32
1 / 32 Quantum Theory of Superresolution for Incoherent Optical Imaging Ranjith Nair, Xiao-Ming Lu, Shan Zheng Ang, and Mankei Tsang [email protected] http://mankei.tsang.googlepages.com/ Feb 2017 * This work is supported by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2011-07 and an MOE Tier 1 grant.

Ranjith Nair, Xiao-Ming Lu, Shan Zheng Ang, and Mankei TsangQuantum Optics 13 / 32 Mandel and Wolf, Optical Coherence and Quantum Optics; Goodman, Statistical Optics Thermal sources,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 1 / 32

    Quantum Theory of Superresolution for Incoherent Optical Imaging ∗

    Ranjith Nair, Xiao-Ming Lu, Shan Zheng Ang, and Mankei Tsang

    [email protected]

    http://mankei.tsang.googlepages.com/

    Feb 2017

    ∗This work is supported by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2011-07 and an MOETier 1 grant.

  • Quantum Metrology for Dynamical Systems

    2 / 32

    ■ Generalized “Energetic” Quantum Limits

    ◆ Decision-theoretic, valid for any POVM◆ Waveform estimation: Tsang, Wiseman, Caves, PRL 106,

    090401 (2011).◆ Hypothesis testing : Tsang, Nair, PRA 86, 042115 (2012).◆ Lossy : Tsang, NJP 15, 073005 (2013).◆ Experiment: Iwasawa et al., PRL 111, 163602 (2013).◆ “Heisenberg” limit: Berry, Tsang, Hall, Wiseman, PRX 5,

    031018 (2015).◆ Spectrum parameter (e.g., stochastic background), The-

    ory+Experiment: Ng et al., PRA 93, 042121 (2016).

    ■ Quantum-Mechanics-Free Subsystems

    ◆ a.k.a. Backaction Evasion, Quantum Noise Cancellation, beatbackaction-enforced SQL

    ◆ Tsang, Caves, PRL 105, 123601 (2010); PRX 2, 031016(2012).

    ■ Time-Series Analysis

    ◆ Quantum Smoothing: Tsang, PRL 102, 250403 (2009); PRA80, 033840 (2009); 81, 013824 (2010).

    ◆ Hypothesis testing : Tsang, PRL 108, 170502 (2012).◆ Fast filter : Tsang, PRA 92, 062119 (2015).

    ■ Cavity Quantum Electro-Optics

    ◆ Tsang, PRA 81, 063837 (2010); 84, 043845 (2011).

  • Quantum Metrology for Incoherent Imaging

    3 / 32

    (a)

    (b)

    Quantum Measurement

    on image plane

    Tsang, Nair, and Lu, Physical Review X 6, 031033 (2016).Follow-up: Nair and Tsang, Opt. Express 24, 3684 (2016); Tsang, Nair, and Lu, Proc. SPIE 10029, 1002903 (2016); Nair and Tsang,

    PRL (Editors’ Suggestion) 117, 190801 (2016); Tsang, arXiv:1605.03799 (2016); Ang, Nair, and Tsang, arXiv:1606.00603 (2016);

    Tsang, arXiv:1608.03211 (2016); Lu, Nair, Tsang, arXiv:1609.03025 (2016).

  • Experiments

    4 / 32

    ■ Tang, Durak, and Ling, “Fault-tolerant andfinite-error localization for point emitterswithin the diffraction limit,” Optics Express24, 22004 (2016).

    ■ Yang, Taschilina, Moiseev, Simon, Lvovsky,“Far-field linear optical superresolution viaheterodyne detection in a higher-order localoscillator mode,” Optica 3, 1148 (2016).

    ■ Tham, Ferretti, Steinberg, “BeatingRayleigh’s Curse by Imaging Using PhaseInformation,” Phys. Rev. Lett., e-printarXiv:1606.02666 (2016).

    ■ Paúr, Stoklasa, Hradil, Sánchez-Soto, Re-hacek, “Achieving the ultimate optical reso-lution,” Optica 3, 1144 (2016).

