31
1/31 CERTS Review, Aug 56, 2014 Random Topology Power Grid Modeling and Automated Simulation Platform Zhifang Wang Virginia Commonwealth University Robert J. Thomas Cornell University

Random Topology Power Grid Modeling and Automated ...Review,&Aug&506,&2014&& 1/31 Random Topology Power Grid Modeling and Automated Simulation Platform Zhifang Wang Virginia Commonwealth

Embed Size (px)

Citation preview

1/31 CERTS  Review,  Aug  5-­‐6,  2014    

Random Topology Power Grid Modeling and Automated

Simulation Platform

Zhifang Wang Virginia Commonwealth University

Robert J. Thomas Cornell University

2/31 CERTS  Review,  Aug  5-­‐6,  2014    

Project Objectives

u Complete a comprehensive study of realistic power grid topology and parameters.

u Formulate appropriate random topology power grid models.

u Provide an automated simulation platform ­ enable sufficient testing and verification of

new concepts, methods, and controls in power grids

­ compatible with MATPOWER

3/31 CERTS  Review,  Aug  5-­‐6,  2014    

Motivation of the Project

u Future power engineers and researchers need appropriate randomly generated grid network topologies to do genuine Monte Carlo experiments. Ø  If the random networks are truly representative and if the

concepts or methods test well in this environment they would test well on any instance of such a network.

u Current situation

­ extremely difficult to obtain realistic system data from utilities

­  limited reference test cases

­ existing models with shortcomings, i.e. connectivity and scaling property

4/31 CERTS  Review,  Aug  5-­‐6,  2014    

Critical Applications for the Grid

•  Renewable generation interconnection

•  PMU placements to facilitate fast state estimation and real-time state awareness

•  Transmission expansion planning

•  Grid vulnerability and security analysis •  Transient stability controls

•  Power market strategy experiments •  Smart grid communication infrastructure –  especially when the communication network

layout partially or fully overlaps with the grid itself, e.g. power line communication.

5/31 CERTS  Review,  Aug  5-­‐6,  2014    

Precursors of our study

•  Most of the literature has used one specific real grid or reference models for testing –  IEEE 30 57, 118 and 300 bus systems –  Power systems test case archive: http://www.ee.washington.edu/research/pstca/

•  Scalable models to grasp macroscopic trends –  [Parashar and Thorp ’04] ring topology –  [Rosas-Casals, Valverde, Solé ’07] tree topology

–  [Watts, Strogatz ’98], small-world topology

– Other models

6/31 CERTS  Review,  Aug  5-­‐6,  2014    

Electric Power Grid Network

•  3 sections in transmission – High, Medium and Low

voltage sections

Transmission  

Distribu.on  

7/31 CERTS  Review,  Aug  5-­‐6,  2014    

Admittance matrix and the graph topology

•  Line-Node Incidence Matrix A (M x N):

Line m: node i – node j →

•  Admittance matrix

•  Graph Laplacian:

•  Observation: Y is a complex-weighted Laplacian

•  Complex weights given by the admittances of the lines

Y = AT diag(y1, . . . , yM )A

L = ATA

yl = 1/zl = 1/(rl + jxl)

8/31 CERTS  Review,  Aug  5-­‐6,  2014    

The Laws for the Grid

•  Voltage, Currents, Powers à narrow spectrum

•  “phasors” (complex numbers whose phase and amplitude match the AC signal V or I), e.g.

•  Kirchhoff’s Voltage/Current laws (KVL-KCL)

•  Ohm’s law

Alterna;ng  Current(AC)  ~frequency                60  or  50  Hz  

X

i2Circuit

Vi = 0,X

i2Node

Ii = 0

Vi = ZiIi

f0

V = |V | exp(j✓)v(t) =p(2)|V | exp(j✓) exp(j2⇡f0t)

9/31 CERTS  Review,  Aug  5-­‐6,  2014    

Statistical Modeling of Power Grid

•  Topological and electrical characteristics of the transmission grid

•  As captured by the statistical properties of the grid admittance matrix Y

•  Propose a random topology power grid model with plausible topology and electrical parameters

