211
Rainbow Colourings Lajos Soukup Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences http://www.renyi.hu/soukup Logic Colloquium 2008 Soukup, L (Rényi Institute) Rainbow Colourings LC2008 1 / 36

Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow Colourings

Lajos Soukup

Alfréd Rényi Institute of MathematicsHungarian Academy of Sciences

http://www.renyi.hu/ ∼soukup

Logic Colloquium 2008

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 1 / 36

Page 2: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Ramsey theory : find large homogeneous sets

monochromatic sets

anti Ramsey theory : find large inhomogeneous sets

polychromatic sets, rainbow sets

first anti Ramsey theorems : Rado, 1973.

polychromatic Ramsey, rainbow Ramsey

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 2 / 36

Page 3: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Ramsey theory : find large homogeneous sets

monochromatic sets

anti Ramsey theory : find large inhomogeneous sets

polychromatic sets, rainbow sets

first anti Ramsey theorems : Rado, 1973.

polychromatic Ramsey, rainbow Ramsey

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 2 / 36

Page 4: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Ramsey theory : find large homogeneous sets

monochromatic sets

anti Ramsey theory : find large inhomogeneous sets

polychromatic sets, rainbow sets

first anti Ramsey theorems : Rado, 1973.

polychromatic Ramsey, rainbow Ramsey

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 2 / 36

Page 5: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Ramsey theory : find large homogeneous sets

monochromatic sets

anti Ramsey theory : find large inhomogeneous sets

polychromatic sets, rainbow sets

first anti Ramsey theorems : Rado, 1973.

polychromatic Ramsey, rainbow Ramsey

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 2 / 36

Page 6: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Ramsey theory : find large homogeneous sets

monochromatic sets

anti Ramsey theory : find large inhomogeneous sets

polychromatic sets, rainbow sets

first anti Ramsey theorems : Rado, 1973.

polychromatic Ramsey, rainbow Ramsey

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 2 / 36

Page 7: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Ramsey theory : find large homogeneous sets

monochromatic sets

anti Ramsey theory : find large inhomogeneous sets

polychromatic sets, rainbow sets

first anti Ramsey theorems : Rado, 1973.

polychromatic Ramsey, rainbow Ramsey

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 2 / 36

Page 8: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Ramsey theory : find large homogeneous sets

monochromatic sets

anti Ramsey theory : find large inhomogeneous sets

polychromatic sets, rainbow sets

first anti Ramsey theorems : Rado, 1973.

polychromatic Ramsey, rainbow Ramsey

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 2 / 36

Page 9: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Definition

Let f :[

X]n

→ λ.Y ⊂ X is an f -rainbow iff f ↾

[

Y]n is 1–1 .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 3 / 36

Page 10: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Definition

Let f :[

X]n

→ λ.Y ⊂ X is an f -rainbow iff f ↾

[

Y]n is 1–1 .

X

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 3 / 36

Page 11: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Definition

Let f :[

X]n

→ λ.Y ⊂ X is an f -rainbow iff f ↾

[

Y]n is 1–1 .

Y

X

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 3 / 36

Page 12: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Definition

Let f :[

X]n

→ λ.Y ⊂ X is an f -rainbow iff f ↾

[

Y]n is 1–1 .

Y

X

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 3 / 36

Page 13: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Let f :[

X]n

→ λ. Y ⊂ X is an f -rainbow iff f ↾[

Y]n

is 1–1 .

Problem (Erdos, Hajnal, 1967, Problem 68)

Assume that f :[

ω1]2

→ 3 establishes ω1 6→[

ω1]2

3.Does there exist an f -rainbow triangle ?

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 4 / 36

Page 14: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Let f :[

X]n

→ λ. Y ⊂ X is an f -rainbow iff f ↾[

Y]n

is 1–1 .

Problem (Erdos, Hajnal, 1967, Problem 68)

Assume that f :[

ω1]2

→ 3 establishes ω1 6→[

ω1]2

3.Does there exist an f -rainbow triangle ?

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 4 / 36

Page 15: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Let f :[

X]n

→ λ. Y ⊂ X is an f -rainbow iff f ↾[

Y]n

is 1–1 .

Problem (Erdos, Hajnal, 1967, Problem 68)

Assume that f :[

ω1]2

→ 3 establishes ω1 6→[

ω1]2

3.Does there exist an f -rainbow triangle ?

ω1X

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 4 / 36

Page 16: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Let f :[

X]n

→ λ. Y ⊂ X is an f -rainbow iff f ↾[

Y]n

is 1–1 .

Problem (Erdos, Hajnal, 1967, Problem 68)

Assume that f :[

ω1]2

→ 3 establishes ω1 6→[

ω1]2

3.Does there exist an f -rainbow triangle ?

ω1X

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 4 / 36

Page 17: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Let f :[

X]n

→ λ. Y ⊂ X is an f -rainbow iff f ↾[

Y]n

is 1–1 .

Problem (Erdos, Hajnal, 1967, Problem 68)

Assume that f :[

ω1]2

→ 3 establishes ω1 6→[

ω1]2

3.Does there exist an f -rainbow triangle ?

ω1X

Notation

f establishes that ω1 6→[

ω1]2

3:

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 4 / 36

Page 18: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The beginnings

Let f :[

X]n

→ λ. Y ⊂ X is an f -rainbow iff f ↾[

Y]n

is 1–1 .

Problem (Erdos, Hajnal, 1967, Problem 68)

Assume that f :[

ω1]2

→ 3 establishes ω1 6→[

ω1]2

3.Does there exist an f -rainbow triangle ?

ω1X

Notation

f establishes that ω1 6→[

ω1]2

3: f ⊢ ω1 6→[

ω1]2

3

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 4 / 36

Page 19: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 20: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 21: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

f ⊢ ω1 6→[

(ω, ω1)]2

3

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 22: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

f ⊢ ω1 6→[

(ω, ω1)]2

3 iff ∀A ∈[

ω1]ω

∀B ∈[

ω1]ω1

ω1A B

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 23: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

f ⊢ ω1 6→[

(ω, ω1)]2

3 iff ∀A ∈[

ω1]ω

∀B ∈[

ω1]ω1 f ′′[A, B] = 3.

ω1A B

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 24: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 25: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

X Y

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 26: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

X Y

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 27: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

X YΦ

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 28: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

X YΦ

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 29: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

X YΦ

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 30: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 31: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

Assume f ⊢ ω1 6→[

ω1]2

3. Does there exist an f -rainbow triangle ?

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2

3 then there is a rainbow triangle .

Definition

Let d :[

X]2

→ λ, f :[

Y]2

→ λ. f realizes d (d =⇒ f )

iff ∃Φ : X 1–1−→ Y s.t. ∀{ζ, ξ} ∈

[

X]2 d(ζ, ξ) = f (Φ(ζ),Φ(ξ)).

Fact

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 5 / 36

Page 32: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Theorem (Shelah, 1975)

CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle.

♦ =⇒ ∃f ⊢ ω1 6→[

ω1]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 6 / 36

Page 33: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Theorem (Shelah, 1975)

CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle.

♦ =⇒ ∃f ⊢ ω1 6→[

ω1]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 6 / 36

Page 34: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Theorem (Shelah, 1975)

CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle.

♦ =⇒ ∃f ⊢ ω1 6→[

ω1]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 6 / 36

Page 35: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Theorem (Shelah, 1975)

CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle.

♦ =⇒ ∃f ⊢ ω1 6→[

ω1]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 6 / 36

Page 36: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow triangle

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Theorem (Shelah, 1975)

CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle.

♦ =⇒ ∃f ⊢ ω1 6→[

ω1]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 6 / 36

Page 37: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

First try:

By transfinite induction on α < ω1 define f (ξ, α) for ξ < α.

First challenge : ω1 6→[

ω1]2ω

fix a |• -sequence {Aζ : ζ < ω1} ⊂

[

ω1]ω

if ζ < α and Aζ ⊂ α then f ′′[Aζ , {α}] = ω

Second challenge : no f -rainbow triangle ???

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 7 / 36

Page 38: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

First try:

By transfinite induction on α < ω1 define f (ξ, α) for ξ < α.