  • Imaging of One Point Source

    5 / 32

    Diffraction-Limited

    1. Fluorescence Microscopy ($X billion/year)2. Space telescopes (Webb, $8.8 billion)3. Ground-based telescopes:

    (a) Large Binocular Telescope (LBT) ($120million)

    (b) Giant Magellan Telescope (GMT) (∼$1billion)

    (c) Thirty Meter Telescope (TMT) (∼$1.2billion)

    (d) European Extremely Large Telescope(E-ELT) (∼$1.2 billion)

  • LBT Point-Spread Function

    6 / 32

    ■ Esposito et al., “Large Binocular Telescope Adaptive Optics System: New achievements andperspectives in adaptive optics,” Proc. SPIE 8149, 814902 (2011)

    ■ Strehl ratio > 80% at infrared

  • Inferring Position of One Point Source

    7 / 32

    ■ Classical source■ Given N detected photons, mean-square error:

    ∆X21 =σ2

    N, σ ∼ λ

    N.A.. (1)

    ■ Farrell (1966), Helstrom (1970), Lindegren(1978), Bobroff (1986), ...

    ■ Full EM, full quantum: Tsang, Optica 2, 646(2015).

  • Superresolution Microscopy

    8 / 32

    ■ PALM, STORM, etc.: isolate emitters. Locate cen-troids.

    https://cam.facilities.northwestern.edu/588-2/single-molecule-localization-microscopy/

    ■ Special fluorophores■ slow■ doesn’t work for stars

  • Two Point Sources

    9 / 32

    (a)

    (b)

    ■ Λ(x) = 12

    [

    |ψ1(x)|2 + |ψ2(x)|2]

    ■ Rayleigh’s criterion (1879): requires θ2 &σ (heuristic)

  • Centroid and Separation Estimation

    10 / 32

    ■ Bettens et al., Ultramicroscopy 77, 37 (1999);Van Aert et al., J. Struct. Biol. 138, 21 (2002);Ram, Ward, Ober, PNAS 103, 4457 (2006).

    ■ Incoherent sources, Poisson statistics■ X1 = θ1 − θ2/2, X2 = θ1 + θ2/2.■ Cramér-Rao bound for centroid:

    ∆θ21 ≥σ2

    N. (2)

    ■ CRB for separation estimation: two regimes

    ◆ θ2 ≫ σ:

    ∆θ22 ≥4σ2

    N, (3)

    ◆ θ2 ≪ σ:

    ∆θ22 →4σ2

    N×∞ (4)

    (a)

    (b)

  • Rayleigh’s Curse

    11 / 32

    ■ Cramér-Rao bound (standard in single-molecule imaging):

    ∆θ21 ≥1

    J (direct)11∆θ22 ≥

    1

    J (direct)22(5)

    J (direct) is Fisher information for direct imaging■ Gaussian PSF, similar behavior for other PSF■ Rayleigh’s curse■ PALM/STED/STORM: avoid violating Rayleigh

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ

    2)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4Classical Fisher information

    J(direct)11

    J(direct)22

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bound on separation error

    Direct imaging (1/J(direct)22 )

  • Quantum Metrology

    12 / 32

    ■ Measuring the spatial intensity (direct imaging, CCD) isjust one measurement method. Quantum mechanics al-lows infinite possibilities.

    ■ Helstrom (1967): For any measurement

    Σ ≥ J−1 ≥ K−1, (6)

    Kµν =M Re (trLµLνρ) , (7)∂ρ

    ∂θµ=

    1

    2(Lµρ+ ρLµ) . (8)

    ■ K(ρ) is the quantum Fisher information, the ultimateamount of information in the photons.

