RCS Controller.pdf

Embed Size (px)

Citation preview

  • 8/18/2019 RCS Controller.pdf

    1/177

    NewROAC 1-AXIS CONTROLLER

    UM-RCS6-E0501

    RCS-6000 SeriesUSER'S MANUAL

  • 8/18/2019 RCS Controller.pdf

    2/177

    SAFETY INSTRUCTIONS

    Before installing, running, repairing and examining our product, read all of the contents of this

    manual and attached documents carefully. Please use controller after reading carefully

    about the safety information of machinery and tools.

    SAFETY SYMBOLS

    This manual uses safety symbols as follow. As the safety symbols contain very important

    matters, you must keep these in mind as you read through this manual.

    If mishandled, you may suffer sever, or even fatal injury.

    If mishandled, you may suffer serious or light injury. Keep in

    mind that you may also suffer sever injury.

    This mark is a notice of prohibition.

    For example, strict prohibition of fire use is marked as .

    This mark is a notice of compulsive particular.For example, mark of compulsive earth is .

     After reading, keep this manual somewhere easy to find for reference in the near future.

    This manual contains other reasonable notices marked as follows, which need to be read carefully.

    NOTE Referenceor 

  • 8/18/2019 RCS Controller.pdf

    3/177

    FOR SAFE USEFor prevention of electric shock

      The wiring work and the check should be done after more than 3 minutes since the power was off   and after POWER LED was off.  The controller and motor should be set up more than the third class grounding.

       A well-trained engineer should inspect the wiring work and the check only.

      Prevent cable from damaging, loading heavy things, and folding.

    For prevention of fire

      In case of trouble, disconnect the controller power. It causes a fire if the charged currentflows continually.

      Install controller, resurrection resistor and servomotor at noninflammability things. If install

      at or near inflammability things, it may causes fire.

    For prevention of injury

      Do not input any voltage to each terminal except the voltage referred to the operating

      manual. It causes an explosion, breakage, etc.  Connect the terminal correctly. It causes an explosion, breakage, etc.  Polarize correctly (R.S.T, U.V.W). It causes an explosion, breakage, etc.  For a moment do not touch the resurrection resistor, heat radiation plate, servomotor, etc.,  while current flow or even power was off. It causes a burn.

    Several Cautions

    ¡ß

    Caution about Installation

      Keep the right using method of controller and servomotor combination. Else it causes fire

      or trouble.  Do not use product in water sputtering or near inflammable gas area. It causes electric  shock or fire.

      Keep standard distance between controller and additional machinery and tools.

      Prevent insertion to controller’s inside of any conductive material or oil.

      Do not inflict considerable impact on controller or neither drop.

      Fix the controller on weight supportable place and servomotor on machine firmly.

  • 8/18/2019 RCS Controller.pdf

    4/177

    Caution about Wiring

       A ground terminal ( ) must be set up at third class grounding or higher. It causes electric shock  or fire.

     Do not touch any switch with wet hand. It causes electric shock.

     Implement wiring after fixing controller and servomotor.

     Correct the wiring polarity. It causes the shock-turn of motors.

     Do not connect three-phase power source to U, V, W terminals of controller’s output

      directly. It causes injury or fire. Fasten power source and output terminals with bolts firmly. It causes breakage or fire.

    ¡ß Caution about Running

      Do not remodel product.  Check each parameter before running. As machines may operate unexpected action.

      Do not change parameter extremely. It causes unstable motion.

      Do not touch motor’s body of rotation while running. It causes injury.  Run with only servomotor (no connection between motor and machine) while test running  to avoid unexpected accident.

      Hold the emergency stop enabling state always when start running.

      Do not touch heat radiation plate while controller is running neither power was off   for a moment.

    ¡ß Caution about Maintenance and Repair 

      Do not disjoint product.  Do not touch inside of controller. It causes electric shock.  Do not change wiring while current flow.

      Cover the terminal block with panel certainly while current flow.

      Do not touch after more than 3 minutes since the power was off.