Electricity

 Gen

erators  

Loads  

Power  Grid  

10/31 CERTS  Review,  Aug  5-­‐6,  2014    

Statistical Modeling of Power Grid

Topology Electrical

Parameters

Rand-topo Power Grid Model

11/31 CERTS  Review,  Aug  5-­‐6,  2014    

Power Grid – Network Topology

Topology

•  Small-world Properties •  Node Degree Distribution •  Connectivity Scaling •  etc

12/31 CERTS  Review,  Aug  5-­‐6,  2014    

Power Grid – Electrical Parameters

•  The line impedance distribution – heavy-tailed

Electrical Parameters

13/31 CERTS  Review,  Aug  5-­‐6,  2014    

Random topology models

•  ‘98 Watts and Strogatz, Nature

– Conjecture: Power Grids are small world networks

– Topological studies: [Newman ’03], [Whitney & Alderson’06],[Wang, Rong,’09]

– Degree distribution: [Albert et al. ‘04],[Rosas-Casals et al. ‘07]

Erdos  Reny   Small  World   Power  network  

14/31 CERTS  Review,  Aug  5-­‐6,  2014    

Small world : high clustering coefficient

•  high average clustering coefficient of the sample power grid network examined

Defini;on  of  clustering  coefficient  

#vi

vj vkCi =2|{ejk}|ki(ki � 1)

8 (vj , vk) 2 Ni, ejk 2 E

(Ni = neighbors of vi)

(E = edges)

(ki = degree of i)

Random  graph    (  Erdös  Rényi)    

Grid

15/31 CERTS  Review,  Aug  5-­‐6,  2014    

Small world: short average path length

•  Observation:

•  Not bad to overlay communications with the lines – relatively short distance

N:  Number  of  nodes  m:  number  of  lines    <k>  Average  Degree  <l>  Average  shortest  

path  length  ρ      Pearson  Coefficient  R{                }  Ra;o  of  nodes  

with  larger  nodal  degree  

< l >⇡ 3 log(N)

k k>

16/31 CERTS  Review,  Aug  5-­‐6,  2014    

Degree distribution

•  Most researchers assume that power grid node degree has a Geometric PDF

– e.g.[Albert et al. ’04,Rosas-Casals’07]

•  Way to highlight: Probability Generating Function (PGF)

–  For a mixture model

 Our  analysis  result  1.The  degree  distribu;on  is  a  mixture  of  a  truncated  exponen;al  and  finite  support  random  variable  

2.The  average  degree  vs.  N  is  O(1)  

GX(z) = E(zX) =X

k

p(X=k)zk

17/31 CERTS  Review,  Aug  5-­‐6,  2014    

Results (a)  All  buses  (b)  Gen  buses    (c)  Load  buses.    (d)  Connec.on  buses.  (e)    Gen+Load  buses.    The  zeros  are    red  ’+’  

Degree  of  Generator  buses  

Degree  of  Load  buses  

Degree  of  Connec;on  buses      PGF  NYISO

 data  

18/31 CERTS  Review,  Aug  5-­‐6,  2014    

Small World conjecture

•  Some evidence contradicting it

– For a SW network with N nodes, to guarantee with high probability a connected network (no isolated component) the scaling laws for the average degree <k> >> log N

– The average degree in power grids is ~ constant (3-4)

19/31 CERTS  Review,  Aug  5-­‐6,  2014    

Scaling Algebraic Connectivity

•  Graph Laplacian second smallest eigenvalue

•  Values shown in 2  D  regular  graph  k=4  and  k=3  

1  D  regular  graph  k=4  and  k=2  

20/31 CERTS  Review,  Aug  5-­‐6,  2014    

Plausible topology

•  The proposed model that matches this trend is what we call nested-Small-world graph

–  IEEE à SW subnet 30; NYISO & WECC à SW sub-net 300

IEEE  300:  Correlated  rewiring    

 SW:  independent  rewiring    

21/31 CERTS  Review,  Aug  5-­‐6,  2014    

Impedance distribution

•  Absolute values of the impedances

•  Prevailingly heavy tailed distributions

•  NYISO best fit à clipped Double Pareto Log-normal

Zpr = R + jX ⇡ jX

22/31 CERTS  Review,  Aug  5-­‐6,  2014    

Impedance attribution

•  Impedance grows with distance: local à short; rewires à medium; lattice connections à long lines

•  RT-nestedSmallWorld: developed a Matlab code pkg – a helpful tool for many other researchers in the area.