    ■ Coherent sources: Tsang, Optica 2, 646 (2015).■ Mixed states:

    ρ =∑

    n

    Dn |en〉 〈en| , (9)

    Lµ = 2∑

    n,m;Dn+Dm 6=0

    〈en| ∂ρ∂θµ |em〉Dn +Dm

    |en〉 〈em| . (10)Quantum Measurement

    on image plane

  • Quantum Optics

    13 / 32

    ■ Mandel and Wolf, Optical Coherence and Quantum Optics; Goodman, Statistical Optics■ Thermal sources, e.g., stars, fluorescent particles.■ Average photon number per mode ǫ≪ 1 at optical frequencies (visible, UV, X-ray, etc.).■ ǫ ∼ 0.01 for the sun at visible, ǫ ∼ 10−6 for fluorophores.

    image plane

    ■ Quantum state in M temporal modes on image plane is ρ⊗M , where

    ρ = (1− ǫ) |vac〉 〈vac|+ ǫ2(|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|) +O(ǫ2) 〈ψ1|ψ2〉 6= 0, (11)

    |ψ1〉 =∫ ∞

    −∞

    dxψ(x−X1) |x〉 , |ψ2〉 =∫ ∞

    −∞

    dxψ(x−X2) |x〉 . (12)

    ■ derive from zero-mean Gaussian P function, mutual coherence■ Multiphoton coincidence: rare, little info as ǫ≪ 1 (homeopathy)■ Similar model for stellar interferometry in Gottesman, Jennewein, Croke, PRL 109, 070503

    (2012); Tsang, PRL 107, 270402 (2011).

  • Plenty of Room at the Bottom

    14 / 32

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation

    /(N

    /4σ2)

    0

    1

    2

    3

    4Quantum and classical Fisher information

    K11

    J(direct)11

    K22

    J(direct)22

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bounds on separation error

    Quantum (1/K22)

    Direct imaging (1/J(direct)22 )

    ■ Tsang, Nair, and Lu, Physical Review X 6, 031033 (2016)

    ∆θ22 ≥1

    K22=

    1

    N∆k2. (13)

    ■ thermal sources with arbitrary ǫ: Nair and Tsang, PRL (Editors’ Suggestion) 117, 190801(2016); Lupo and Pirandola, ibid. 117, 190802 (2016).

    ■ Hayashi ed., Asymptotic Theory of Quantum Statistical Inference; Fujiwara JPA 39, 12489(2006): there exists a POVM such that ∆θ2µ → 1/Kµµ, N → ∞.

  • Hermite-Gaussian Basis

    15 / 32

    ■ project in Hermite-Gaussian basis:

    E1(q) = |φq〉 〈φq | , (14)

    |φq〉 =∫ ∞

    −∞

    dxφq(x) |x〉 , (15)

    φq(x) =

    (

    1

    2πσ2

    )1/4

    Hq

    (

    x√2σ

    )

    exp

    (

    − x2

    4σ2

    )

    . (16)

    ■ Assume PSF ψ(x) is Gaussian (common).

    1

    J (HG)22=

    1

    K22=

    4σ2

    N. (17)

    ■ Maximum-likelihood estimator can saturate the classical bound asymptotically for large N .■ arXiv:1605.03799v2: Using SPADE and Max-Like, it is proven that

    Σ ≤ 16σ2

    Nfor any detected N. (18)

  • Spatial-Mode Demultiplexing (SPADE)

    16 / 32

    image plane

    ...

    ...

    image plane

    ...

    ...

    ■ Many other ways (optical comm.), e.g.,

    ◆ DAB Miller, “Self-configuring universal linear optical components,” Photonics Research 1, 1(2013).

    ◆ Li et al., “Space-division multiplexing: the next frontier in optical communication,”Adv. Opt. Photon. 6, 413 (2014).

  • Elementary Explanation

    17 / 32

    ■ Incoherent sources: energy in first-order mode is ∝ (d/2)2 + (−d/2)2 = d2/2■ Zeroth-order mode is just background noise, removing it improves SNR.■ Why quantum formalism?