First challenge : ω1 6→[

ω1]2ω

fix a |• -sequence {Aζ : ζ < ω1} ⊂

[

ω1]ω

if ζ < α and Aζ ⊂ α then f ′′[Aζ , {α}] = ω

Second challenge : no f -rainbow triangle ???

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 7 / 36

Page 39: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

First try:

By transfinite induction on α < ω1 define f (ξ, α) for ξ < α.

First challenge : ω1 6→[

ω1]2ω

fix a |• -sequence {Aζ : ζ < ω1} ⊂

[

ω1]ω

if ζ < α and Aζ ⊂ α then f ′′[Aζ , {α}] = ω

Second challenge : no f -rainbow triangle ???

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 7 / 36

Page 40: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

First try:

By transfinite induction on α < ω1 define f (ξ, α) for ξ < α.

First challenge : ω1 6→[

ω1]2ω

fix a |• -sequence {Aζ : ζ < ω1} ⊂

[

ω1]ω

if ζ < α and Aζ ⊂ α then f ′′[Aζ , {α}] = ω

Second challenge : no f -rainbow triangle ???

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 7 / 36

Page 41: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

First try:

By transfinite induction on α < ω1 define f (ξ, α) for ξ < α.

First challenge : ω1 6→[

ω1]2ω

fix a |• -sequence {Aζ : ζ < ω1} ⊂

[

ω1]ω

if ζ < α and Aζ ⊂ α then f ′′[Aζ , {α}] = ω

Second challenge : no f -rainbow triangle ???

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 7 / 36

Page 42: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

First try:

By transfinite induction on α < ω1 define f (ξ, α) for ξ < α.

First challenge : ω1 6→[

ω1]2ω

fix a |• -sequence {Aζ : ζ < ω1} ⊂

[

ω1]ω

if ζ < α and Aζ ⊂ α then f ′′[Aζ , {α}] = ω

Second challenge : no f -rainbow triangle ???

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 7 / 36

Page 43: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

First try:

By transfinite induction on α < ω1 define f (ξ, α) for ξ < α.

First challenge : ω1 6→[

ω1]2ω

fix a |• -sequence {Aζ : ζ < ω1} ⊂

[

ω1]ω

if ζ < α and Aζ ⊂ α then f ′′[Aζ , {α}] = ω

Second challenge : no f -rainbow triangle ???

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 7 / 36

Page 44: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 45: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 46: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 47: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

x y ∆(x , y)ω

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 48: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

x y ∆(x , y)ω

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 49: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

x y ∆(x , y)ω ω

h

k

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 50: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

x y ∆(x , y)ω ω

h

k

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 51: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

Second try: Fix the colouring first! Colour[

2ω]2 as follows:

∆(x , y) = min{n : x(n) 6= y(n)}. No ∆-rainbow triangle!

h : ω → ω s.t. h−1{k} is infinite for each k ∈ ω.

f (x , y) = h(∆(x , y)). No f -rainbow triangle!

x y ∆(x , y)ω ω

h

k

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 8 / 36

Page 52: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

f (x , y) = h(∆(x , y)). No f -rainbow triangle.

Choose S = {sα : α < ω1} ⊂ 2ω s .t. f ↾[

S]2 works.

Enumerate[

ω1]ω as {Aξ : ξ < ω1}. Write Sξ = {sν : ν ∈ Aξ}.

if ξ < α and sα ∈ Sξ then f ′′[{α}, Sξ ] = ω.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 9 / 36

Page 53: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

f (x , y) = h(∆(x , y)). No f -rainbow triangle.

Choose S = {sα : α < ω1} ⊂ 2ω s .t. f ↾[

S]2 works.

Enumerate[

ω1]ω as {Aξ : ξ < ω1}. Write Sξ = {sν : ν ∈ Aξ}.

if ξ < α and sα ∈ Sξ then f ′′[{α}, Sξ ] = ω.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 9 / 36

Page 54: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

f (x , y) = h(∆(x , y)). No f -rainbow triangle.

Choose S = {sα : α < ω1} ⊂ 2ω s .t. f ↾[

S]2 works.

Enumerate[

ω1]ω as {Aξ : ξ < ω1}. Write Sξ = {sν : ν ∈ Aξ}.

if ξ < α and sα ∈ Sξ then f ′′[{α}, Sξ ] = ω.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 9 / 36

Page 55: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

f (x , y) = h(∆(x , y)). No f -rainbow triangle.

Choose S = {sα : α < ω1} ⊂ 2ω s .t. f ↾[

S]2 works.

Enumerate[

ω1]ω as {Aξ : ξ < ω1}. Write Sξ = {sν : ν ∈ Aξ}.

if ξ < α and sα ∈ Sξ then f ′′[{α}, Sξ ] = ω.Sξ sα

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 9 / 36

Page 56: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω, no f -rainbow triangle

f (x , y) = h(∆(x , y)). No f -rainbow triangle.

Choose S = {sα : α < ω1} ⊂ 2ω s .t. f ↾[

S]2 works.

Enumerate[

ω1]ω as {Aξ : ξ < ω1}. Write Sξ = {sν : ν ∈ Aξ}.

if ξ < α and sα ∈ Sξ then f ′′[{α}, Sξ ] = ω.

Sξ sα ω ω

h

k

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 9 / 36

Page 57: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Fact: If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

f ⊢ ω1 6→[

(ω, ω1)]2ω1

iff ∀A ∈[

ω1]ω

∀B ∈[

ω1]ω1 f ′′[A, B] = ω1.

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 10 / 36

Page 58: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Fact: If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

f ⊢ ω1 6→[

(ω, ω1)]2ω1

iff ∀A ∈[

ω1]ω

∀B ∈[

ω1]ω1 f ′′[A, B] = ω1.

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 10 / 36

Page 59: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Fact: If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

f ⊢ ω1 6→[

(ω, ω1)]2ω1

iff ∀A ∈[

ω1]ω

∀B ∈[

ω1]ω1 f ′′[A, B] = ω1.

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

A

B

ν

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 10 / 36

Page 60: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Fact: If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

f ⊢ ω1 6→[

(ω, ω1)]2ω1

iff ∀A ∈[

ω1]ω

∀B ∈[

ω1]ω1 f ′′[A, B] = ω1.

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

A

B

α

β

ν

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 10 / 36

Page 61: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Fact: If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

f ⊢ ω1 6→[

(ω, ω1)]2ω1

iff ∀A ∈[

ω1]ω

∀B ∈[

ω1]ω1 f ′′[A, B] = ω1.

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

A

B

α

β

ν

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 10 / 36

Page 62: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Proof: If A, B0, B1, · · · ∈[

ω1]ω1 and ν0, ν1, · · · ∈ ω1 then ∃α ∈ A,

∃B′i ∈

[

Bi]ω1 such that f ′′[B′

i , {α}] = {νi}.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 11 / 36

Page 63: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Proof: If A, B0, B1, · · · ∈[

ω1]ω1 and ν0, ν1, · · · ∈ ω1 then ∃α ∈ A,

∃B′i ∈

[

Bi]ω1 such that f ′′[B′

i , {α}] = {νi}.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 11 / 36

Page 64: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Proof: If A, B0, B1, · · · ∈[

ω1]ω1 and ν0, ν1, · · · ∈ ω1 then ∃α ∈ A,

∃B′i ∈

[

Bi]ω1 such that f ′′[B′

i , {α}] = {νi}.

A B0 B1 Bn

ν0 ν1 νn

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 11 / 36

Page 65: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Proof: If A, B0, B1, · · · ∈[

ω1]ω1 and ν0, ν1, · · · ∈ ω1 then ∃α ∈ A,

∃B′i ∈

[

Bi]ω1 such that f ′′[B′

i , {α}] = {νi}.

A B0 B1 Bn

B′0

B′1 B′

nαν0 ν1 νn

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 11 / 36

Page 66: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A weaker partition relation

Theorem (Erdos, Hajnal, 1978)

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Proof: If A, B0, B1, · · · ∈[

ω1]ω1 and ν0, ν1, · · · ∈ ω1 then ∃α ∈ A,

∃B′i ∈

[

Bi]ω1 such that f ′′[B′

i , {α}] = {νi}.