  • 8/18/2019 RCS Controller.pdf

    5/177

    Contents 

    Safety Instruction

    For Safe Use

      Chapter 1 Product Overview

      1.1 Summary   1-1

      1.2 Product Composition   1-2 

      1.3 Configuration ( RCS-6000 Series )   1-3

      1.4 Teach Pendant : RCS-7000T   1-10 

      1.5 I/O Terminal Block & Cable  1-14

      1.6 I/O Connector    1-14

      1.7 Back-up Battery Unit ( only for Absolute Encoder )   1-14

      1.8 MPG Unit   1-14

      1.9 PC Interface Program   1-15 

      1.10 Noise Filter    1-15 

      1.11 Cable   1-15 

      1.12 Brake Unit   1-20 

      Chapter 2 Installation and Connection

      2.1 Placing and fixing Controller    2-2 

      2.2 Connecting Cables   2-3

      2.2.1 Connection on Front Panel   2-5 

      Chapter 3 Parameter Setup

      3.1 Opening Parameter Display   3-1

      3.2 Parameter Setup   3-2 

      3.2.1 Parameter for SERVO   3-2 

      3.2.2 Parameter for MECH   3-10 

      3.2.3 Parameter for OPER   3-13

      3.2.4 Parameter for I/O   3-26 

    C-1

  • 8/18/2019 RCS Controller.pdf

    6/177

    Contents 

      Chapter 4 I/O Instructions

      4.1 I/O Contact Status Verification & Test Method   4-1

      Chapter 5 JOG operation & Origin

      5.1 JOG Operation   5-1

      5.2 IJOG (Inching Jog) Movement   5-2 

      5.3 In JOG Mode, trouble shooting when problem occur    5-3

      5-4. Check the limit sensor of axis after moving the Robot to JOG  5-6 

      5-5. Operate Origin when there is no problem in Robot to move with JOG. 5-7

      Chapter 6 Editing New Program

      6.1 Edit and input new program   6-1

      6.1.1 Edit program   6-3

      Chapter 7 Point Teaching

      7.1 How to teach MDI(Manual Direct value Input)   7-1

      7.2 Teaching by JOG movement   7-2 

      7.3 Teaching by IJOG movement   7-4

      Chapter 8 Robot Commands

      8.1 Movement Condition Commands   8-1

      8.2 Movement Commands   8-6 

      8.3 Variable Treatment Commands   8-12 

      8.4 I/O Treatment Commands   8-13

      8.5 Program Control Commands   8-14

      Chapter 9 PLC Commands

    C-2

  • 8/18/2019 RCS Controller.pdf

    7/177

    Contents 

      Chapter 10 Programming Example

      10.1 Step (Incremental) Movement   10-1

      10.2 Movement using I/O Port   10-3

      10.3 Unlimited Constant Speed Movement   10-4

      10.4 Movement by Pulse Input   10-5 

      10.5 Turret Movement   10-6 

      10.6 The plural operation program   10-7 

      10.7 SImple Pick & Place Systems with Palletizing Function   10-8 

      Chapter 11 Program RUN using T/P

      11.1 Program Excution   11-1

      11.1.1 Selection of Robot Program   11-1

      11.1.2 Program Excution ( Step RUN -> AUTO RUN )   11-2 

      11.1.3 Restart from stopped step   11-4

      11.2 PLC Program Selection   11-5 

      11.2.1 Select PLC Program   11-5 

      11.2.2 PLC program excution   11-6 

      Chapter 12 Program RUN using I/O

      12.1 Contact point for JOG operation   12-1

      12.1.1 Movement timing chart during JOG operation   12-2 

      12.2 Origin operation using external I/O contact point   12-3

      12.2.1 Contact point during Origin operation   12-3

      12.2.2 The Movement Timing Chart during Origin operation   12-3

      12.3 Robot Program Operation using external Contact point   12-4

      12.3.1 Contact point during Robot Program operation   12-4

      12.3.2 The Movement Timing Chart during Program Operation   12-4

    C-3

  • 8/18/2019 RCS Controller.pdf

    8/177

    Contents 

     Appendix 1 . Trouble and Measures

     Appendix 2. The Operation by Multipoint Communication

     Appendix 3. Cautions on Installing Servo Motor 

     Appendix 4. The Structure of T/P Manu Tree

    13. Warranty

    14. Revision Record

    C-4

  • 8/18/2019 RCS Controller.pdf

    9/177

    Chap.1 Pro duc t Overview 

     

    The single controller can construct the control system independently without other peripheral equipment

    because it is united with the single axis controller, AC servo drive and PLC function.

    Besides the single operation function, the single controller can also operate the synchronous operation,

    the unlimited rotation operation, the determined position operation by external contact point , and theMPG operation functions as well.

    Embedded PLC has contact point arithmetic, counter, and timer functions, enabling it to process

    several switch signals and sensors installed within the system.

    This product is easily programmable due to the various program methods, and can respond to many

    kinds

    of AC servomotors according to digital control.

    This product is able to keep accurate control because the extent of position control is a ±1 pulse of the

    encoder pulse.

    This product is able to operate remotely through serial communication and up/down-loads of inputted

    programs and parameters. Also each serial bus can connect to up to 32 controllers.

    Our product is able to search the starting point without any origin sensors (CW, CCW, ORG sensor).

    (When attached to rectangular machinery)

    Basic user I/O functions are user selectable through the contact point terminal.

     Available for single and three-phase power source.

    This product can be used for linear movements, rotations, conveyor systems, turret machines, and roll

    feeders.

      Chapter 1 Product Overview

      1-1. Summary

     1-1

  • 8/18/2019 RCS Controller.pdf

    10/177

    Chap.1 Pro duc t Overview 

    Main Option Remark

    Controller RCS-6001~6045 (9 Models) ¡Ü

    Teach Pendant RCS-7000T ¡Ü

     I/O Terminal Block ¡Ü

     I/O Connector  ¡Ü

     PC Interface Program Unihost ¡Ü

     Serial Connector RS 232C ¡Ü

     Noise Filter For Utiliy Power   ¡Ü

     Flexible Cable for Cartesian ¡Ü

     Inflexible Cable for Cartesian ¡Ü

    Regenerative resistor 6001,6002(X),6030,6045(2),Others(1) ¡Ü

    Manual Single Axis User's Manual ¡Ü

     Unihost User's Manual¡Ü

    Item Product

    Cable

     ¡á  Basic Product Composition included in Controller BOX 

    - AC 1 Axis Controller (1)  - User's Manual (1)

      - Unihost User's Manual (1)

      - Regenerative Risistor (1ea / 6001, 6002 - None, 6030, 6045 - 2ea)

      1-2. Product Composition

    ¡á  Ref 1.1 Composition Table

     1-2

  • 8/18/2019 RCS Controller.pdf

    11/177

    Chap.1 Pro duc t Overview 

     á  Small Capacity Size (RCS-6001 ~ 6004)

     1-3. Configuration (RCS-6000 Series)

      1-3-1. External Shape and Dimension

     1-3

  • 8/18/2019 RCS Controller.pdf

    12/177

    Chap.1 Pro duc t Overview 

     á  Middle Capacity Size (RCS-6005 ~ 6010)

      ¢º In case of CE Controller, this size covers RCS-6001 to RCS-6010. 

    1-4

  • 8/18/2019 RCS Controller.pdf

    13/177

    Chap.1 Pro duc t Overview 

     á  Large Capacity Size (RCS-6015 ~ 6045)

    ROBOSTAR

    RCS-6000

     1-5

  • 8/18/2019 RCS Controller.pdf

    14/177

    Chap.1 Pro duc t Overview 

     á  Composition of Model Designation

    RCS - 6001P

     

    ¡á

     Sticker Contents (attached on case of controller)

      ¡á Description

     

    RC : Robot Controller 

      S : Single (1 axis)

      60 : 6000 Series

      01 : Capacity (9 models)

      01 (100W), 02 (200W), 04 (400W), 05 (500W)

      10 (1KW), 15 (1.5KW), 20 (2KW), 30 (3KW), 45 (4.5KW)

      1-3-2. Model Designation & Sticker Contents

    NewRo  AC ROBOT

    Model : 1 AXIS CONTROLLER

    TYPE : RCS-6002

    SOURCE : AC 220~230V, 50/60 Hz

    OUTPUT CURRENT : 2.1A

    SER No. : 9907 001

    Robostar Co., Ltd. Korean Design

    Model

    Model

    Input Power 

    Output Rated Current

    Production Date & Order No.