    ◆ Fundamental quantum limit◆ Ensures measurement is physical◆ Discover new possibilities

  • SLIVER (SuperLocalization via Image-inVERsion interferometry)

    18 / 32

    Estimator

    Image

    Inversion

    ■ Nair and Tsang, Opt. Express 24, 3684 (2016).■ Laser Focus World, Feb 2016 issue.■ Prior classical theory/experiment of image-inversion interferometer:

    ◆ Wicker, Heintzmann, Opt. Express 15, 12206 (2007).◆ Wicker, Sindbert, Heintzmann, Opt. Express 17, 15491 (2009).◆ Weigel, Babovsky, Kiessling, Kowarschik, Opt. Commun. 284, 2273 (2011).◆ No statistical analysis, predicted

  • Theoretical Follow-up

    19 / 32

    Dimensions Sources Theory Experimental proposals1. Tsang, Nair, and Lu,

    Phys. Rev. X 6, 031033(2016)

    1D Weak thermal (opticalfrequencies and above)

    Quantum SPADE

    2. Nair and Tsang, Op-tics Express 24, 3684(2016)

    2D Thermal (any fre-quency)

    Semiclassical SLIVER

    3. Tsang, Nair, and Lu,Proc. SPIE 10029,1002903 (2016)

    N/A Weak thermal, lasers Semiclassical N/A

    4. Nair and Tsang, PRL(Editors’ Suggestion)117, 190801 (2016)

    1D Thermal Quantum SLIVER

    5. Tsang,arXiv:1605.03799

    1D Weak thermal Quantum, Bayesian,Minimax

    SPADE

    6. Ang, Nair, and Tsang,arXiv:1606.00603

    2D Weak thermal Quantum SPADE, SLIVER

    7. Tsang,arXiv:1608.03211

    2D Weak thermal, multiplesources

    Quantum SPADE

    8. Lu, Nair, Tsang,arXiv:1609.03025

    2D Weak thermal, one-versus-two

    Quantum, binary hy-pothesis testing

    SPADE, SLIVER

    Other groups:

    ■ Lupo and Pirandola, PRL (Editors’ Suggestion) 117, 190801 (2016).■ Rehacek et al., Optics Letters 42, 231 (2017).■ Krovi, Guha, Shapiro, arXiv:1609.00684.

  • Experiments

    20 / 32

    ■ Tang, Durak, and Ling, “Fault-tolerant and finite-error localization for point emitters within thediffraction limit,” Optics Express 24, 22004 (2016).

    ◆ SLIVER◆ Laser, classical noise

    ■ Yang, Taschilina, Moiseev, Simon, Lvovsky, “Far-field linear optical superresolution viaheterodyne detection in a higher-order local oscillator mode,” Optica 3, 1148 (2016).

    ◆ Mode heterodyne◆ Laser

    ■ Tham, Ferretti, Steinberg, “Beating Rayleigh’s Curse by Imaging Using Phase Information,”Phys. Rev. Lett., e-print arXiv:1606.02666 (2016).

    ◆ variation of SPADE◆ two independent SPDC sources, ∼ 2× quantum limit

    ■ Paúr, Stoklasa, Hradil, Sánchez-Soto, Rehacek, “Achieving the ultimate optical resolution,”Optica 3, 1144 (2016).

    ◆ variation of SPADE◆ laser, close to quantum limit (caveat)

  • SPLICE

    21 / 32

    ■ Tham, Ferretti, Steinberg, Phys. Rev. Lett., e-print arXiv:1606.02666 (2016).

  • Popular Coverage

    22 / 32

    ■ Viewpoint in APS Physics■ IoP Physics World and nanotechweb.org:

    Seth Lloyd of the Massachusetts Instituteof Technology in the US is impressed. ‘This isawesome work and I am amazed that it hasn’tbeen done before,’ he says. ‘Perhaps everyonethought it was too good to be true.’

    ■ APS Physics Central■ Phys.org

  • Arbitrary Source Distributions

    23 / 32

    3

    iTEM

    21

    3

    2

    1

    ×104

    0

    2

    1.5

    1

    0.5

    |θ10|10−3 10−2 10−1

    MSE

    forθ̌10

    ×10−5

    2

    4

    6

    8X moment

    |θ01|10−3 10−2 10−1

    MSE

    forθ̌01

    ×10−5

    2

    4

    6

    8Y moment

    θ20

    10−2 10−1

    MSE

    forθ̌20

    10−6

    10−5

    10−4X2 moment

    θ02

    10−2 10−1

    MSE

    forθ̌02

    10−6

    10−5

    10−4Y 2 moment

    β(10, 01) ×10−35 10 15

    MSE

    forθ̌11

    10−6

    10−5

    XY moment

    SPADE (simulated)