A B0 B1 Bn

B′0

B′1 B′

nαν0 ν1 νn

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 11 / 36

Page 67: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

One more partition relation

If f ⊢ ω1 6→[

(ω1;ω1)]2

ω1then f realizes each function d :

[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Problem

Assume f ⊢ ω1 6→[

(ω1,ω1)]2ω1

. Does f realize each function

d :[

ω]2

→ ω1?

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 12 / 36

Page 68: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

One more partition relation

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Problem

Assume f ⊢ ω1 6→[

(ω1,ω1)]2ω1

. Does f realize each function

d :[

ω]2

→ ω1?

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 12 / 36

Page 69: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

One more partition relation

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Problem

Assume f ⊢ ω1 6→[

(ω1,ω1)]2ω1

. Does f realize each function

d :[

ω]2

→ ω1?

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν

A

B

ν

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 12 / 36

Page 70: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

One more partition relation

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Problem

Assume f ⊢ ω1 6→[

(ω1,ω1)]2ω1

. Does f realize each function

d :[

ω]2

→ ω1?

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν

A

B

α

β

ν

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 12 / 36

Page 71: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

One more partition relation

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Problem

Assume f ⊢ ω1 6→[

(ω1,ω1)]2ω1

. Does f realize each function

d :[

ω]2

→ ω1?

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν

A

B

α

β

ν

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 12 / 36

Page 72: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

One more partition relation

If f ⊢ ω1 6→[

(ω1;ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν and α < β.

Problem

Assume f ⊢ ω1 6→[

(ω1,ω1)]2ω1

. Does f realize each function

d :[

ω]2

→ ω1?

∀A, B ∈[

ω1]ω1 ∀ν < ω1 ∃α ∈ A ∃β ∈ B f (α, β) = ν

A

B

α

β

ν

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 12 / 36

Page 73: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A new method

Assume f ⊢ ω1 6→[

(ω1,ω1)]2

ω1. Does f realize each function d :

[

ω]2

→ ω1?

Fact

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Todorcevic)

ω1 6→[

ω1]2ω1

.

Theorem (Shelah)

ω2 6→[

(ω2;ω2)]2ω2

.

Theorem (Moore)

ω1 6→[

(ω1;ω1)]2ω1

.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 13 / 36

Page 74: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A new method

Assume f ⊢ ω1 6→[

(ω1,ω1)]2

ω1. Does f realize each function d :

[

ω]2

→ ω1?

Fact

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Todorcevic)

ω1 6→[

ω1]2ω1

.

Theorem (Shelah)

ω2 6→[

(ω2;ω2)]2ω2

.

Theorem (Moore)

ω1 6→[

(ω1;ω1)]2ω1

.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 13 / 36

Page 75: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A new method

Assume f ⊢ ω1 6→[

(ω1,ω1)]2

ω1. Does f realize each function d :

[

ω]2

→ ω1?

Fact

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Todorcevic)

ω1 6→[

ω1]2ω1

.

Theorem (Shelah)

ω2 6→[

(ω2;ω2)]2ω2

.

Theorem (Moore)

ω1 6→[

(ω1;ω1)]2ω1

.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 13 / 36

Page 76: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A new method

Assume f ⊢ ω1 6→[

(ω1,ω1)]2

ω1. Does f realize each function d :

[

ω]2

→ ω1?

Fact

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Todorcevic)

ω1 6→[

ω1]2ω1

.

Theorem (Shelah)

ω2 6→[

(ω2;ω2)]2ω2

.

Theorem (Moore)

ω1 6→[

(ω1;ω1)]2ω1

.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 13 / 36

Page 77: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A new method

Assume f ⊢ ω1 6→[

(ω1,ω1)]2

ω1. Does f realize each function d :

[

ω]2

→ ω1?

Fact

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Todorcevic)

ω1 6→[

ω1]2ω1

.

Theorem (Shelah)

ω2 6→[

(ω2;ω2)]2ω2

.

Theorem (Moore)

ω1 6→[

(ω1;ω1)]2ω1

.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 13 / 36

Page 78: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Hajnal)

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 s.t. d 6=⇒ f for some rainbow d :[

5]2

→ 10.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 14 / 36

Page 79: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Hajnal)

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 s.t. d 6=⇒ f for some rainbow d :[

5]2

→ 10.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 14 / 36

Page 80: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Hajnal)

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 s.t. d 6=⇒ f for some rainbow d :[

5]2

→ 10.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 14 / 36

Page 81: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

If f ⊢ ω1 6→[

(ω1, ω1)]2ω1

then d =⇒ f for each d :[

3]2

→ ω1.

Theorem (Hajnal)

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 s.t. d 6=⇒ f for some rainbow d :[

5]2

→ 10.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 14 / 36

Page 82: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 83: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 84: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 85: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 86: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 87: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

A

Bω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 88: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

A

B

A′

B′

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 89: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}

A

B

A′

B′

ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 90: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 91: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 92: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 93: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 94: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 95: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 96: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 97: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 98: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 ∃d :[

5]2 1–1

−→ 10 d 6=⇒ f .

Let g :[

ω1]2

→ 2 be a Sierpinski colouring: {rα : α < ω1} ⊂ R; forα < β < ω1 let g(α, β) = 1 iff rα < rβ .Let e :

[

5]2

→ 2 be the “pentagon without diagonals”: e(α, β) = 1iff α ≡ β + 1 mod 5

(⋆) e 6=⇒ g.(†) ∀A, B ∈

[

ω1]ω1 ∃A′ ∈

[

A]ω1 ∃B′ ∈

[

B]ω1 ∃i < 2

g′′[A′; B′] = {i} and g′′[B′; A′] = {1 − i}Let m ⊢ ω1 6→

[

(ω1;ω1)]2

5Put f (α, β) = 2m(α, β) + g(α, β).Assume that A, B ∈

[

ω1]ω1. Let ℓ = 2n + i < 10.

∃A′ ∈[

A]ω1 ∃B′ ∈

[

B]ω1 g′′[A′; B′] = {i} (or g′′[B′; A′] = {i})

∃α ∈ A′ ∃β ∈ B′ α < β and m(α, β) = n.f (α, β) = 2n + i = ℓ.∃m′ :

[

5]2

→ 5 s.t. d(α, β) = 2m′(α, β) + e(α, β) is 1–1.if d =⇒ f then d mod 2 =⇒ f mod 2, i.e. e =⇒ g.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 15 / 36

Page 99: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

[Hajnal] ∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 s.t. d 6=⇒ f for some rainbow d :[

5]2

→ 10.

Theorem (Hajnal)

If f ⊢ ω1 6→[

(ω1, ω1)]2ω

then there exists an infinite f -rainbow set .

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 16 / 36

Page 100: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

[Hajnal] ∃f ⊢ ω1 6→[

(ω1, ω1)]2

10 s.t. d 6=⇒ f for some rainbow d :[

5]2

→ 10.

Theorem (Hajnal)

If f ⊢ ω1 6→[

(ω1, ω1)]2ω

then there exists an infinite f -rainbow set .

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 16 / 36

Page 101: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

Shelah:CH =⇒ ∃f ⊢ ω1 6→

[

ω1]2ω

, no f -rainbow triangle.

♦ =⇒ ∃g ⊢ ω1 6→[

ω1]2ω1

, no g-rainbow triangle.

Theorem (Hajnal)

∃f ⊢ ω1 6→[

ω1]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 17 / 36

Page 102: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

Shelah:CH =⇒ ∃f ⊢ ω1 6→

[

ω1]2

ω, no f -rainbow triangle.

♦ =⇒ ∃g ⊢ ω1 6→[

ω1]2

ω1, no g-rainbow triangle.

Theorem (Hajnal)

∃f ⊢ ω1 6→[

ω1]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 17 / 36

Page 103: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Recent results

Shelah:CH =⇒ ∃f ⊢ ω1 6→

[

ω1]2

ω, no f -rainbow triangle.

♦ =⇒ ∃g ⊢ ω1 6→[

ω1]2

ω1, no g-rainbow triangle.

Theorem (Hajnal)

∃f ⊢ ω1 6→[

ω1]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 17 / 36

Page 104: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Negative theorems

Shelah: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2ω

, no f -rainbow triangle.

