38
17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to- 320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure © 2017 IEEE International Solid-State Circuits Conference 1 of 38 Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: Cheng Wang and Ruonan Han Massachusetts Institute of Technology Cambridge, MA, USA A 220-to-320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

Rapid and Energy-Efficient Molecular Sensing Using Dual mm

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 1 of 38

Rapid and Energy-Efficient Molecular Sensing

Using Dual mm-Wave Combs in 65nm CMOS:

Cheng Wang and Ruonan Han

Massachusetts Institute of Technology

Cambridge, MA, USA

A 220-to-320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

Page 2: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 2 of 38

Outline

• Background

• Dual-Frequency-Comb Spectroscopy

• Architecture and Circuit Design

• Measurement Results

• Conclusions

Page 3: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 3 of 38

mm-Wave/THz Rotational Spectroscopy

• Rotation of polar molecules leads to absorption spectrum‒ Maximum absorption in mmW/lower-THz range

‒ Sub-MHz Doppler-limited linewidth high selectivity

Gas SampleTx Rx

IF signal

detection

IF

Rotational spectrum

0 0.3 0.6 0.9 1.2

40

60

80

100

Tra

ns

mit

tan

ce

(%

)

16O

12C

32S

Frequency (THz)

J=1

J=40

Detection of rotational

spectral lines using EM wave

Peak absorption intensity at

mmW/sub-THz band

J - quantum number

Page 4: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 4 of 38

Portable Molecular Sensor: Applications

[tabletopwhale.com]

• Human breath analyzer for

biomedical diagnosis

• Environment monitoring

for toxic gas leakage‒ Sensor network

‒ UAV platform

[www.dji.com]75% N2

13% O2

6% H2O 5% CO2

1% volatile organic compounds

3500 chemical species

Concentration: ppm-to-ppt level

Bio-makers for diseases or

metabolic disorders

(e.g. acetone glucose

Type 1 diabetes)

1% VOC

Hu

ma

n e

xh

ale

d g

ases

Page 5: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 5 of 38

Challenges of Chip-Scale Spectrometer

MoleculeFrequency

(GHz)Toxic?

Flammable

?

Carbon Monoxide (CO) 230.538001 Y Y

Sulfur Dioxide (SO2) 251.199668

Hydrogen Cyanide (HCN) 265.886441 Y

Hydrogen Sulfide (H2S) 300.511959 Y

Nitric Oxide (NO) 250.436966 Y

Nitrogen Dioxide (NO2) 292.987169 Y

Nitric Acid (HNO3) 256.657731 Y

Ammonia (NH3) 208.145904 Y

Carbonyl Sulfide (OCS) 231.060989 Y Y

Ethylene Oxide (C2H4O) 263.292515 Y

Acrolein (C3H4O) 267.279359 Y

Methyl Mercaptan

(CH3SH)227.564672 Y

Methyl Isocyanate

(CH3NCO)269.788609 Y

Methyl Chloride (CH3Cl) 239.187523 Y Y

Methanol (CH3OH) 250.507156 Y Y

Acetone (CH3COCH3) 259.6184 Y Y

Acrylonitrile (C2H3CN) 265.935603 Y Y

[Source: HITRAN.org]

• High selectivity– Wideband(100GHz), high resolution(10kHz) spectrometer

• High sensitivity, fast scanning– High radiated power (below saturation), low noise detection

• High energy efficiency

[C. F. Neese, IEEE Sensors Journal, 2012]

periodic

Spectrum: 210-270GHz

Page 6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 6 of 38

Outline

• Background

• Dual-Frequency-Comb Spectroscopy

• Architecture and Circuit Design

• Measurement Results

• Conclusions

Page 7: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 7 of 38

Dual-Frequency-Comb Spectroscopy

Conventional single-tone spectroscopy

Dual-frequency-comb spectroscopy

• Simultaneous scanning using 20 comb lines

(8 minutes for 100GHz bandwidth, τint=1ms)

• Single frequency sweep (e.g. ~3 hours for 100GHz bandwidth, τint=1ms)