    SPADE (theory)

    direct imaging (simulated)

    direct imaging (theory)

    ■ Yang et al., Optica 3, 1148 (2016): even moments■ Tsang, arXiv:1608.03211: Generalized SPADE: Enhanced estimation of 2nd or higher moments

  • Quantum Metrology Kills Rayleigh’s Criterion

    24 / 32

    θ2/σ0 0.2 0.4 0.6 0.8 1

    Mean-squareerror/(4σ2/N

    )

    0

    20

    40

    60

    80

    100Cramér-Rao bounds on separation error

    Quantum (1/K22)

    Direct imaging (1/J(direct)22 )

    image plane

    ...

    ...

    Estimator

    Image

    Inversion

    ■ FAQ: https://sites.google.com/site/mankeitsang/news/rayleigh/faq■ email: [email protected]

    https://sites.google.com/site/mankeitsang/news/rayleigh/[email protected]

  • ǫ ≪ 1 Approximation

    25 / 32

    ■ Chap. 9, Goodman, Statistical Optics:

    “If the count degeneracy parameter is much less than 1, it is highly probable that there will be either zero or

    one counts in each separate coherence interval of the incident classical wave. In such a case the classical

    intensity fluctuations have a negligible ”bunching” effect on the photo-events, for (with high probability) the

    light is simply too weak to generate multiple events in a single coherence cell.

    ■ Zmuidzinas (https://pma.caltech.edu/content/jonas-zmuidzinas), JOSA A 20, 218 (2003):

    “It is well established that the photon counts registered by the detectors in an optical instrument follow

    statistically independent Poisson distributions, so that the fluctuations of the counts in different detectors are

    uncorrelated. To be more precise, this situation holds for the case of thermal emission (from the source, the

    atmosphere, the telescope, etc.) in which the mean photon occupation numbers of the modes incident on the

    detectors are low, n ≪ 1. In the high occupancy limit, n ≫ 1, photon bunching becomes important in that it

    changes the counting statistics and can introduce correlations among the detectors. We will discuss only the

    first case, n ≪ 1, which applies to most astronomical observations at optical and infrared wavelengths.”

    ■ Hanbury Brown-Twiss (post-selects on two-photon coincidence, homeopathy): poor SNR,obsolete for decades in astronomy.

    ■ See also Labeyrie et al., An Introduction to Optical Stellar Interferometry, etc.■ Fluorescent particles: Pawley ed., Handbook of Biological Confocal Microscopy, Ram, Ober,

    Ward (2006), etc., may have antibunching, but Poisson model is fine and standard because ofǫ≪ 1.

  • Binary SPADE

    26 / 32

    image plane

    image plane

    leaky modes

    leaky modes

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ

    2)

    0

    0.2

    0.4

    0.6

    0.8

    1Classical Fisher information

    J(HG)22 = K22

    J(direct)22

    J(b)22

    θ2/W0 1 2 3 4 5

    Fisher

    inform

    ation/(π

    2N/3W

    2)

    0

    0.2

    0.4

    0.6

    0.8

    1Fisher information for sinc PSF

    K22

    J(direct)22

    J(b)22

  • Numerical Performance of Maximum-Likelihood Estimators

    27 / 32

    θ2/σ0 0.5 1 1.5 2

    Mean-squareerror/(4σ2/L

    )

    0

    0.5

    1

    1.5

    2Simulated errors for SPADE

    1/J′(HG)22 = 1/K

    ′22

    L = 10L = 20L = 100

    θ2/σ0 0.5 1 1.5 2

    Mean-squareerror/(4σ2/L

    )

    0

    0.5

    1

    1.5

    2Simulated errors for binary SPADE

    1/J′(b)22

    L = 10L = 20L = 100

    ■ L = number of detected photons■ biased (violate CRB), < 2×CRB.