Theorem (Shelah)

CH + 2ω1 = ω2 =⇒ ∃f ⊢ ω2 6→[

ω2]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 18 / 36

Page 105: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Negative theorems

Shelah: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2

ω, no f -rainbow triangle.

Theorem (Shelah)

CH + 2ω1 = ω2 =⇒ ∃f ⊢ ω2 6→[

ω2]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 18 / 36

Page 106: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Negative theorems

Shelah: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2

ω, no f -rainbow triangle.

Theorem (Shelah)

CH + 2ω1 = ω2 =⇒ ∃f ⊢ ω2 6→[

ω2]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 18 / 36

Page 107: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Negative theorems

Shelah: CH =⇒ ∃f ⊢ ω1 6→[

ω1]2

ω, no f -rainbow triangle.

Theorem (Shelah)

CH + 2ω1 = ω2 =⇒ ∃f ⊢ ω2 6→[

ω2]2ω1

, no f -rainbow triangle.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 18 / 36

Page 108: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Hajnal: ∃f ⊢ ω1 6→[

(ω1, ω1)]2

10s.t. d 6=⇒ f for some rainbow d :

[

5]2

→ 10.

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

(ω2, ω2)]2

10 s.t. d 6=⇒ f for some rainbow

d :[

5]2

→ 10.

Hajnal: ∃f ⊢ ω1 6→[

ω1]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

ω2]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 19 / 36

Page 109: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Hajnal: ∃f ⊢ ω1 6→[

(ω1, ω1)]2

10s.t. d 6=⇒ f for some rainbow d :

[

5]2

→ 10.

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

(ω2, ω2)]2

10 s.t. d 6=⇒ f for some rainbow

d :[

5]2

→ 10.

Hajnal: ∃f ⊢ ω1 6→[

ω1]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

ω2]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 19 / 36

Page 110: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Hajnal: ∃f ⊢ ω1 6→[

(ω1, ω1)]2

10s.t. d 6=⇒ f for some rainbow d :

[

5]2

→ 10.

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

(ω2, ω2)]2

10 s.t. d 6=⇒ f for some rainbow

d :[

5]2

→ 10.

Hajnal: ∃f ⊢ ω1 6→[

ω1]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

ω2]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 19 / 36

Page 111: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Hajnal: ∃f ⊢ ω1 6→[

(ω1, ω1)]2

10s.t. d 6=⇒ f for some rainbow d :

[

5]2

→ 10.

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

(ω2, ω2)]2

10 s.t. d 6=⇒ f for some rainbow

d :[

5]2

→ 10.

Hajnal: ∃f ⊢ ω1 6→[

ω1]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Theorem

CH =⇒ ∃f ⊢ ω2 6→[

ω2]2

6 and ∃d :[

4]2

→ 6 rainbow s.t. d 6=⇒ f .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 19 / 36

Page 112: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Positive theorems

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Assume f ⊢ ω2 6→[

(ω1, ω2)]2

2. Does f realize each function

d :[

ω1]2

→ 2?

Theorem (Shelah, 1975)

(a) If f ⊢ ω2 6→[

(ω1;ω2)]2

2 then V Fn(ω,2) |= f ⊢ ω2 6→[

(ω1;ω2)]2

2.

(b) In V Fn(ω,2) there is a colouring c :[

ω1]2

→ 2 such that c 6=⇒ f forany f ∈ V.

(c) It is consistent that ∃f ⊢ ω2 6→[

(ω1;ω2)]2

2 such that c 6=⇒ f for some

c :[

ω1]2

→ 2.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 20 / 36

Page 113: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Positive theorems

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Assume f ⊢ ω2 6→[

(ω1, ω2)]2

2. Does f realize each function

d :[

ω1]2

→ 2?

Theorem (Shelah, 1975)

(a) If f ⊢ ω2 6→[

(ω1;ω2)]2

2 then V Fn(ω,2) |= f ⊢ ω2 6→[

(ω1;ω2)]2

2.

(b) In V Fn(ω,2) there is a colouring c :[

ω1]2

→ 2 such that c 6=⇒ f forany f ∈ V.

(c) It is consistent that ∃f ⊢ ω2 6→[

(ω1;ω2)]2

2 such that c 6=⇒ f for some

c :[

ω1]2

→ 2.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 20 / 36

Page 114: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Positive theorems

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Assume f ⊢ ω2 6→[

(ω1, ω2)]2

2. Does f realize each function

d :[

ω1]2

→ 2?

Theorem (Shelah, 1975)

(a) If f ⊢ ω2 6→[

(ω1;ω2)]2

2 then V Fn(ω,2) |= f ⊢ ω2 6→[

(ω1;ω2)]2

2.

(b) In V Fn(ω,2) there is a colouring c :[

ω1]2

→ 2 such that c 6=⇒ f forany f ∈ V.

(c) It is consistent that ∃f ⊢ ω2 6→[

(ω1;ω2)]2

2 such that c 6=⇒ f for some

c :[

ω1]2

→ 2.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 20 / 36

Page 115: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Positive theorems

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Assume f ⊢ ω2 6→[

(ω1, ω2)]2

2. Does f realize each function

d :[

ω1]2

→ 2?

Theorem (Shelah, 1975)

(a) If f ⊢ ω2 6→[

(ω1;ω2)]2

2 then V Fn(ω,2) |= f ⊢ ω2 6→[

(ω1;ω2)]2

2.

(b) In V Fn(ω,2) there is a colouring c :[

ω1]2

→ 2 such that c 6=⇒ f forany f ∈ V.

(c) It is consistent that ∃f ⊢ ω2 6→[

(ω1;ω2)]2

2 such that c 6=⇒ f for some

c :[

ω1]2

→ 2.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 20 / 36

Page 116: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Positive theorems

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Assume f ⊢ ω2 6→[

(ω1, ω2)]2

2. Does f realize each function

d :[

ω1]2

→ 2?

Theorem (Shelah, 1975)

(a) If f ⊢ ω2 6→[

(ω1;ω2)]2

2 then V Fn(ω,2) |= f ⊢ ω2 6→[

(ω1;ω2)]2

2.

(b) In V Fn(ω,2) there is a colouring c :[

ω1]2

→ 2 such that c 6=⇒ f forany f ∈ V.

(c) It is consistent that ∃f ⊢ ω2 6→[

(ω1;ω2)]2

2 such that c 6=⇒ f for some

c :[

ω1]2

→ 2.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 20 / 36

Page 117: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Positive theorems

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Assume f ⊢ ω2 6→[

(ω1, ω2)]2

2. Does f realize each function

d :[

ω1]2

→ 2?

Theorem (Shelah, 1975)

(a) If f ⊢ ω2 6→[

(ω1;ω2)]2

2 then V Fn(ω,2) |= f ⊢ ω2 6→[

(ω1;ω2)]2

2.

(b) In V Fn(ω,2) there is a colouring c :[

ω1]2

→ 2 such that c 6=⇒ f forany f ∈ V.

(c) It is consistent that ∃f ⊢ ω2 6→[

(ω1;ω2)]2

2 such that c 6=⇒ f for some

c :[

ω1]2

→ 2.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 20 / 36

Page 118: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Stepping up:colourings of ω2

Positive theorems

If f ⊢ ω1 6→[

(ω, ω1)]2ω1

then f realizes each function d :[

ω]2

→ ω1.

Assume f ⊢ ω2 6→[

(ω1, ω2)]2

2. Does f realize each function

d :[

ω1]2

→ 2?

Theorem (Shelah, 1975)

(a) If f ⊢ ω2 6→[

(ω1;ω2)]2

2 then V Fn(ω,2) |= f ⊢ ω2 6→[

(ω1;ω2)]2

2.

(b) In V Fn(ω,2) there is a colouring c :[

ω1]2

→ 2 such that c 6=⇒ f forany f ∈ V.

(c) It is consistent that ∃f ⊢ ω2 6→[

(ω1;ω2)]2

2 such that c 6=⇒ f for some

c :[

ω1]2

→ 2.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 20 / 36

Page 119: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem (Erdos, Hajnal, 1978)

Assume GCH and f ⊢ ω2 6→(ω1.+ ω)2

2. Does f realize each function

f :[

ω1]2

→ 2?

Theorem (Hajnal)

Con ( GCH + ∃f ⊢ ω2 6→[(ω1;ω)]2ω1).