     1-6

  • 8/18/2019 RCS Controller.pdf

    15/177

    Chap.1 Pro duc t Overview 

     á  Table for Adopted Motor per Controller Capacity

      RCS-6001

      RCS-6002

      RCS-6004

      RCS-6005

      RCS-6010

      RCS-6015

      RCS-6020

      RCS-6030

      RCS-6045

     

    Weight per Product Model

    6004 6005 6010 6015 6020 6030 6045

    1.5 2.2 2.2 4.15 4.25 4.25 4.3

    1.7 2.52 2.52 4.55 4.75 4.75 4.8

     

    Gross (kg)

    Net (kg)

    Weight

    1.2

    1.4

    Small

    Middle

    6001, 6002

    -

    -

    -

    -

    800/1KW 750/1KW

    1.5KW

    2.2KW

    3.5KW

    -

    -

    --

    850W

    1.3KW

    1.8KW

    2.9KW

    -

    -

    -450W

    1.2KW

    2KW

    3KW

    -

    600/900W

    50W/100W

    200W

    300/400/500W400(N80)/600W 300W

    -

    -

    -

    TF Series KF SeriesSize Model

     Adopted Motor (LG Servo Motor)

    CN Series LF Sries

    4.4KW 5KW

    Large

      1-3-3. Adopted Motor per Controller Capacity

    Note) Net Weight : Controller Itself 

      Gross Weight : Controller + Package

     1-7

  • 8/18/2019 RCS Controller.pdf

    16/177

    Chap.1 Pro duc t Overview 

     á  RCS-6000 Series

    Model

    Item 6001/02 6004 6005 6010 6015 6020 6030 6045

     Input Voltage

     Watt (KVA) 0.8 0.9 1.1 2.1 3.1 4.1 6.0 8.0

    -50§Ù

    /500W

     

    Circumstances of use

    ¡á   I/O Specification of the contact point

     1000 [step/program] (ROBOT, PLC program)

    Driving Current

    DC24V

    Max. 80 mA5~10 mA

    DC24V

    Item

     Applying Voltage

    Input Contact Point Output Contact Point

    Preservative Humidity

    Room Condition

    Vibration

    Below 90% RH (No dew)

    No dust or corrosive Gas

    0.6G

    Condition

    0¡É ~ +45¡É (No freeze)

    Below 85% RH (No dew)

    -15¡É ~ +65¡É (No freeze)

    Environment

    Temperature

    Humidity

    Preservative Temp.

     Control Type

     Programming

    RCS-

    1Ф AC220V

    +10%~15%

    50 / 60Hz

    Utility

    Power 

     Program size

    3 Phase AC220V, +10%~15%, 50 / 60Hz

    25§Ù 220W (6030,6045 - 2 parallel)

     Air Blowing (FAN)Natural Air Cooling

    50§Ù /140W

     3 phase sine wave modulated PWM

     Teach Pendant or PC (Above windows 95)

     Regenerative Resistor 

     Cooling Method

    The conditions of use are as follows. If you consider using the product in an environment

    that differs from the conditions below, contact the Customer Support Department

    Incremental Encoder (15 signal, 9 signal), Absolute Encoder Encoder type

     Max. MPG frequency  300 (kpps)

      1-3-4. System Specification

     1-8

  • 8/18/2019 RCS Controller.pdf

    17/177

    Chap.1 Pro duc t Overview 

     á  Encoder : Line Driver (9 signal, 10 signal, 15 signal), Absolute type.

      Line Driver 15 Signal

      Line Driver 9 Signal

      Absolute

      It is to drive Motor using MPG

     A Phase : Lead

    B Phase : Lag

     A Phase : CW

    B Phase : CCW

     A Phase : Pulse

    B Phase :

      Direction

    MPG Output Voltage Output Sequence (standard)

    5V  A¡æ B

    1

    2

    3

    Setting

    Value

    Input Pulse Line

    CW CCWRemark

    Encoder type Pos. Order UVW Order Voltage

     A ¡æ B

     A ¡æ B

     A ¡æ B

    U¡æ V¡æ W

    U¡æ V¡æ W

    U¡æ V¡æ W

    5V

    5V

    5V

    Rotating Direction of Motor 

    Configuring in Program

    Note) As it above, the motor rotation direction is CCW in view of motor shaft

      10 signal (position, UVW phase: B ¡æ A/W¡æ V¡æ U) has reverse order of 9 signal's position  & UVW.

     A Phase

    B Phase

     A Phase

    B Phase

     A Phase

    B Phase

    01

      1-3-5. Encoder information

      1-3-6. Pulse Generator (MPG)

     1-9

  • 8/18/2019 RCS Controller.pdf

    18/177

    Chap.1 Pro duc t Overview 

     á  Outlook & Dimension

    ¡á  Controller Pin Wiring Information

      ¢º Shield wire is connected to connector conductive part

      Ordering T/P by different length of cable

    15 Pin Connector 

    +12V 1

    Signal

    TxD 2

    RxD 3

    RCS-7000T

    5 m RCS-7000T

    10 m RCS-7000T-10

    15 m RCS-7000T-15

    Model Cable Length Order Number  

    -12V 4

    GND 5

    EMG 6

      1-4. Teach Pendant : RCS-7000T

     1-10

  • 8/18/2019 RCS Controller.pdf

    19/177

    Chap.1 Pro duc t Overview 

     á  I/O Terminal Block Outlook & Dimension

      When using the I/O Terminal Block, I/O Terminal Cable is needed.

     DO NOT CONNECT E+24V, EG24 AND +24V, G24 PORT AT A TIME.

     IF SO, CONTROLLER CAN BE DAMMAGED.

     ¡á

     Description of Contact Point

      - E+24V, EG24 Port : External Power Port

      - +24V, G24 : Controller Internal Power Connection

      - Each Port of Terminal Block is matched to the si nal of User I/O.

      1-5. I/O Terminal Block & Cable (Non-CE type)

     1-11

  • 8/18/2019 RCS Controller.pdf

    20/177

    Chap.1 Pro duc t Overview 

     á   I/O Terminal Board Outlook (CE Type)

      When using the I/O Terminal Block, I/O Terminal Cable is needed.