IF

f0 Gas Sample

320f (GHz)220 320f (GHz)220

f0 f0-IF

f0 TX RX

fref - fIF/6

IF1,2, ,n

fD: 10GHz

fref

Gas Sample

IF1,2, ,n

Comb A Comb BfD

Spectrum of Comb A Spectrum of Comb B

320f (GHz)220

fD

320f (GHz)220

fIF

TX+RX TX+RX

Page 8: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 8 of 38

Energy Efficiency Improvement

• Dual frequency combs (DFC) scheme breaks the conventional

efficiency-bandwidth tradeoff using parallelism

• Linear scalability between bandwidth and energy consumption

Radiated power of silicon-

based sources above 200GHz

Total energy consumption for

full-band scanning

This work

TST

2016

On-wafer measured with an

assumed 50% radiation efficiency Radiated

RFIC

2016

RFIC

2015

ISSCC

2015

ISSCC

20161

PBW

JSSC

2013

TST

2015MTT

2012

CSICS

2012 ISSCC

2016

ISSCC

2015

3 4 8 16 24 40

Bandwidth (%)

102

104

106

Co

ns

um

ed

en

erg

y (a

.u.)

DFC spectrometer

Conventional

single-tone

spectrometer

100×

10×

3E BW

2E BW

E BW

Page 9: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 9 of 38

Outline

• Background

• Dual-Frequency-Comb Spectroscopy

• Architecture and Circuit Design

• Measurement Results

• Conclusions

Page 10: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 10 of 38

Architecture of A 220-to-320GHz Comb

• Tunable transceiver: 10 active molecular probes (AMP)‒ Seamless coverage of 100GHz bandwidth

‒ Simultaneous transmit and receive ~2x higher efficiency

fref : 45~46.67GHz fD/2: 5GHz

Tripler

BufferDown-Mixer

Up-Mixer

IF-1 IF-2 IF-3 IF-4 IF-5

IF0 IF1 IF2 IF3 IF4

2f0

f0=3fref Up-Conv.

Chain

Down-Conv.

Chain

2f0+fD 2f0+2fD 2f0+3fD 2f0+4fD

2f0-fD

2f0-2fD 2f0-3fD 2f0-4fD 2f0-5fD

Active Molecular

Probe (AMP)

Page 11: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 11 of 38

Distributed Comb-Spectral Radiation

Hemispheric

silicon lens

CMOS chip

• On-chip backside radiation through 10 radiators‒ Improved antenna efficiency by narrowband operation

• High-resistivity hemispheric silicon lens is used‒ Lower sensitivity to the radiator offset from the center

(compared to hyper-hemispheric lens)

‒ No additional beam collimation

Page 12: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 12 of 38

Active Molecular Probe (AMP)

• Multi-functional module simultaneously performs ‒ Highly-efficient frequency doubling

‒ Low-noise heterodyne sub-harmonic down mixing

‒ Efficient antenna for input/output radiation waves

Input +

@ f0

VG

VD & Mixer Output @ fIF

Input -

@ f0

fIF

f0

TX: 2f0

RX: 2f0+fIF

X2

+

-

Balun

Buffer

Core of AMP

Core

Slot balun

Output -Input

Output +

f 0

Page 13: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 13 of 38

AMP TX Mode: Frequency Doubling

f 0

Input +

@ f0

VG

RF

Choke

@ 2f0

VD & Mixer Output @ fIF

Input -

@ f0

TX: 2f0

RX: 2f0+fIF

• Conditions for high conversion efficiency‒ Maximum device power gain at fundamental frequency (f0)

‒ Minimum loss at 2f0 (e.g. harmonic feedback to the lossy gates)

‒ Instantaneous signal radiation at 2f0

Page 14: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 14 of 38

Maximum Device Power Gain Gmax

• Upper limit of matched power gain Gmax depends on

the unilateral gain U

Gms/GmaUnilateral gain U

Gmax, ~4U

fmax

U = 4

Gmax = 3.5U

Simulation using 65nm bulk

CMOS process

[R. Spence, Linear Active Networks 1968]