∀A ∈[

ω2]ω1 ∀B ∈

[

ω2]ω if sup A < min B then f ′′[A, B] = ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 21 / 36

Page 120: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem (Erdos, Hajnal, 1978)

Assume GCH and f ⊢ ω2 6→(ω1.+ ω)2

2. Does f realize each function

f :[

ω1]2

→ 2?

Theorem (Hajnal)

Con ( GCH + ∃f ⊢ ω2 6→[(ω1;ω)]2ω1).

∀A ∈[

ω2]ω1 ∀B ∈

[

ω2]ω if sup A < min B then f ′′[A, B] = ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 21 / 36

Page 121: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem (Erdos, Hajnal, 1978)

Assume GCH and f ⊢ ω2 6→(ω1.+ ω)2

2. Does f realize each function

f :[

ω1]2

→ 2?

Theorem (Hajnal)

Con ( GCH + ∃f ⊢ ω2 6→[(ω1;ω)]2ω1).

∀A ∈[

ω2]ω1 ∀B ∈

[

ω2]ω if sup A < min B then f ′′[A, B] = ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 21 / 36

Page 122: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem (Erdos, Hajnal, 1978)

Assume GCH and f ⊢ ω2 6→(ω1.+ ω)2

2. Does f realize each function

f :[

ω1]2

→ 2?

Theorem (Hajnal)

Con ( GCH + ∃f ⊢ ω2 6→[(ω1;ω)]2ω1).

∀A ∈[

ω2]ω1 ∀B ∈

[

ω2]ω if sup A < min B then f ′′[A, B] = ω1

ω2A B

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 21 / 36

Page 123: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem (Erdos, Hajnal, 1978)

Assume GCH and f ⊢ ω2 6→(ω1.+ ω)2

2. Does f realize each function

f :[

ω1]2

→ 2?

Theorem (Hajnal)

Con ( GCH + ∃f ⊢ ω2 6→[(ω1;ω)]2ω1).

∀A ∈[

ω2]ω1 ∀B ∈

[

ω2]ω if sup A < min B then f ′′[A, B] = ω1

ω2A B

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 21 / 36

Page 124: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 125: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 126: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 127: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 128: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 129: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 130: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 131: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 132: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 133: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Y X ω2

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 134: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Y X ω2Aβ

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 135: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Con ( GCH + ∃f ⊢ ω2 6→[(ω1; ω)]2ω1).

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].

Y X ω2Aβ

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 22 / 36

Page 136: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem of Erdos and Hajnal:Assume GCH and f ⊢ ω2 6→[(ω1; ω)]2ω1

. Does f realize every c :[

ω1]2

→ 2?

(Shelah): If f ⊢ ω2 6→[

(ω1; ω2)]2

2then V Fn(ω,2) |= f ⊢ ω2 6→

[

(ω1; ω2)]2

2.

Theorem

(a) If f ⊢ ω2 6→[(ω1;ω)]2ω1then V Fn(κ,2) |= “ f ⊢ ω2 6→[(ω1;ω)]2ω1

” .

(b) Con (GCH +∃f ⊢ ω2 6→[

(ω1;ω)]2ω1

and ∃c :[

ω1]2

→ 2 s.t. c 6=⇒ f .)

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 23 / 36

Page 137: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem of Erdos and Hajnal:Assume GCH and f ⊢ ω2 6→[(ω1; ω)]2ω1

. Does f realize every c :[

ω1]2

→ 2?

(Shelah): If f ⊢ ω2 6→[

(ω1; ω2)]2

2then V Fn(ω,2) |= f ⊢ ω2 6→

[

(ω1; ω2)]2

2.

Theorem

(a) If f ⊢ ω2 6→[(ω1;ω)]2ω1then V Fn(κ,2) |= “ f ⊢ ω2 6→[(ω1;ω)]2ω1

” .

(b) Con (GCH +∃f ⊢ ω2 6→[

(ω1;ω)]2ω1

and ∃c :[

ω1]2

→ 2 s.t. c 6=⇒ f .)

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 23 / 36

Page 138: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem of Erdos and Hajnal:Assume GCH and f ⊢ ω2 6→[(ω1; ω)]2ω1

. Does f realize every c :[

ω1]2

→ 2?

(Shelah): If f ⊢ ω2 6→[

(ω1; ω2)]2

2then V Fn(ω,2) |= f ⊢ ω2 6→

[

(ω1; ω2)]2

2.

Theorem

(a) If f ⊢ ω2 6→[(ω1;ω)]2ω1then V Fn(κ,2) |= “ f ⊢ ω2 6→[(ω1;ω)]2ω1

” .

(b) Con (GCH +∃f ⊢ ω2 6→[

(ω1;ω)]2ω1

and ∃c :[

ω1]2

→ 2 s.t. c 6=⇒ f .)

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 23 / 36

Page 139: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem of Erdos and Hajnal:Assume GCH and f ⊢ ω2 6→[(ω1; ω)]2ω1

. Does f realize every c :[

ω1]2

→ 2?

(Shelah): If f ⊢ ω2 6→[

(ω1; ω2)]2

2then V Fn(ω,2) |= f ⊢ ω2 6→

[

(ω1; ω2)]2

2.

Theorem

(a) If f ⊢ ω2 6→[(ω1;ω)]2ω1then V Fn(κ,2) |= “ f ⊢ ω2 6→[(ω1;ω)]2ω1

” .

(b) Con (GCH +∃f ⊢ ω2 6→[

(ω1;ω)]2ω1

and ∃c :[

ω1]2

→ 2 s.t. c 6=⇒ f .)

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 23 / 36

Page 140: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colourings of ω2

Problem of Erdos and Hajnal:Assume GCH and f ⊢ ω2 6→[(ω1; ω)]2ω1

. Does f realize every c :[

ω1]2

→ 2?

(Shelah): If f ⊢ ω2 6→[

(ω1; ω2)]2

2then V Fn(ω,2) |= f ⊢ ω2 6→

[

(ω1; ω2)]2

2.

Theorem

(a) If f ⊢ ω2 6→[(ω1;ω)]2ω1then V Fn(κ,2) |= “ f ⊢ ω2 6→[(ω1;ω)]2ω1

” .

(b) Con (GCH +∃f ⊢ ω2 6→[

(ω1;ω)]2ω1

and ∃c :[

ω1]2

→ 2 s.t. c 6=⇒ f .)

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 23 / 36

Page 141: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow on ω2

Problem (Hajnal)

Assume GCH + f ⊢ ω2 6→[(ω1;ω)]2ω1. Does there exist an uncountable

f -rainbow set?

Theorem

It is consistent that GCH holds and there is a function f :[

ω2]2

→ ω1

such that

(1) f ⊢ ω2 6→[(ω1;ω)]2ω1,

(2) there is no uncountable f -rainbow.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 24 / 36

Page 142: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow on ω2

Problem (Hajnal)

Assume GCH + f ⊢ ω2 6→[(ω1;ω)]2ω1. Does there exist an uncountable

f -rainbow set?

Theorem

It is consistent that GCH holds and there is a function f :[

ω2]2

→ ω1

such that

(1) f ⊢ ω2 6→[(ω1;ω)]2ω1,

(2) there is no uncountable f -rainbow.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 24 / 36

Page 143: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow on ω2

Problem (Hajnal)

Assume GCH + f ⊢ ω2 6→[(ω1;ω)]2ω1. Does there exist an uncountable

f -rainbow set?

Theorem

It is consistent that GCH holds and there is a function f :[

ω2]2

→ ω1

such that

(1) f ⊢ ω2 6→[(ω1;ω)]2ω1,

(2) there is no uncountable f -rainbow.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 24 / 36

Page 144: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Rainbow on ω2

Problem (Hajnal)

Assume GCH + f ⊢ ω2 6→[(ω1;ω)]2ω1. Does there exist an uncountable

f -rainbow set?

