contact geometry

Wave length :

Bogie : yaw kinematic motion (similar reasoning)

l : half wheelset base

l0 : half wheelset length

Wheel/rail with circular profiles (as a matter of interest)

More complex kinematics

Roll angle :

vertical disp.:

equiv. conicity : 4 bar-mechanism

GraSMech – Multibody – Part II

Contact geometry

=> Longitudinal shift of the contact point ( « shift angle » θ) due to wheelset yaw + wheel conicity

Wheel/rail contact : yaw angle influence on contact geometry

Insignificant for the tread contact point (angle ~ 0.05 rad)

Fundamental for the flange contact point (angle > 1 rad) : see latter on

θ

Page 5: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

5

GraSMech – Multibody – Part II

Contact geometry

Real wheel profiles : numerical somutionProfile definition (analytical form or numerical measurements)

ex. UIC 60 rail (piecewise circular), S1002 wheel (piecewise polynomials)

Numerical determination of the contact(s) point(s) = f (y, ψ)

Pre-computation (look-up tables => f (y, ψ) )

In-line computation (Newton-Raphson, dichotomic method, … see Part II)

Computation of the left/right rolling radii r and contact angles δ :

y y

∆ r ∆ δ

GraSMech – Multibody – Part II

Contact geometry

Double (flange) contact point

Tramway « clear » double contact (tread + flange)

Train the contact point « moves » from tread to flange (with possible jump !!)

Always present

intermittent

Page 6: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

6

GraSMech – Multibody – Part II

Contact geometry

Double (flange) contact point

Tramway « clear » double contact (tread + flange)

Train the contact point « moves » from tread to flange (with possible jump !!)

Always present

GraSMech – Multibody – Part II

Contact geometry

Contact point « jump »Exists on theoretical « new » profiles (ex. S1002 wheelset on UIC60 rail)

on produces :

Exists also on worn profile (but their location change with wear !)

New rail :

Slightly worn rail :

ROBOTRAN results(IAVSD benchmark #1, 1991)

Page 7: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

7

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics

GraSMech – Multibody – Part II

Contact forces

Coulomb’s law :No slip =>

Slip =>

Creepage (« between slip and pure rolling »)

Longitudinal creepage :

Lateral creepage :

Spin creepage :

with : Point of contact assumption !!!!!

Page 8: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

8

GraSMech – Multibody – Part II

Contact forces

Creepage computation (not MBS approach !)

Longitudinal creepage :

Lateral creepage :

Spin creepage :

GraSMech – Multibody – Part II

Contact forces

Contact surface

Non uniform pressure distribution

Contact ellipse (a, b) Hertz (but + creepage)

A, B, m, n depend on

contact curvature radii

Page 9: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

9

GraSMech – Multibody – Part II

Contact forces

Kalker’s theoryLinear theory

*

*

with :

Heuristic modeling of saturation :

Non linear theories : Duvorol, Fastsim (Kalker), Contact (Kalker)

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics

Page 10: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

10

GraSMech – Multibody – Part II

Wheelset dynamic behavior

Linear model

Hypotheses :

« suspended » wheelset

Linearized equations of motion :

Solution :

=> « Linear » Critical speed VLim:

« Hunting » eigenmode

Eigenvalue λ versus speed :

Real (λ)

Im (λ)

or.: Jashinski thesis (Delft)

GraSMech – Multibody – Part II

Wheelset dynamic behavior

Linear model : example

ROBOTRAN/MBsysLab model :http://www.prm.ucl.ac.be/FDP/Tutorial/Medium/Bogie/Introduction.html

=> Comparison between linear – non linear model

Page 11: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

11

GraSMech – Multibody – Part II

Wheelset dynamic behavior

Linear model : example

y ψ

=> Behavior at low and high velocity

ROBOTRAN/MBsysLab model :http://www.prm.ucl.ac.be/FDP/Tutorial/Medium/Bogie/Introduction.html

GraSMech – Multibody – Part II

Wheelset dynamic behavior

Linear model : example

=> Evolution of the hunting mode versus velocity(via successive modal analyses)

ROBOTRAN/MBsysLab model :http://www.prm.ucl.ac.be/FDP/Tutorial/Medium/Bogie/Introduction.html

stable

unstable Top view (Robotran)

Rear view (Robotran)

Page 12: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

12

GraSMech – Multibody – Part II

Wheelset dynamic behavior

Non-linear modelNotion of limit cycle (ex. van der Pol differential equation

Application : limit cycle of a « suspended » wheelset :Lateral wheelset displacement y y y

.