[O. Momeni, ISSCC 2013]

Page 15: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 15 of 38

Conventional YZ Embedding for Gmax

[R. Spence, Linear Active Networks 1968]

• Issues of YZ embedding with lumped elements‒ Loss from DC feed to bypass source current

‒ Loss from parasitic resistor associated with the source

‒ Impractical large inductor for Y element due to distributed

effect in high frequency

Y element for

shunt feedback

Z element for

series feedback

IN

OUT

DC

feed

Rsb

Csb

N+ N+

P type substrate

GateSource DrainBulk

Z element

Rsb

Y elementDC

feed

IN OUT

Csb

P+

Equivalent circuit Transistor structure

Page 16: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 16 of 38

Dual-transmission-line (DTL) Feedback

Gmax, K=1

Original power gain

5 dB gain

boost

fmax

where

• Adopt distributed feedback elements

• Ground the source of transistor

• Achieve Gmax accurately

Equations for feedback

parameter calculation:

Simulation using 65nm CMOS processTL1 (Z1,θ1)

Slot2 (Z2,θ2)

IN

OUT

Page 17: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 17 of 38

DTL Feedback Based on Slot Line @f0

Quasi-TEM Wave (Differential Mode)

Supported

E-field distribution @ f0

K=0.9, w/o

feedback

K 1, with DTL

feedbck

K

TM Wave(Common Mode)

Rejected

Simulated stability factor, K

Feedback through Slot 2

Electrical field Current

Page 18: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 18 of 38

Loss Minimization and Radiation @2f0

Quasi-TEM Wave (Differential Mode)

Supported

TM Wave(Common Mode)

Rejected

E-field distribution @ 2f0Folded-slot antenna

Harmonic signal isolation

Electrical field Current

Page 19: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 19 of 38

Simulation Results for Doubler at 275GHz

• 65nm bulk CMOS

• NMOS W/L=24μm/60nm

• Output power: 1.6mW

• Doubler efficiency: 43%

• Antenna efficiency: 45%

Doubler efficiency η (%) Antenna directivity

η=18%, w/o

feedback

η=43%, with DTL

feedback

η (%)

Page 20: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 20 of 38

AMP RX Mode: Heterodyne Mixing

• Mixer LO signal is the same as the doubler input signal @f0

• Further noise reduction: zero drain bias current

varistor mode mixing with reduced channel noise

Simulated SSB noise figure

Electrical field Current

Page 21: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 21 of 38

Slot Balun with Orthogonal Mode Filtering

• Amplitude and phase imbalance

in conventional baluns causes‒ Lower doubler efficiency

‒ Higher LO signal radiation at f0

• Proposed slot balun‒ Orthogonal mode filtering

‒ Symmetric output coupling

Active Molecular Probe (AMP)

Slot: λ/4 Resonator

Output -Input

Output +

Differential mode

(support)

Common mode

(reject)

In

Out

In

fIF

f0

RX: 2f0+fIF

X2

+

-

Balun

Buffer Core

Electrical field

Open Open

Page 22: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 22 of 38

Slot Balun with Orthogonal Mode Filtering

Simulated S-parameterSimulated amp. and phase error

• Nearly perfect single-ended signal to differential

signal conversion without errors

• Minimum insertion loss: 0.9 dB

• -10dB return loss bandwidth: 30%

Page 23: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 23 of 38

Up/Down-Conversion Mixer

• SSB mixers configured for up/down conversion chains

fref :

45~46.67GHz

f0

Up-conversion

Chain

Down-conversion

Chain

fD/2: 5GHz

f0+5GHz f0+10GHz f0+15GHz f0+20GHz

f0-5GHz f0-10GHz f0-15GHz f0-20GHz f0-25GHz

VGG VGG

Lange Coupler

f0 , 180

f0 , 0

f0 , 270

f0 , 90

VB

RF: f0+5GHz

VDD

VA

VC

VD

Static Frequency

Divider

LO: f0

fD: 10GHz

VA VB VC VD

5GHz IF IQ signals

0

90

270

180

fD: 10GHz

fD/2: 5GHz

DQ

Q CLK

DQ

QCLK

Page 24: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 24 of 38

Up/Down-Conversion Mixer

• IF phase configuration up or down sideband selection

• Low conversion loss: 2.3 dB

• Rejection of image, LO and inter-modulation signals: >30dB

f0

31dB

30.8dBf0

Phase(VA,VB,VC,VD)=(0°,180°,90°,270°)

Down sideband conv.