Theorem

It is consistent that GCH holds and there is a function f :[

ω2]2

→ ω1

such that

(1) f ⊢ ω2 6→[(ω1;ω)]2ω1,

(2) there is no uncountable f -rainbow.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 24 / 36

Page 145: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 146: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 147: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 148: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 149: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 150: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 151: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 152: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 153: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 154: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 155: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 156: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 157: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Proof: ∃f ⊢ ω2 6→[(ω1; ω)]2ω1, no uncountable rainbow

First try:

Assume CH. Define P = 〈P,�〉 σ-complete, ω2-c.c.Underlying set : 〈X , c,A, ξ〉

X ∈[

ω2]ω

, c :[

X]2

→ ω1

A ⊂ P(X), |A| ≤ ω,ξ ∈ ω1

Ordering: 〈Y , d ,B, ζ〉 � 〈X , c,A, ξ〉 iffY ⊃ X ,d ⊃ c, B ⊃ A, ζ ≥ ξ

(1) ∀A ∈ A ∀β ∈ (Y \ X) ∩ min A ξ ⊂ d ′′[{β}, A].(2) Seal certain countable rainbow sets !

∀A ∈ A ∀β ∈ (Y \ X) the set A ∪ {β} is not a d-rainbow .

〈P,�〉 does not satisfy ω2-c.c.!

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 25 / 36

Page 158: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colouring of 2ω1

It is consistent that GCH holds and ∃f ⊢ ω2 6→[(ω1; ω)]2ω1s.t. there is no un-

countable f -rainbow.

TheoremIt is consistent that CH holds, 2ω1 is arbitrarily large and∃g ⊢ 2ω1 6→[(ω1, ω2)]

2ω1

s. t. there is no uncountable g-rainbow subsetof 2ω1.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 26 / 36

Page 159: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colouring of 2ω1

It is consistent that GCH holds and ∃f ⊢ ω2 6→[(ω1; ω)]2ω1s.t. there is no un-

countable f -rainbow.

TheoremIt is consistent that CH holds, 2ω1 is arbitrarily large and∃g ⊢ 2ω1 6→[(ω1, ω2)]

2ω1

s. t. there is no uncountable g-rainbow subsetof 2ω1.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 26 / 36

Page 160: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colouring of 2ω1

It is consistent that GCH holds and ∃f ⊢ ω2 6→[(ω1; ω)]2ω1s.t. there is no un-

countable f -rainbow.

TheoremIt is consistent that CH holds, 2ω1 is arbitrarily large and∃g ⊢ 2ω1 6→[(ω1, ω2)]

2ω1

s. t. there is no uncountable g-rainbow subsetof 2ω1.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 26 / 36

Page 161: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colouring of 2ω1

It is consistent that GCH holds and ∃f ⊢ ω2 6→[(ω1; ω)]2ω1s.t. there is no un-

countable f -rainbow.

TheoremIt is consistent that CH holds, 2ω1 is arbitrarily large and∃g ⊢ 2ω1 6→[(ω1, ω2)]

2ω1

s. t. there is no uncountable g-rainbow subsetof 2ω1.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 26 / 36

Page 162: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Colouring of 2ω1

It is consistent that GCH holds and ∃f ⊢ ω2 6→[(ω1; ω)]2ω1s.t. there is no un-

countable f -rainbow.

TheoremIt is consistent that CH holds, 2ω1 is arbitrarily large and∃g ⊢ 2ω1 6→[(ω1, ω2)]

2ω1

s. t. there is no uncountable g-rainbow subsetof 2ω1.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 26 / 36

Page 163: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The →∗ relation

f :[

X]n

→ C is κ-bounded iff |f−1{c}| ≤ κ for each c ∈ C.

λ →∗ (α)nκ−bdd iff for every κ-bounded colouring of

[

λ]n there is a

rainbow set of order type α,

→poly

Theorem (Galvin)

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 27 / 36

Page 164: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The →∗ relation

f :[

X]n

→ C is κ-bounded iff |f−1{c}| ≤ κ for each c ∈ C.

λ →∗ (α)nκ−bdd iff for every κ-bounded colouring of

[

λ]n there is a

rainbow set of order type α,

→poly

Theorem (Galvin)

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 27 / 36

Page 165: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The →∗ relation

f :[

X]n

→ C is κ-bounded iff |f−1{c}| ≤ κ for each c ∈ C.

λ →∗ (α)nκ−bdd iff for every κ-bounded colouring of

[

λ]n there is a

rainbow set of order type α,

→poly

Theorem (Galvin)

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 27 / 36

Page 166: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The →∗ relation

f :[

X]n

→ C is κ-bounded iff |f−1{c}| ≤ κ for each c ∈ C.

λ →∗ (α)nκ−bdd iff for every κ-bounded colouring of

[

λ]n there is a

rainbow set of order type α,

→poly

Theorem (Galvin)

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 27 / 36

Page 167: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The →∗ relation

f :[

X]n

→ C is κ-bounded iff |f−1{c}| ≤ κ for each c ∈ C.

λ →∗ (α)nκ−bdd iff for every κ-bounded colouring of

[

λ]n there is a

rainbow set of order type α,

→poly

Theorem (Galvin)

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 27 / 36

Page 168: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The →∗ relation

f :[

X]n

→ C is κ-bounded iff |f−1{c}| ≤ κ for each c ∈ C.

λ →∗ (α)nκ−bdd iff for every κ-bounded colouring of

[

λ]n there is a

rainbow set of order type α,

→poly

Theorem (Galvin)

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 27 / 36

Page 169: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

The →∗ relation

f :[

X]n

→ C is κ-bounded iff |f−1{c}| ≤ κ for each c ∈ C.

λ →∗ (α)nκ−bdd iff for every κ-bounded colouring of

[

λ]n there is a

rainbow set of order type α,

→poly

Theorem (Galvin)

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 27 / 36

Page 170: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

λ → (α)nκ implies λ →∗ (α)n

κ−bdd

Proof:

Let f :[

λ]n

→ λ be κ-bounded

There is a function g :[

λ]n

→ κ such that: if f (A) = f (B) theng(A) 6= g(B)

If Y ⊂ λ is g-monochromatic then Y is f -rainbow

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 28 / 36

Page 171: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

λ → (α)nκ implies λ →∗ (α)n

κ−bdd

Proof:

Let f :[

λ]n

→ λ be κ-bounded

There is a function g :[

λ]n

→ κ such that: if f (A) = f (B) theng(A) 6= g(B)

If Y ⊂ λ is g-monochromatic then Y is f -rainbow

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 28 / 36

Page 172: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

λ → (α)nκ implies λ →∗ (α)n

κ−bdd

Proof:

Let f :[

λ]n

→ λ be κ-bounded

There is a function g :[

λ]n

→ κ such that: if f (A) = f (B) theng(A) 6= g(B)

If Y ⊂ λ is g-monochromatic then Y is f -rainbow

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 28 / 36

Page 173: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

λ → (α)nκ implies λ →∗ (α)n

κ−bdd

Proof:

Let f :[

λ]n

→ λ be κ-bounded

There is a function g :[

λ]n

→ κ such that: if f (A) = f (B) theng(A) 6= g(B)

If Y ⊂ λ is g-monochromatic then Y is f -rainbow

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 28 / 36

Page 174: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

λ → (α)nκ implies λ →∗ (α)n

κ−bdd

Proof:

Let f :[

λ]n

→ λ be κ-bounded

There is a function g :[

λ]n

→ κ such that: if f (A) = f (B) theng(A) 6= g(B)

If Y ⊂ λ is g-monochromatic then Y is f -rainbow

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 28 / 36

Page 175: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Basic theorems on →∗

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Corollary(Galvin)

ω1 →∗ (α)22−bdd for α < ω1.

Theorem (Galvin)

CH implies that ω1 6→∗(ω1)

22−bdd .

Theorem (Todorcevic)

PFA implies that ω1 →∗ (ω1)22−bdd .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 29 / 36

Page 176: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Basic theorems on →∗

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Corollary(Galvin)

ω1 →∗ (α)22−bdd for α < ω1.

Theorem (Galvin)

CH implies that ω1 6→∗(ω1)

22−bdd .

Theorem (Todorcevic)

PFA implies that ω1 →∗ (ω1)22−bdd .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 29 / 36

Page 177: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Basic theorems on →∗

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Corollary(Galvin)

ω1 →∗ (α)22−bdd for α < ω1.

Theorem (Galvin)

CH implies that ω1 6→∗(ω1)

22−bdd .