     ¡á

     Description of Contact Point

      - Only 24V external power is available

      - +24V can be connected to PCOM1, PCOM2

      - G24V(Ground of +24V) can be connected to NCOM1, NCOM2, NCOM3

      - Each Port of Terminal Block is matched to the signal of User I/O.

      1-5-1. I/O Terminal Block & Cable (CE type)

     1-12

  • 8/18/2019 RCS Controller.pdf

    21/177

    Chap.1 Pro duc t Overview 

     á   I/O Terminal Block Bracket Dimension (CE type)

    ¡á  I/O Terminal Cable Outlook (Non-CE type)

    ç̈

    è̈

    ç̈  HIF3BA-64D-2.54R(HIROSE)

    è̈ CONNECTOR : 10150-3000VE(3M)

      HOOD : 10350-52F0-006(3M)

    171.60

    142.40

    151.60

    5

    10

            1        0        6

    8.20

    10.20

    5

    10

            1        0

            5

     1-13

  • 8/18/2019 RCS Controller.pdf

    22/177

    Chap.1 Pro duc t Overview 

     á   I/O Terminal Cable Outlook (CE type)

    ç̈

      ¨è

    ç̈  HIF3BA-50D-2.54R(HIROSE)è̈ CONNECTOR : 10150-3000VE(3M)

      HOOD : 10350-3210-006(3M)

      Input/Output Connector connected to Controller 

      - Model No. : 10150-3000VE(3M)

      - Connector Case : 10350-52F0-008(3M)

      It is to save data of Absolute Encoder.

      - Composition part :

      Battery Holder : 1 ea (to fix on PCB)

      Battery Cover : 1 ea

    3.6V Lithium Battery : 1 ea

      It is the manual pulse generator sending pulse to controller.

      - TYPE : LGF-003-100 (SUMTAK)

      1-6. I/O Connector 

      1-7. Back-up Battry Unit (only for Absolute Encoder)

      1-8. MPG Unit

     1-14

  • 8/18/2019 RCS Controller.pdf

    23/177

    Chap.1 Pro duc t Overview 

      It consists of as below.

      - Unihost Program

      - RS232C Cable : 15 Pin, 5M (1EA)

      - Unihost User's Manual (1)

      It reduces noise through power line.

      - Noise Filter (1EA)

    ¡á  Model Designation

    RCK - 1N05DA-S

      ¢Ñ Description

     

    RCK : Robot Cable  1  : RCS-6000 (SIngle Axis)  N : F (Flexible), N (Inflexible)  05  : Cable Length  03 (3 m) , 05 (5 m), 10 (10 m), 15 (15 m)

     

    D  : Encoder Type (15 signal)

      A  : Motor Type  A (PANASONIC,MSMZ)

      B (PANASONIC,MSMA)

      C (LG,CN)

      D (LG,KF)

      E (LG,TF)

     

    S  : Connector Type  S (Straight Type)

      E (Elbow Type)

      H (Housing Type)

      1-11. Cable

      1-9. PC Interface Program

      1-10. Noise Filter 

     1-15

  • 8/18/2019 RCS Controller.pdf

    24/177

    Chap.1 Pro duc t Overview 

     

    ¡á

     No.ç̈

     Connector (Motor side)¡á

     No.è̈

     Connector (Controller CN1 side)Pin No. Signal Pin No. Signal Pin No. Signal Pin No. Signal

    1 A 11 W 1 W 11 /Z

    2 /A 12 /W 2 /W 12 SHIELD

    3 B 13 +5V 3 V 13 /B

    4 /B 14 0V(GND) 4 /V 14 Z

    5 Z 15 SHIELD 5 U 15 /A

    6 /Z 6 /U 16 B

    7 U 7 - 17 -

    8 /U 8 - 18 A

    9 V 9 0V(GND) 19 +5V

    10 /V 10 - 20 -

     

    NO.é̈  Connector (Motor Power Cable)

    4

    Pin No.

    3 W (Black)

    2

    U (Red)

    V (White)

    1

    SignalPin No.

    FG (Green)

    Signal

      1-11-1. Cable for N60 Series Motor 

    Soder Part:C-C' SECTION:B-B'

     1-16

  • 8/18/2019 RCS Controller.pdf

    25/177

    Chap.1 Pro duc t Overview 

     

    ¡á  NO.ç̈  Connector (Motor side)

    ¡á  No.è̈  Connector (Controller CN1 side) is same to the cable for N60 Motor.

    ¡á  No.é̈ ,ê̈  Connector (Motor Power Cable)

    Pin No. Pin No. Pin No. Pin No. Signal

     A C E G -

    B D F

    J

    F /Z G

    SignalSignal

    W (Black)

    FG (Green)

    Signal

    V (White)

    BRAKE +U (Red)

    K U

    L /U

    /B R /W

    E Z H +5V

    D

    V

    Pin No. Signal Pin No. Signal

     A A

    /A NB

    M

    /V

    SHIELD

    0V (GND)

    C B P W

    BRAKE -

    Encoder Cable

    Power Cable(Brake ¾øÀ½)

    Power Cable(Brake ºÎÂø)

      1-11-2. Cable for TF, KF Series Motor 

    Power Cable (No Brake)

    Encoder Cable

    Power Cable (with Brake)

    Soder Part:C-C' SECTION:B-B'

     1-17

  • 8/18/2019 RCS Controller.pdf

    26/177

    Chap.1 Pro duc t Overview 

     

    ¡á  No.ç̈  Connector (Motor side)

    Pin No. Pin No. Pin No.

    1 12 23

    2 13 24

    3 14 A

    4 15 B

    5 16 C

    6 17 D

    7 18

    8 19

    9 20

    10 21

    11 22

      No.è̈  connector (Controller CN1 side) is same to N60 Motor's cable.