Phase(VA,VB,VC,VD)=(0°,180°,270°,90°)

Up sideband conv.

Page 25: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 25 of 38

Outline

• Background

• Dual-Frequency-Comb Spectroscopy

• Architecture and Circuit Design

• Measurement Results

• Conclusions

Page 26: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 26 of 38

Chip Micrograph and Packaging

Chip on PCB with Silicon Lens

• TSMC 65nm bulk CMOS process

• Chip area: 2mm×3mm

• DC power consumption: 1.7W

Chip bonded on PCB

with hemispheric

silicon lens

3 mm

2 m

m

Page 27: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 27 of 38

Measurement Setup of TX Mode

Signal Source (13.7-20GHz)

Spectrum Analyzer

VDI WR-3.4 EHM

Diplexer

WR-3.4 Horn Antenna

Spectrum/Antenna Pattern Measurement

φ

θ

Sensor HeadmW

WR-3.4-10 Taper

Erikson PM4 Power Meter

Power Measurement

WR-10 Waveguide

PCB

IF

LO

LNA

Loss0.7dB

Distance, d = 10cm

fref

IF=280MHz

Signal Source (fDigital=10GHz)

Signal Source (fref=45-46.67GHz)

fdigital

• For power measurement, only one AMP is turned on

at each time

Power measurement

using VDI Erickson

PM-4 power meter

Page 28: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 28 of 38

Measurement Results of TX Mode

Antenna pattern of a comb

line at 265GHz

Equivalent isotropic

radiated power (EIRP)

• Total radiated power of 10 comb lines: 5.2mW

Page 29: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 29 of 38

Measurement Results of TX Mode

Phase noise of 10 comb

lines

• Average measured phase noise for 10 comb lines at

1MHz offset: -102dBc/Hz

Span=10kHz

RBW=10Hz

Spectrum of a comb line

at 265GHz

Page 30: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 30 of 38

Measurement Setup of RX Mode

Signal Source

Horn Antenna

φ

θ

PCB

Distance = 15 cm

Signal Source

(fDigital=10GHz)

Signal Source

(fref=45-46.67GHz)

Spectrum

Analyzer

LNA IF=280MHz

IFiFrequency

Extender

Output: 220-320GHz

NF = IF noise floor (dBm/Hz) – (-174 (dBm/Hz)) – CG (dB)

Single-sideband noise figure (antenna loss incorporated)

Single-sideband conversion gain

CG =IF output power

Power received by RX antenna aperture

= IF output power (dBm) – (TX power (dBm) +TX antenna gain (dB)

– Path loss (dB) + RX antenna directivity (dB))

Page 31: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 31 of 38

Measurement Results of RX Mode

• Measured SSB noise figure: 14.6~19.5dB

Single-sideband conversion gainSingle-sideband noise figure

Page 32: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 32 of 38

1. 1 MHz frequency offset.

2. The Pradiated is estimated from the PA output power of 2.9 mW, and the antenna loss of 6 dB.

3. The NF of low noise amplifier in the receiver, excluding on-chip antenna loss.

4. The reported power in [3] is EIRP, not the total radiated power.

5. The overall NF (18.4~23.5 dB) =NFISO(13.9~19 dB, Isotropic Noise Figure)- (Antenna Loss (~4 dB) + Antenna

Gain (-1~2 dBi)) .