Theorem (Todorcevic)

PFA implies that ω1 →∗ (ω1)22−bdd .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 29 / 36

Page 178: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Basic theorems on →∗

λ → (α)nk implies λ →∗ (α)n

k−bdd.

Corollary(Galvin)

ω1 →∗ (α)22−bdd for α < ω1.

Theorem (Galvin)

CH implies that ω1 6→∗(ω1)

22−bdd .

Theorem (Todorcevic)

PFA implies that ω1 →∗ (ω1)22−bdd .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 29 / 36

Page 179: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

If c :[

ω1]2

→ ω1 is 2-bounded then T.F.A.E.

c ⊢ ω1 6→∗(ω1)

22−bdd

there is no uncountable c-rainbow

Theorem (Abraham, Cummings, Smyth)

It is consistent that there is a function c :[

ω1]2

→ ω1 whichc.c.c-indestructibly establishes ω1 6→

∗(ω1)22−bdd .

If CH holds and there is a Suslin-tree then there is a functionc′ :

[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 30 / 36

Page 180: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

If c :[

ω1]2

→ ω1 is 2-bounded then T.F.A.E.

c ⊢ ω1 6→∗(ω1)

22−bdd

there is no uncountable c-rainbow

Theorem (Abraham, Cummings, Smyth)

It is consistent that there is a function c :[

ω1]2

→ ω1 whichc.c.c-indestructibly establishes ω1 6→

∗(ω1)22−bdd .

If CH holds and there is a Suslin-tree then there is a functionc′ :

[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 30 / 36

Page 181: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

If c :[

ω1]2

→ ω1 is 2-bounded then T.F.A.E.

c ⊢ ω1 6→∗(ω1)

22−bdd

there is no uncountable c-rainbow

Theorem (Abraham, Cummings, Smyth)

It is consistent that there is a function c :[

ω1]2

→ ω1 whichc.c.c-indestructibly establishes ω1 6→

∗(ω1)22−bdd .

If CH holds and there is a Suslin-tree then there is a functionc′ :

[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 30 / 36

Page 182: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

If c :[

ω1]2

→ ω1 is 2-bounded then T.F.A.E.

c ⊢ ω1 6→∗(ω1)

22−bdd

there is no uncountable c-rainbow

Theorem (Abraham, Cummings, Smyth)

It is consistent that there is a function c :[

ω1]2

→ ω1 whichc.c.c-indestructibly establishes ω1 6→

∗(ω1)22−bdd .

If CH holds and there is a Suslin-tree then there is a functionc′ :

[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 30 / 36

Page 183: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

If c :[

ω1]2

→ ω1 is 2-bounded then T.F.A.E.

c ⊢ ω1 6→∗(ω1)

22−bdd

there is no uncountable c-rainbow

Theorem (Abraham, Cummings, Smyth)

It is consistent that there is a function c :[

ω1]2

→ ω1 whichc.c.c-indestructibly establishes ω1 6→

∗(ω1)22−bdd .

If CH holds and there is a Suslin-tree then there is a functionc′ :

[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 30 / 36

Page 184: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

Con ( ∃c :[

ω1]2

→ ω1 s.t for each c.c.c P V P |= f ⊢ ω1 6→∗(ω1)

22−bdd .)

Con( ∃c′ :[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

TheoremIf GCH holds then for each k ∈ ω there is a k-bounded colouringf :

[

ω1]2

→ ω1 and there are two c.c.c posets P and Q such thatVP |= “f c.c.c-indestructibly establishes ω1 6→

∗[(ω1;ω1)]k−bdd ”,but

VQ |= “ ω1 is the union of countably many f -rainbow sets ”.

f is k-bounded,for each A ∈

[

ω1]ω1 and B ∈

[

ω1]ω1 there is ξ such that

|{〈α, β〉 ∈ A × B : α < β ∧ f (α, β) = ξ}| = k .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 31 / 36

Page 185: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

Con ( ∃c :[

ω1]2

→ ω1 s.t for each c.c.c P V P |= f ⊢ ω1 6→∗(ω1)

22−bdd .)

Con( ∃c′ :[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

TheoremIf GCH holds then for each k ∈ ω there is a k-bounded colouringf :

[

ω1]2

→ ω1 and there are two c.c.c posets P and Q such thatVP |= “f c.c.c-indestructibly establishes ω1 6→

∗[(ω1;ω1)]k−bdd ”,but

VQ |= “ ω1 is the union of countably many f -rainbow sets ”.

f is k-bounded,for each A ∈

[

ω1]ω1 and B ∈

[

ω1]ω1 there is ξ such that

|{〈α, β〉 ∈ A × B : α < β ∧ f (α, β) = ξ}| = k .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 31 / 36

Page 186: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

Con ( ∃c :[

ω1]2

→ ω1 s.t for each c.c.c P V P |= f ⊢ ω1 6→∗(ω1)

22−bdd .)

Con( ∃c′ :[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

TheoremIf GCH holds then for each k ∈ ω there is a k-bounded colouringf :

[

ω1]2

→ ω1 and there are two c.c.c posets P and Q such thatVP |= “f c.c.c-indestructibly establishes ω1 6→

∗[(ω1;ω1)]k−bdd ”,but

VQ |= “ ω1 is the union of countably many f -rainbow sets ”.

f is k-bounded,for each A ∈

[

ω1]ω1 and B ∈

[

ω1]ω1 there is ξ such that

|{〈α, β〉 ∈ A × B : α < β ∧ f (α, β) = ξ}| = k .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 31 / 36

Page 187: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

Con ( ∃c :[

ω1]2

→ ω1 s.t for each c.c.c P V P |= f ⊢ ω1 6→∗(ω1)

22−bdd .)

Con( ∃c′ :[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

TheoremIf GCH holds then for each k ∈ ω there is a k-bounded colouringf :

[

ω1]2

→ ω1 and there are two c.c.c posets P and Q such thatVP |= “f c.c.c-indestructibly establishes ω1 6→

∗[(ω1;ω1)]k−bdd ”,but

VQ |= “ ω1 is the union of countably many f -rainbow sets ”.

f is k-bounded,for each A ∈

[

ω1]ω1 and B ∈

[

ω1]ω1 there is ξ such that

|{〈α, β〉 ∈ A × B : α < β ∧ f (α, β) = ξ}| = k .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 31 / 36

Page 188: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

Con ( ∃c :[

ω1]2

→ ω1 s.t for each c.c.c P V P |= f ⊢ ω1 6→∗(ω1)

22−bdd .)

Con( ∃c′ :[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

TheoremIf GCH holds then for each k ∈ ω there is a k-bounded colouringf :

[

ω1]2

→ ω1 and there are two c.c.c posets P and Q such thatVP |= “f c.c.c-indestructibly establishes ω1 6→

∗[(ω1;ω1)]k−bdd ”,but

VQ |= “ ω1 is the union of countably many f -rainbow sets ”.

f is k-bounded,for each A ∈

[

ω1]ω1 and B ∈

[

ω1]ω1 there is ξ such that

|{〈α, β〉 ∈ A × B : α < β ∧ f (α, β) = ξ}| = k .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 31 / 36

Page 189: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Under Martin’s Axiom

Con ( ∃c :[

ω1]2

→ ω1 s.t for each c.c.c P V P |= f ⊢ ω1 6→∗(ω1)

22−bdd .)

Con( ∃c′ :[

ω1]2

→ 2 and there is a c.c.c poset Q such that

(a) V |= there is no uncountable c′-rainbow set,

(b) V Q |= there is an uncountable c′-rainbow set.

TheoremIf GCH holds then for each k ∈ ω there is a k-bounded colouringf :

[

ω1]2

→ ω1 and there are two c.c.c posets P and Q such thatVP |= “f c.c.c-indestructibly establishes ω1 6→

∗[(ω1;ω1)]k−bdd ”,but

VQ |= “ ω1 is the union of countably many f -rainbow sets ”.

f is k-bounded,for each A ∈

[

ω1]ω1 and B ∈

[

ω1]ω1 there is ξ such that

|{〈α, β〉 ∈ A × B : α < β ∧ f (α, β) = ξ}| = k .

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 31 / 36

Page 190: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

Based on some results of Abraham and Todorcevic.