    CCW

    G24

    /W

    CW

    V

    W

    FG

    /V

    Z

    /Z

    W

    /U

    B

    BRAKE+

    +24V

    ORG

    SignalSignal

    BRAKE-

    ENC SHILED

    U

    Signal

    /A

    U

    0V(GND)

     A

    +5V

    +5V

    0V(GND)

    /B

    V

    ORG

    BRK+

    BRK-

    +24V

    G24

    U

    V

    W

    FG

    CCW

    CW

    ºñ°¡µ¿Çü Cable

    °¡µ¿ÇüCable

      1-11-3. Cable for Cartesian (Non-CE type)

    Inflexible Cable

    Flexible Cable

    Soder Part:

    C-C'SECTION:B-B'

    Soder Part:

    C-C'SECTION:B-B'

     1-18

  • 8/18/2019 RCS Controller.pdf

    27/177

    Chap.1 Pro duc t Overview 

     

    ¡á  No.ç̈  Connector (Motor side)

    Pin No. Pin No. Pin No.

    1 12 23

    2 13 24

    3 14 A

    4 15 B

    5 16 C

    6 17 D

    7 18

    8 19

    9 20

    10 21

    11 22

      No.è̈  connector (Controller CN1 side) is same to N60 Motor's cable.

    Signal Signal Signal

    +5V /V BRAKE-

    +5V Z ENC SHILED

    0V(GND) /Z U

    0V(GND) W V

     A /W W

    /A CW FG

    U CCW

    /U G24V

    B +24

    /B ORG

    V BRAKE+

      1-11-4. Cable for Cartesian (CE type)

    CW

    CCW

    FG

    W

    V

    U

    +24v

    G24

    BRK-

    BRK+

    ORG

    Cable

    v

    G24

    CableInflexible Cable

    Flexible Cable

    Soder Part:

    C-C'SECTION:B-B'

    Soder Part:

    C-C'SECTION:B-B'

     1-19

  • 8/18/2019 RCS Controller.pdf

    28/177

    Chap.1 Product Overv iew 

      It is used to produce power to Brake of TF, KF Series Brake type motor.

      - TYPE : BPU109-A (YILE)

    Signal 9 pin connector of PC side 15 pin connector of Serial side

    2 (RxD)TxD - RxD 3 (TxD)

    RxD - TxD 2 (RxD) 3 (TxD)

    SHILED Connector Conductive part

    GND 5 5

    -RTS, CTS Pin No. 7 & 8 Short

    DTR, DSR Pin No. 4 & 6 Short

      1-11-4. Serial Cable (RS 232C)

      1-12. Brake Unit

     1-20

  • 8/18/2019 RCS Controller.pdf

    29/177

    Chap. 2. Instal lat ion and Con nection 

     

    ¡á Installation and Connection Procedure

      1. Placing and Fixing Controller 

      2. Connect all connectors to Controller after deciding desired I/O

      3. Setup Parameters (set I/O contact in Parameter)

      4. I/O Connection Check

      Chapter 2 Installation and Connection

     2-1

  • 8/18/2019 RCS Controller.pdf

    30/177

    Chap. 2. Instal lat ion and Con nection 

     

    ¡á  Caution on Installation

      1. Do not inflict considerable impact on controller or neither drop .  It can cause breakage of internal devices in controller.

     

    2. Keep the proper distance when placing Controller to Panel.

      3. Do not use product in water sputtering or near inflammable gas area. It causes electric

      shock or fire.

     

    4. The regenerative resistor connected to P-B port of controller should be placed to

      the well-heat-radiated place because it radiates heat according to rated output of motor 

      propotionally. It is recommanded that the resistor is far more than 20mm from controller.

     

    5. To get more information on the condition for installation circumstances, refer to Chap.1,

      Product Overview.

      2-1. Placing and fixing Controller 

    Bottom Direction

     2-2

  • 8/18/2019 RCS Controller.pdf

    31/177

    Chap. 2. Instal lat ion and Con nection 

     

    The controller and motor should be at third class grounding or higher.

     ¡á  Fig 2.1 Example of General Connection (Non-CEType)

      2-2. Connect Cables

    MNF

    RCS-6000

    DCN

    I/O

    SERIAL

    R

    S

    T

    U

    V

    W

    MCCB1 MC1

    Ȩ̀»ý¹æÀüÀúÇ×

    ENC

    P B

    AC200~230V

    50/60Hz 3»

     ¼®́Ü

    R-S »

    DummyConnector 

     I/O

    Teach Pendant,PC,RS-422

    ¿¬°á́ÜÀÚ

    EI/OÈ® ÀåI/O

    NC

    NC

    ÃÊÅ © ÄÚÀ Ï 1

    ÃÊÅ© 

    ÄÚÀ Ï 2

    Regenerative Resistor 

    Choke

    Coil 2

    Choke

    Coil 1

    Small Capacity

    uses 1Ф R-S

     AC200~230V

    50/60Hz 3Ф

    Extension I/O

    Connector 

    Use circuit breaker 

    before AC input terminal

     2-3

  • 8/18/2019 RCS Controller.pdf

    32/177

    Chap. 2. Instal lat ion and Con nection 

    The controller and motor should be at third class grounding or higher.

    Use circuit breaker 

    before AC input terminal

     ¡á

     Fig 2.2 Example of General Connection (CE Type)

    Regenerative

    Discharge Resistor 

    RCS-6000

    EMC UNIT

    (Option)

    I/OI/O

    Teach Pendent,

    PC, RS-422 port

    Main Board

    SERIAL

    MCCB1 AC INPUT

     AC200~230V

    50/60Hz

    3-phase

    (R,S single-phase

    available at RCS

    6001~6004)

    EN

     AMP Board

    FG

    W

    V

    U

    NC

    NC

    FG

    W

    V

    U

    M

    V

    U

    NC

    NC

    NF(option

    )

    S

    T

     2-4

  • 8/18/2019 RCS Controller.pdf

    33/177

    Chap. 2. Instal lat ion and Con nection 

     

    Fig.2.3 Status LED

    R

    ST

    P

    U

    V

    W

    B

    RS

    T

    NC

    NC

    P

    B

    UV

    W

      R,S,T Port- AC 3Ф Input Port

    - 1Ф AC220V :RCS-6001~6010

      (Using R-S Port)

    - 3Ф AC220V :RCS-6005 and above

      P, B Port- Output port for Regenerative

      Discharging Energe from Motor.

    - Port for connecting Regenerative

      Resistor.

      U, V, W Port- Connect power wires

      of motor.