23/31 CERTS  Review,  Aug  5-­‐6,  2014    

Bus Type Assignment

•  Three bus types in a grid:

• Generation bus •  Load bus

• Connection bus •  RT-nestedSmallWorld: random assignment

according to the bus type ratios

24/31 CERTS  Review,  Aug  5-­‐6,  2014    

Bus Type vs. Node degree

•  Correlation between bus types and node degree

25/31 CERTS  Review,  Aug  5-­‐6,  2014    

Bus Type vs. Clustering Coefficient

26/31 CERTS  Review,  Aug  5-­‐6,  2014    

The Stochastic Model for Cascading Process

Model the line states as conditionally Markovian given the line flows ``crossing’’ times

B’(t)  incoporates  the  grid  network  state  

Line  State  transi;on:  line  tripping  vs.  restora;on  

The  crossing  intervals  of  line  flow  F(t)  determine  the  transi;on  rates:  λ0(t)-­‐random  con;ngency,  

 λ*(t)-­‐overload  line  tripping  rate  

ܤᇱ()ܤ

ଵᇱ(ଵ)ܤ

ܤᇱ(ଵ)

ᇱ(ଵ)ܤ

,ଵܤᇱ(ଶ)

,ିଵܤᇱ(ଶ)

,ܤᇱ(ଶ)

ଵ()ߣ

ߣ()

()ߣ

ିଵߣ(ଵ)

ଵ(ଵ)ߣ

(ଵ)ߣStage 0 (intact)

Stage 1 (1 line lost)

Stage 2 (2 lines lost)

Line  ac;ve  Line    tripped  

the  overload  threshold  

27/31 CERTS  Review,  Aug  5-­‐6,  2014    

Flow model and level crossing statistics

Gaussian model for the flows (tractability)

Gaussian  sta;s;cs  of  genera;on  and  loads              We  assume  loads  are  independent  spa;ally,  non-­‐sta;onary  (cyclosta;onary)    Temporal  correla;on  of  the  load  is  properly  captured    

The  sta;s;cs  of  line  flows  

Gaussian  process  à    Rice’s  result  (1958)  Sta;s;cs  of  level-­‐crossing  intervals  èline  state  transi;on  rate  èaverage  life;me  èprobability  of  overload  and    distances  metrics    

The  power  grid  DC  flow  model  

At  –  the  line-­‐node  incidence  matrix  yl –  the  line  admimance  

28/31 CERTS  Review,  Aug  5-­‐6,  2014    

–  Expected number of flow crossings after which the line gets tripped

– 

–  If it is beyond the coherence time of the process, the non stationary metric can be computed using the worst case parameters

Expected Safety Time of a Line

29/31 CERTS  Review,  Aug  5-­‐6,  2014    

Bus Type Assignment vs. Grid Vulnerability

IEEE-300 bus system,

given the same topology and generation and load statistical settings, the test cases with random bus type assignments tend to have larger expected safety time than that of the realistic grid settings.

30/31 CERTS  Review,  Aug  5-­‐6,  2014    

Conclusions

•  The admittance matrix of power grids has peculiar features that follow clear statistical trends.

•  RT-nestedSmallWorld model is designed to capture the accurate statistical properties of real grid topology and electrical parameters.

•  It is critical to understand how to design the RT-power grid model better.

•  Random assignment of bus types will be replaced with a more accurate one which is consistent with that of realistic grids.

31/31 CERTS  Review,  Aug  5-­‐6,  2014    

Questions? J

Thank You!