ω0 , ξ > 0

• small y => negative damping the system stores energy• large y => positive damping the system looses energy=> Limit cycle : oscillatory solution in which the 2 energies compensate

« damping term »

ROBOTRAN results ROBOTRAN results

GraSMech – Multibody – Part II

Contact geometry

Critical speed VcrLimit cycle amplitudes versus system velocity (system = wheelset, amplitude = y)

Numerical determination of the critical speed Vcr and VLim

Time simulation from high speed (with lateral « safety bumps ») to low speed

ROBOTRAN results (IAVSD benchmark #2, 1991)

y

speed

speed

y

Page 13: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

13

GraSMech – Multibody – Part II

Conclusions (part I)

Key points

Contact geometry : a difficult problem to solve

Contact forces : idem thanks ! Mr Kalker (et al.)

Dynamic behavior of a wheeset on a straight track : critical speeds

Other aspects

Curving dynamics : « crab-wise » bogie behavior

Derailment criteria (Y/Q wheel force ratio)

Wear

Track irregularities => noise, comfort, …

Full train : different morphologies, tilting trains, pneumatic suspensions, …

next lecture (N. Docquier)

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics

Page 14: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

14

GraSMech – Multibody – Part II

The « BAS2000 » bogie : a general case

Six « 3D » kinematic loopsThe « tram2000 »

Four independent wheel/rail contacts

=> No more wheelset, even artificial (left-right)

GraSMech – Multibody – Part II

MBS : wheel or wheeset - does’nt matter!

In relative coordinates, a wheel is a leaf body to which forces apply

Independent wheels Wheelset = (axle + 2 « locked » indep. wheels)

Page 15: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

15

GraSMech – Multibody – Part II

The « BAS2000 » bogie : a general case

A wheel = a leaf body which is constrained on a rail (inertial body)

The BAS2000 cannot be modeled as a bogie

… but as a mechanism with wheels ! => relative coordinates approach suitable

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics

Page 16: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

16

GraSMech – Multibody – Part II

=> 5 dof + 1 « normal » constraint

The « wheel/rail » joint »

GraSMech – Multibody – Part II 32

Recall : coordiante partitioning reduction

Coordinate partitioning :

ODE !

Page 17: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

17

GraSMech – Multibody – Part II

A Single Wheel on a Rail : 5 d.o.f.

Q

i

h

k

G

θ

xj

_

w

ρ (w)

...

jj

3-D Contact Constraints :

1. Point Q belongs to Rail Surface

2. Wheel / Rail Surfaces Tangent at Point Q

=> Lagrange Multipliers Technique

2 Auxiliary variables :w : lateral position

θ : Shift angleθ

w

β(w)

GraSMech – Multibody – Part II

Robust solution of contact constraints

A dichotomic method “embeded into” the Newton-Raphson algorithm

Wheel on rail: Constraints solution

rail profile

λ2 = 0 !!

λ3 = 0 !!

Page 18: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

18

GraSMech – Multibody – Part II

Wheel on rail: Constraints solution

requires

= 0 when the constraints are satisfied

GraSMech – Multibody – Part II

Wheel on rail: Constraints derivative

{R}

I12I

3I

O

Q

{X}{ S}{Y}

P

P

G

x

u

w

{T}

α

cos α = + π/2_

h(q) satisfied

λ1 = FN

Page 19: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

19

GraSMech – Multibody – Part II

Wheel on rail: Constraints 2d derivative

{R}

I12I

3I

O

Q

{X}{ S}{Y}

P

P

G

x

u

w

{T}

GraSMech – Multibody – Part II

Wheel on curved rail

Page 20: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

20

GraSMech – Multibody – Part II

Wheel on curved rail

GraSMech – Multibody – Part II

Creepages : a « real » MBS computation

Lateral creepage :