  • Minimax/Bayesian

    28 / 32

    Bayesian CRB for any biased/unbiased estimator (e-print arXiv:1605.03799v2)

    Quantum/SPADE: supθ

    Σ22(θ) ≥4σ2

    N, Direct imaging: sup

    θΣ

    (direct)22 (θ) ≥

    √2σ2

    3√N. (19)

    Photon Number L103 104

    supθMSE

    /σ2

    10−4

    10−3

    10−2

    10−1(d) Worst-case error

    Quantum/SPADE limit

    SPADE (ML)

    SPADE (modified ML)

    Direct-imaging limit

    Direct imaging (ML)

    θ/σ0 0.1 0.2 0.3

    MSE

    /(4σ2/L)

    0

    0.5

    1

    1.5

    2(a) SPADE with ML

    CRBL=1000L=2000L=5000L=10000

    θ/σ0 0.1 0.2 0.3

    MSE

    /(4σ2/L)

    0

    0.5

    1

    1.5

    2(b) SPADE with modified ML

    CRBL=1000L=2000L=5000L=10000

    θ/σ0 0.1 0.2 0.3

    MSE

    /(4σ2/L)

    0

    20

    40

    60(c) Direct imaging with ML

    CRBL=1000L=2000L=5000L=10000

  • 2D SPADE and SLIVER

    29 / 32

    Ang, Nair, Tsang, e-print arXiv:1606.00603

  • Misalignment

    30 / 32

    SPADE

    photon-counting

    array

    image

    plane

    image

    plane

    object

    plane

    ■ ξ ≡ |θ̌1 − θ|/σ ≪ 1■ Overhead photons N1 ∼ 1/ξ2■ ξ = 0.1, N1 ∼ 100.■ CRB for Xs = θ1 ± θ2/2

    θ2/σ0 2 4 6 8 10

    Fisher

    inform

    ation/(N

    /4σ2)

    0

    0.2

    0.4

    0.6

    0.8

    1Fisher information for misaligned SPADE

    J(HG)22 (ξ = 0)

    J(HG)22 (ξ = 0.1)

    J(HG)22 (ξ = 0.2)

    J(HG)22 (ξ = 0.3)

    J(HG)22 (ξ = 0.4)

    J(HG)22 (ξ = 0.5)

    J(direct)22

    θ2/σ0 0.5 1 1.5 2

    mean-square

    error/(4σ2/L)

    0

    2

    4

    6

    8

    10

    12Simulated errors for misaligned binary SPADE

    1/J′(b)22 (ξ = 0.1)

    1/J′(direct)22

    L = 10L = 100L = 1000

    10−1 100 101

    Mean-square

    error/(2σ2/N

    )

    100

    101

    102Cramér-Rao bounds on localization error

    Hybrid (ξ = 0)Hybrid (ξ = 0.1)Hybrid (ξ = 0.2)Hybrid (ξ = 0.3)Hybrid (ξ = 0.4)Hybrid (ξ = 0.5)Direct imaging

  • Quantum Computational Imaging

    31 / 32

    ■ Design quantum computer to

    ◆ Maximize information extraction◆ Reduce classical computational complexity

  • Quantum Technology 1.5

    32 / 32

    Quantum Metrology for Dynamical SystemsQuantum Metrology for Incoherent ImagingExperimentsImaging of One Point SourceLBT Point-Spread FunctionInferring Position of One Point SourceSuperresolution MicroscopyTwo Point SourcesCentroid and Separation EstimationRayleigh's CurseQuantum MetrologyQuantum OpticsPlenty of Room at the BottomHermite-Gaussian BasisSpatial-Mode Demultiplexing (SPADE)Elementary ExplanationSLIVER (SuperLocalization via Image-inVERsion interferometry)Theoretical Follow-upExperimentsSPLICEPopular CoverageArbitrary Source DistributionsQuantum Metrology Kills Rayleigh's Criterion1 ApproximationBinary SPADENumerical Performance of Maximum-Likelihood EstimatorsMinimax/Bayesian2D SPADE and SLIVERMisalignmentQuantum Computational ImagingQuantum Technology 1.5