Ref.Frequency

(GHz)BW

(GHz)Pradiated

(mW)Phase Noise1

(dBc/Hz)Noise Figure

(dB)

This work

Topology

Comb(Tx/Rx)

220~320 100 5.2 -102 14.6~19.5

Tx+Rx 245 14 4.0 -85 18

Rx 210~305 95 N/A N/A18.4~23.55

(NFISO=13.9~19)

Tx 317 N/A 3.3 -79 N/A

208~255 47Tx 0.14 -80 N/A

210 14 0.72 -81 11~123Tx+Rx

PDC (W)

1.7

1.5+0.6(Tx+Rx)

0.24+0.086(Tx+Rx)

1.4

N/A

0.61

Technology(fmax)

65nm CMOS(250GHz)

0.13μm SiGe(500GHz)

65nm CMOS(N/A)

0.13μm SiGe(280GHz)

32nm CMOS(320GHz)

65nm CMOS(N/A)

TST2016

ISSCC2016

JSSC2015

VLSI2016

JSSC2014

Performance Comparison Table

Page 33: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 33 of 38

Spectroscopy Demonstration Setup

Spectroscopy setup at

MIT Terahertz Integrated

Electronics Lab

• Wavelength modulation (WM) is applied for reduced

impacts due to standing-wave formation‒ ∆f=240kHz, fm=50kHz, fIF=950MHz

Comb A Comb BGas Chamber

fIF

fm 2fm

LNABPFDetector

IFi

L=70 cm, Pressure =3 Pa

WM input

fref+Δf/6·sin(2πfmt)

Signal SourceSignal Source

Lock-in amplifier

fref – fIF/6

GPIB

GPIB

fm

Laptop

fm

Output

Spectral

line

Freq

Am

pli

tud

e

Time

Time

Page 34: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 34 of 38

Spectrum of Acetonitrile (CH3CN)

Spectral line w/o WM

Spectral line with WM

Measured spectrum of CH3CN

• Measurement matches the JPL

molecular database

• Spectral linewidth of 380kHz is

obtained‒ Absolute specificity (Q=7×105)

[JPL Molecular Spectroscopy, spec.jpl.nasa.gov.]

Page 35: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 35 of 38

Spectrometer Miniaturization

1st order derivative, SNR=54dB

2nd order derivative, SNR=44dB

3cm-long gas cell

• 54dB SNR has been achieved

with reduced gas cell size‒ Compact 3cm-long gas cell

‒ Sample: carbonyl sulfide (OCS),

1.21×10-21 cm integrated line

intensity (JPL) at 279.685GHz

‒ Integration time: 100ms

Comb A

Comb B

Page 36: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 36 of 38

Outline

• Background

• Dual-Frequency-Comb Spectroscopy

• Architecture and Circuit Design

• Measurement Results

• Conclusions

Page 37: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 37 of 38

Conclusions

• Architecture level: Dual-frequency-comb spectroscopy with

>2N× (N=10) faster frequency scanning and lower total

energy consumption

− Simultaneous bilateral transmit/receive

• Circuit level: multi-functional active molecule probe (AMP),

performing frequency doubler, sub-harmonic mixer and on-

chip antenna simultaneously

− Proposed dual-transmission-line (DTL) feedback accurately

achieves Gmax

• Prototype: 220-to-320GHz comb spectrometer with state-of-

the-art 5.2mW radiated power and 14.6-to-19.5dB NF

− Spectroscopy demonstration with 3-cm gas cell and a SNR

of 54dB

Page 38: Rapid and Energy-Efficient Molecular Sensing Using Dual mm

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure© 2017 IEEE International Solid-State Circuits Conference 38 of 38

Acknowledgement

• MIT Center for Integrated Circuits & Systems

• TSMC University Shuttle Program

• Dr. Richard Temkin (MIT Physics), Prof. Tomás Palacios (MIT

EECS), Prof. Ehsan Afshari (University of Michigan) and Prof.

Anantha Chandrakasan (MIT EECS) for the support of testing

instruments

• Dr. Stephen Coy, Prof. Keith Nelson, Prof. Robert Field (MIT

Chemistry), Tingting Shi (MIT and Fudan University) and Prof.

John S. Muenter (University of Rochester) for technical

discussions and assistance