Longitudinal creepage :

Spin creepage :{R}

I12I

3I

O

Q

{X}{ S}{Y}

P

P

G

x

u

w

{T}

Page 21: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

21

GraSMech – Multibody – Part II

Wheel on rail: Kalker’s model

{R}

I12I

3I

O

Q

{X}{ S}{Y}

P

P

G

x

u

w

{T}

Kalker (linear) :

GraSMech – Multibody – Part II

Wheel on rail: flange forces (tramways)

Page 22: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

22

GraSMech – Multibody – Part II

Wheel on rail: flange forces

Influence of the shift angle

No wheel yaw With wheel yaw

For the flange contact force, in terms of tangent slip, the tread contact (« creepage ») can be seen as a pure rolling motion (~ICR)

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics : « towards » multiphysics

Page 23: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

23

GraSMech – Multibody – Part II

Geometrical validation

UCL

Delft

GraSMech – Multibody – Part II

Wheelset limit cycle

UCL Delft

x x

Page 24: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

24

GraSMech – Multibody – Part II

Bogie : « non linear » critical speed

Cycle limiteDeraillement stable

ROBOTRAN results(IAVSD benchmark #2, 1991)

GraSMech – Multibody – Part II

The “BAS 2000” articulated bogie

Page 25: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

25

GraSMech – Multibody – Part II

« Ping-pong » effect on a straigth track

Yaw deformation

time

“BAS 2000” : straight track behavior

GraSMech – Multibody – Part II

The “Tram 2000” tramway

The "Tram 2000"

Model :Complete TRAM 2000 in Entry Curving :

- 4 Sub-Systems- 74 Variables- 32 Constraints- 42 Degrees of Freedom

Carbody A

Front BAS 2000 Bogie

Carbody C Carbody B

Conventionnal Bogie Back BAS 2000 BogieV

Velocity : 25 km/hInitial Conditions : Tramway Centered on the Straight Track

Page 26: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

26

GraSMech – Multibody – Part II

Result :

Wheel / Rail Alignment in a Low Radius Curve (R = 50 m)

α

V

wheel

right rail

Wheel / Rail Angle of Attack

“Tram 2000” tramway - resultsCarbody A

Front BAS 2000 Bogie

Carbody C Carbody B

Conventionnal Bogie Back BAS 2000 BogieV

GraSMech – Multibody – Part II

Comparison of bogie behaviors

BW : Rigid bogie with wheeslets

BI : Rigid bogie with independent wheels

BA : BA2000 articulated « bogie »

Bogies :

Situation : entry curving

BW

BI

BA

Page 27: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

27

GraSMech – Multibody – Part II

Comparison of bogie behaviors

Steady state equilibrium : tread and flange lateral forces

- « Crab-wise »behavior

- « Crab-wise »behaviorBW

BI

BA

- Low longitudinal tread forces

- Distorted, no crab-wise- Dissipated power minimized

GraSMech – Multibody – Part II

Contents

Part I : Wheel-rail contact in railway dynamics

Contact geometry

Contact forces

Wheelset dynamic behavior

Part II : Railway dynamics - multibody approach

Multibody representation

Wheel/rail contact – independent wheel model

Flange contact model

Validations - Applications

Other topics : « towards » multiphysics

Page 28: Railway vehicle dynamics - Université de Monshosting.umons.ac.be/html/mecara/grasmech/RailVehicles.pdf · multibody dynamics (part 2) Railway vehicle dynamics ... Heuristic modeling

28

GraSMech – Multibody – Part II

Railway bogies actuated by threephase induction motors

Problem:Torque oscillations lead to fatigue stress in the chassis

Fz

Fz

Cm

Cm

• Fz in the -motor to chassis-joint

• electromechanicaltorque Cm

Multibody and railway “electro” dynamics

=> Next lecture

GraSMech – Multibody – Part II

Multibody and railway pneumatic suspension

=> Next lecture

Multibody system

Pneumatic system

Hybrid system