    - U Port : Red Wire

      V Port : White Wire

      W Port : Black Wire

      Earth Port- Controller FG port.

    - Connect FG(green) wire of Motor 

      and connect the other wire to

      ground.

    Status LED

     (Fig. 2.3)

    T/P Connector 

    Encoder 

    Connector 

    I/O Cable

    Connector 

    ¢Ñ POWER (Green) : AC Power 

    ¢Ñ ORIGIN (Green) : Origin complete

      - When PLC program runs, it flashes every 0.4 seconds.

    ¢Ñ SVON (Orange) :

      - When power produces to motor, it is ON (SVON state)

      - When Robot Program runs (RUN), flashing every 0.4

      seconds.

    ¢Ñ ALARM (Red) : Alarm, Error, Ext. EMG, it flashes.

      2-2-1. Connection on Front Panel

     Power port (R,S,T) and Regenerative Resistor port (P,B)

     NC (Not Connect) :if needed,

     connect it to

     Choke Coil to

     reduce noise.

     NC (Not Connect) :For CE

    Controller, be sureto connect it to

    Choke Coil to

     reduce noise.

     2-5

  • 8/18/2019 RCS Controller.pdf

    34/177

    Chap. 2. Instal lat ion and Con nection 

     

    Pin Pin

    No. No.

    1 11

    2 12

    3 13

    4 14

    5 15

    6 16

    7 17

    8 18

    9 19

    10 20

    Encoder Signal

    U, V, W

    A,B Used to detect the position of the motor and its rotation number 

    Z Used to search the origin

    +5V Provides Vcc power to the encoder

    EP +5V Provide Vcc power to the encoder when using a 9 signal encoder.

    GND (5V) Basic electric potential for +5V and EP +5V.

    BAT+,BAT- Backup battery power for data of the absolute encoder 

    ERST Data reset terminal of the absolute encoder 

    Rx, /Rx Position receiver of the absolute encoder 

     A

    +V5

    ERST

    Z

     A

    B

    Encoder 

    Signal

    Encoder 

    Signal

    W(Rx)

    W(Rx)

    Z

    SHIELD

    The encoder signal being the electric signal of motors, the U, V, W

    of the motor are synchronized to this signal. When an error occurs

    in this signal, the motor does not rotate.

    V

    V

    U

    U

    BAT+

    BAT-

    GND(5V)

    EP+5V

    B

      ¡á Connection method for encoder is shown as below.

      ç̈ 15 signal type encoder connection

      è̈ 9 signal type encoder connection

      é̈ Absolute encoder connection

      2> Connector pin specification of ENC (Encoder)

     2-6

  • 8/18/2019 RCS Controller.pdf

    35/177

    Chap. 2. Instal lat ion and Con nection 

      ç̈  15 signal type encoder connection

    Pin Pin

    No. No.

    1 11

    2 12

    3 13

    4 14

    5 15

    6 16

    7 17

    8 18

    9 19

    10 20

      è̈  9 signal type encoder connection

    Pin Pin

    No. No.

    1 11

    2 12

    3 13

    4 14

    5 15

    6 16

    7 17

    8 18

    9 19

    10 20

    GND(5V)

     A

    B

    B

     A

    Encoder 

    Signal

    Encoder 

    Signal

    Z

    Z

    SHIELD

    +V5

    Encoder 

    Signal

    Encoder 

    Signal

     A

    U A

    Z

    W SHIELD

    U B

    V B

    V Z

    W

    GND(5V)

     2-7

  • 8/18/2019 RCS Controller.pdf

    36/177

    Chap. 2. Instal lat ion and Con nection 

      é̈  Absolute encoder connection

    Pin Pin

    No. No.

    1 11

    2 12

    3 13

    4 14

    5 15

    6 16

    7 17

    8 18

    9 19

    10 20 ERST

    GND(5V) +V5

    Encoder 

    Signal

    Encoder 

    Signal

    BAT+

    B

    Z

    Rx Z

    BAT- A

     A

    B

    Rx SHIELD

     2-8

  • 8/18/2019 RCS Controller.pdf

    37/177

    Chap. 2. Instal lat ion and Con nection 

     

    ç̈  RS232C communication

    Pin No Signal Pin No Signal

    1 +V12 11 FG

    2 RxD 12 RDA

    3 TxD 13 RDB

    4 -12V 14 SDA

    5 GND 15 SDB

    6 EMG

    7

    8

    9

    10

      è̈  RS422 communication Pin No Signal

    5 GND

    11 FG

    12 RDA

    13 RDB

    14 SDA

    15 SDB

      ¡á  Serial communication type

      ç̈ RS232C

      è̈ RS422

      é̈ Teach Pendent

      ê̈ PC(Personal Computer)

      ë̈ MultiPoint

      3> Spedification of Serial signal

    ¡á  Communication  standard setting

    - Type : Asynchronous

    - Baud rate: 9600 bps (fixed)

    - Stop bit : 1

    - Frame bit : 8 Bit

    - Parity check : No parity

     2-9

  • 8/18/2019 RCS Controller.pdf

    38/177

    Chap. 2. Instal lat ion and Con nection 

     é̈  Teach Pendent communication

    Pin No Signal

    1 +12V

    2 RxD

    3 TxD

    4 -12V

    5 GND

    6 EMG

     ê̈  PC (Personal Computer) communication

      PC communication consists of followings

      - Unihost Program

      - RS 232C cable (15 signal type - 5m)

      - Refer to Unihost User's Manual

     2-10

  • 8/18/2019 RCS Controller.pdf

    39/177

    Chap. 2. Instal lat ion and Con nection 

     

    á  Fig 2.4 Table of I/O contact points

     B000 ~ B022 3  Input Contact Use of both System & User Input Contact

     B030 ~ B047 2  Output Contact Use of both System & User Output Contact

     B050 ~ B317 27  Internal Contact Use of User Internal Contact

     B320 ~ B337 2  Extension Input Contact Use of both System & User Input Contact

     B340 ~ B347 1  Extension Output Contact Use of both System & User Output Contact

     B350 ~ B387 4  System Input Contact Use of Internal System Input Contact

     B390 ~ B417 3  System Output Contact Use of Internal System Output Contact

      Set range in B000~B022 for input (Fig 2.4)

      Set range in B030~B047 for output (Fig 2.4)

      - Define I/O contact refering to Fig. 2.5 & Fig. 2.6

      - Define original values of I/O

      (Ex) System Input ORIGIN contact set to Not Use ¡æ Set User Input to B005

    (settable in range of B000~B022)

      (Ex) System Output IN_POS contact set to Not Use ¡æ Set User Output to B030

    (settable in range of B030~B047)

     

     Address Byte Type Contents

      ¡á When connecting I/O,

      A. Define input/output contact points, set these information in Parameter mode.

      B. Connect contact points.

     There are System I/O and User I/O

      4> I/O Connection

      A. Set I/O Contacts in Parameter mode

     2-11

  • 8/18/2019 RCS Controller.pdf

    40/177

    Chap. 2. Instal lat ion and Con nection 

     á  Fig 2.5 System Input Contact Default : preset values in factory.