Fnm(ω1, K ) = {s : s is a function, dom(s) ∈[

ω1]m

, ran(s) ⊂ K}

〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) is dom-disjoint iff dom(sα)∩ dom(sβ) = ∅

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 32 / 36

Page 191: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

Based on some results of Abraham and Todorcevic.

Fnm(ω1, K ) = {s : s is a function, dom(s) ∈[

ω1]m

, ran(s) ⊂ K}

〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) is dom-disjoint iff dom(sα)∩ dom(sβ) = ∅

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 32 / 36

Page 192: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

Based on some results of Abraham and Todorcevic.

Fnm(ω1, K ) = {s : s is a function, dom(s) ∈[

ω1]m

, ran(s) ⊂ K}

〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) is dom-disjoint iff dom(sα)∩ dom(sβ) = ∅

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 32 / 36

Page 193: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

Based on some results of Abraham and Todorcevic.

Fnm(ω1, K ) = {s : s is a function, dom(s) ∈[

ω1]m

, ran(s) ⊂ K}

〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) is dom-disjoint iff dom(sα)∩ dom(sβ) = ∅

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 32 / 36

Page 194: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

DefinitionLet G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if givenany dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there areα < β < ω1 such that

[sα, sβ ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

K

ω1

G

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 33 / 36

Page 195: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

DefinitionLet G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if givenany dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there areα < β < ω1 such that

[sα, sβ ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

K

ω1

sαsβ

dom(sα) dom(sβ) dom(sγ)

G

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 33 / 36

Page 196: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

DefinitionLet G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if givenany dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there areα < β < ω1 such that

[sα, sβ ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

K

ω1

sαsβ

dom(sα) dom(sβ) dom(sγ)

G

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 33 / 36

Page 197: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A black box theorem

DefinitionLet G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if givenany dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there areα < β < ω1 such that

[sα, sβ ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

K

ω1

sαsβ

dom(sα) dom(sβ) dom(sγ)

G

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 33 / 36

Page 198: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A blackbox theorem

Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given anydom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there are α < β < ω1 suchthat

[sα, sβ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

TheoremAssume 2ω1 = ω2. If G is a strongly solid graph on ω1 × K , where|K | ≤ 2ω1 , then for each m ∈ ω there is a c.c.c poset P of size ω2 suchthat

V P |= “G is c.c.c-indestructibly m-solid. ”

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 34 / 36

Page 199: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A blackbox theorem

Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given anydom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there are α < β < ω1 suchthat

[sα, sβ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

TheoremAssume 2ω1 = ω2. If G is a strongly solid graph on ω1 × K , where|K | ≤ 2ω1 , then for each m ∈ ω there is a c.c.c poset P of size ω2 suchthat

V P |= “G is c.c.c-indestructibly m-solid. ”

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 34 / 36

Page 200: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A blackbox theorem

Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given anydom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there are α < β < ω1 suchthat

[sα, sβ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

TheoremAssume 2ω1 = ω2. If G is a strongly solid graph on ω1 × K , where|K | ≤ 2ω1 , then for each m ∈ ω there is a c.c.c poset P of size ω2 suchthat

V P |= “G is c.c.c-indestructibly m-solid. ”

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 34 / 36

Page 201: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A blackbox theorem

Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given anydom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there are α < β < ω1 suchthat

[sα, sβ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

TheoremAssume 2ω1 = ω2. If G is a strongly solid graph on ω1 × K , where|K | ≤ 2ω1 , then for each m ∈ ω there is a c.c.c poset P of size ω2 suchthat

V P |= “G is c.c.c-indestructibly m-solid. ”

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 34 / 36

Page 202: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A blackbox theorem

Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given anydom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there are α < β < ω1 suchthat

[sα, sβ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

TheoremAssume 2ω1 = ω2. If G is a strongly solid graph on ω1 × K , where|K | ≤ 2ω1 , then for each m ∈ ω there is a c.c.c poset P of size ω2 suchthat

V P |= “G is c.c.c-indestructibly m-solid. ”

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 34 / 36

Page 203: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

A blackbox theorem

Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given anydom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1, K ) there are α < β < ω1 suchthat

[sα, sβ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

TheoremAssume 2ω1 = ω2. If G is a strongly solid graph on ω1 × K , where|K | ≤ 2ω1 , then for each m ∈ ω there is a c.c.c poset P of size ω2 suchthat

V P |= “G is c.c.c-indestructibly m-solid. ”

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 34 / 36

Page 204: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Bibliography

Abraham, U; Cummings, J; Smyth, C; Some results in polychromatic Ramsey theory. J.Symb. Log. 72, no. 3, 865-896 (2007)

Hajnal, A; Rainbow Ramsey Theorems for Colorings Establishing Negative PartitionRelations, Fund. Math. 198 (2008), 255-262.

Shelah, S; Coloring without triangles and partition relations, Israel J. Math. 20 (1975), 1-12

Soukup, L; Indestructible colourings and rainbow Ramsey theorems, arxiv preprint.

Todorcevic, S; Forcing positive partition relations. Trans. Am. Math. Soc. 280, 703-720(1983)

http://www.renyi.hu/∼soukup

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 35 / 36

Page 205: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Bibliography

Abraham, U; Cummings, J; Smyth, C; Some results in polychromatic Ramsey theory. J.Symb. Log. 72, no. 3, 865-896 (2007)

Hajnal, A; Rainbow Ramsey Theorems for Colorings Establishing Negative PartitionRelations, Fund. Math. 198 (2008), 255-262.

Shelah, S; Coloring without triangles and partition relations, Israel J. Math. 20 (1975), 1-12

Soukup, L; Indestructible colourings and rainbow Ramsey theorems, arxiv preprint.

Todorcevic, S; Forcing positive partition relations. Trans. Am. Math. Soc. 280, 703-720(1983)

http://www.renyi.hu/∼soukup

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 35 / 36

Page 206: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Summary

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 36 / 36

Page 207: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Summary

ZFC ω1 6→[

(ω, ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 36 / 36

Page 208: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Summary

ZFC ω1 6→[

(ω, ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

CH ω1 6→[

ω1]2ω

∧ no rainbow K3

♦ ω1 6→[

ω1]2ω1

∧ no rainbow K3

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 36 / 36

Page 209: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Summary

ZFC ω1 6→[

(ω, ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

ZFC ω1 6→[

(ω1;ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

CH ω1 6→[

ω1]2ω

∧ no rainbow K3

♦ ω1 6→[

ω1]2ω1

∧ no rainbow K3

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 36 / 36

Page 210: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Summary

ZFC ω1 6→[

(ω, ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

ZFC ω1 6→[

(ω1;ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

ZFC ω1 6→[

(ω1, ω1)]2ω1

=⇒ ∀d :[

3]2

→ ω1

ZFC ω1 6→[

(ω1, ω1)]2

10 ∧ not univ for K5-rainbows

ZFC ω1 6→[

(ω1, ω1)]2ω1

=⇒ ∃ infinite rainbow

CH ω1 6→[

ω1]2ω

∧ no rainbow K3

♦ ω1 6→[

ω1]2ω1

∧ no rainbow K3

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 36 / 36

Page 211: Rainbow Colourings - Portal · → λ. Y ⊂ X is an f-rainbowiff f ↾ Y n is 1–1 . Problem (Erdos, Hajnal, 1967, Problem 68)˝ Assume that f : ω1 2 → 3 establishes ω1 →

Summary

ZFC ω1 6→[

(ω, ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

ZFC ω1 6→[

(ω1;ω1)]2ω1

=⇒ ∀d :[

ω]2

→ ω1

ZFC ω1 6→[

(ω1, ω1)]2ω1

=⇒ ∀d :[

3]2

→ ω1

ZFC ω1 6→[

(ω1, ω1)]2

10 ∧ not univ for K5-rainbows

ZFC ω1 6→[

(ω1, ω1)]2ω1

=⇒ ∃ infinite rainbow

CH ω1 6→[

ω1]2ω

∧ no rainbow K3

♦ ω1 6→[

ω1]2ω1

∧ no rainbow K3

ZFC ω1 6→[

ω1]2

6 ∧ not univ for K4-rainbows

Soukup, L (Rényi Institute) Rainbow Colourings LC2008 36 / 36