    Group

     ROB_RUN Robot Program Execution

     PLC_RUN PLC Program Start

     STOP Robot Program Stop

     RESET Alarm Release

     SVON Servo ON

     SVOFF Servo OFF

     ORIGIN Origin Execution

     STEP_RUN Robot Program Step Execution

     PGM_SEL Robot Program Step Clear & Program Selection

     PGM_SEL0

     PGM_SEL1 Robot Program Selection Code

     PGM_SEL2

     JOG+

     JOG-

     JOG_SET0

     JOG_SET1

     JOG_MODE JOG Movement Method Selection

     IOPOS0

     IOPOS1

     IOPOS2

     IOPOS3

     IOPOS4

     IOPOS5

     IOPOS6

     IOPOS7

     IOSPD0

     IOSPD1

     CW S/W CW Limit Switch

     CCW S/W CCW Limit Switch

     ORG S/W Origin Switch

     MPG_RATE Select Input pulse & moving rate in MOVM

     MOVT_ST Start movement by MOVT command

    Not Use

    Not Use

    Not Use

    Not Use

     Select SPD of Robot Program in IOSPDNot Use

    Not Use

    Not Use

     Moving position selection code in MOVT command

    (Robot Program)

    Not Use

    Not Use

    Not Use

    Not Use

    Not Use

    Not Use

    Not Use

    Not Use

     JOG Movement Selection CodeNot Use

    Not Use

    Not Use

    Not Use

    Not Use

     JOG MovementNot Use

    Not Use

    Not Use

    Not Use

    B002

    Not Use

    B003

    Not Use

    Not Use

    Input

    Not Use

    B000

    B001

    Signal Contents Default

     2-12

  • 8/18/2019 RCS Controller.pdf

    41/177

    Chap. 2. Instal lat ion and Con nection 

     á  Fig 2.6 System Output Contact Point Default : Preset values in factory.

    Group

     ALARM Alarm Status output

     READY Output when no problem after power on

     ORIGIN Output when Oringin executes without problem

     IN_POS Output when arrival in position

     ALARM0

     ALARM1

     ALARM2

     ALARM3

     BRAKE Output when Servo Motor Brake runs

      Example

    Not Use

    Not Use

    Not Use

     Alarm Information Code

    Not Use

    Not Use

    Not Use

    Contents Default

    Output

    Not Use

    Not Use

    Not Use

    Signal

      - Output

      ALARM : B030

      READY : B031

      ORIGIN : B032

      IN POS : B033

     

    - Input

      ROB RUN : B000

      STOP : B001

      RESET : B002

      ORIGIN : B003

      PGM SEL : B004

      CW S/W : B005

      CCW S/W : B006

    Enter Contact Point Numbers (B000,B001,------)

    defined above

    in Parameter 

      ¡á Method to enter parameter 

      (Ex: Set B000 in ROB RUN Input Contact point)

      Using T/P,

      F4 : PARA ¡æ F4:I/O ¡æ F1:INPUT¡æ put * at "ROB RUN" using arrow keys

      ¡æ ENT ¡æ type "B000" ¡æ ENT ¡æ push ESC key until seeing "SAVE" menu

      ¡æ F1:SAVE

     2-13

  • 8/18/2019 RCS Controller.pdf

    42/177

    Chap. 2. Instal lat ion and Con nection 

      ç̈   Connection using I/O Terminal Block

      è̈   Connection NOT using I/O Terminal Block

    ORG

    BRK+

    BRK-

    +24V

    G24

    U

    V

    W

    FG

    CCW

    CW

    ºñ°¡µ¿ÇüCable

    °¡µ¿ÇüCable

      ¡á Two types of I/O connection as below.

      ç̈ Using I/O Terminal Block

      è̈ Not using I/O Terminal Block

    PLC

    CW

    S/W

    CCW

    S/W

    1 Axis

    Controller 

    Encoder 

    I/O

    Motor 

    Power 

    I/O Terminal Block

    OutputInput

    OutputInput

    CW,CCW,ORG S/W

    BRK+,BRK-

    1 AxisCartesian

    PLC

    CW

    S/W

    CCW

    S/W

    1 Axis

    Controller 

    Encoder 

    I/OMotor 

    Power 

    Output

    Input

    CW,CCW,ORG S/W

    BRK+,BRK-

    1Axis

    Cartesian

    Cable

      B. Connecting

     2-14

  • 8/18/2019 RCS Controller.pdf

    43/177

    Chap. 2. Instal lat ion and Con nection 

     á  Fig. 2.7 User I/O Connector Pin Assignment  (for PNP Type)

      - User Input : B000~B022

      - User output : B030~B047

      ¢Ñ Connector Contact Point

      - Basic User Input : B000~B022 (19 ports)

      - Basic User Output : B030~B047 (16 ports)

      - EMG+, EMG- : Input contact point for emergency stop

      - BRAKE+, BRAKE- : Output port for Brake ON/OFF

      - MPGA, MPGB : Pulse Input Signal for the general purpose

      - GND: Standard Electric Potential (0V) on MPG pulse input

    Pin AssignmentI/O

      PNP Type : Input - N common, Output - P common  NPN Type : Input - P common, Output - N commonNOT

    2-15

  • 8/18/2019 RCS Controller.pdf

    44/177

    Chap. 2. Instal lat ion and Con nection 

     á  Fig. 2.7.1 User I/O Connector Pin Assignment  (for NPN type)

      - User Input : B000~B022

      - User output : B030~B047

    Pin No. Signal

    1

    3

    5

    7

    9

    11

    13

    15

    17

    19

    21

    23

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    /MPGB

    B032

    B031

    B041

    B045

    B044

    B047

    NCOM2

    B004

    B005

    B006

    B007PCOM1

    B012

    B016

    B010

    B020

    25

    24

    Pin No. Signal

    26

    28

    30

    32

    34

    36

    38

    40

    42

    44

    46

    48

    27

    29

    31

    33

    35

    37

    39

    41

    43

    45

    47

    B037

    B034

    B030

    NCOM1

    B042

    B043

    B046

    FG

    B003

    B002

    B001

    B000B013

    B011

    B017

    PCOM2

    B022

    50

    49

    /MPGA

    GND(+5V)

    B040

    B014

    B021

    EMG-

    EMG+

    MPGB

    MPGA

    B036

    B033

    B015

    PCOM3

    BRAKE+

    BRAKE-

    B035

    Soldering

    side

      ¢Ñ Connector Contact Point

      - Basic User Input : B000~B022 (19 ports)

      - Basic User Output : B030~B047 (16 ports)

      - Emergency Stop Input : EMG+, EMG-

      - Brake ON/OFF Output (Relay Contact): BRAKE+, BRAKE-

      - General Purpose Pulse Input Signal : MPGA, MPGB

      - Reference Electric Potential (0V) on MPG pulse input : GND

    I/O Pin Assignment

      PNP Type : Input - N common, Output - P common  NPN Type : Input - P common, Output - N commonNOT

    2-16

  • 8/18/2019 RCS Controller.pdf

    45/177

    Chap. 2. Instal lat ion and Con nection 

     á  Fig. 2.8 User I/O Connection (for PNP Type)

      - User Input : B000~B022, - User Output : B030~B047

    NOTE Inside parenthesis represents the I/O Address.

    The connection figure above has a common terminal per every 8th I/O port.

    ExternalPower Supply(DC24V)

    I/O Terminal

    User OutputController InsideI/O connector 

    32(PCOM1)

    31(B030)

    6(B031)

    5(B032)33(B033)

    30(B034)

    4(B035)

    29(B036)

    28(B037)

    12(PCOM2)

    8 B040

    7(B041)

    34(B042)

    10(B044)

    35(B043)

    36(B046)

    9(B045)

    11(B047)

    25 EMG+

    25(EMG-)

    41(B000)

    40(B001)

    39(B002)

    38(B003)

    13(B004)

    14(B005)

    15(B006)

    16(B007)

    17(NCOM1)

    21(B010)

    44(B011)

    19(B012)

    42(B013)

    18(B014)

    43(B015)

    20(B016)

    45(B017)

    46 NCOM2

    22(B020)

    23(B021)

    47(B022)

    48 NCOM3

    External Power 

    +24V

    G24V

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOADLOAD

    LOAD

    LOAD

    LOAD

    LOAD

    User Input

     2-17

  • 8/18/2019 RCS Controller.pdf

    46/177

    Chap. 2. Instal lat ion and Con nection 

     á  Fig. 2.8.1 User I/O Connection (for NPN Type)

      - User Input : B000~B022, - User Output : B030~B047

     

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    LOAD

    17(PCOM1)

    41(B000)

    40(B001)

    39(B002)

    38(B003)

    13(B004)

    14(B005)

    15(B006)

    16(B007)

    46(PCOM2)

    21(B010)

    44(B011)

    19(B012)

    42(B013)

    18(B014)

    43(B015)

    20(B016)

    45(B017)

    48(PCOM3)

    22(B020)

    23(B021)

    47(B022)

    25(EMG+)

    24(EMG-)

    14(B047)

    48(NCOM2)

    13(B040)

    49(B041)

    15(B042)

    51(B043)

    17(B044)

    16(B045)

    50(B046)

    44(B030)

    10(B031)

    46(B032)

    12(B033)

    47(B034)

    11(B035)

    45(B036)

    9(B037)

    43(NCOM1)

    ÄÁÆ®·Ñ·̄³»ºÎ»ç¿ëÀÚÀÔ·Â »ç¿ëÀÚÃâ·Â

    ÁÖ1)°ýÈ£¾ÈÀºÁ¢Á¡¹øÁöÀỐḮÙ.

    ÁÖ2)»ó±âÁ¢¼Óµµ́ÂÀÔ.Ãâ·ÂÀÌ8Á¡̧¶́Ù°øÅë(Common) ǗÀÚ°¡ÀÖÀ̧¹Ç·ÎÁÖÀÇÇϽʽÿÀ.

    +24V

    G24

    CN2 connector 

    42(+24V)

    40(G24)

    42(+24V

    )

    40(G24)

    I/O Terminal Port

    ExternalPower Supply(DC24V)

    User Input Controller Inside User Output

     

    Inside parenthesis represents the I/O Address.

     

    The connection figure above has a common terminal per every 8th I/O port.

    NOTE

     2-18

  • 8/18/2019 RCS Controller.pdf

    47/177

    Chap. 2. Instal lat ion and Con nection 

     á  Fig. 2.9 User Input (B000~B022) and Sensor Connection (for PNP Type)

    Photo coupler Input Output

    +24V

    outG24

    +24VoutG24

    +24VoutG24

    CW

    CCW

    ORG

    CW

    CCW

    ORG

    CW

    CCW

    ORG

    Maximum outputcurerent is 80mA.

    10k

    General switches or sensors

    For the sensors which needed driving power 

    Robostar actuator sensor connection

    DC24V

    DC24V

    DC24V

    NCOM

    NCOM

    NCOM

    P24V

    CW

    CCW

    ORG

    ( Dashed line is Cable wire label)

    ¢Ñ  Photo Coupler   Connection inside

      Controller 

    ¢Ñ General Switches or 

      Sensor 

    ¢Ñ For the sensors whichneeded driving power 

    ¢Ñ Cartesian sensor 

    connection (Dashed line is

    Cable wire label)

    Inside Dashed line means inner side of Controller NOTE

    ¢Ñ Inside Controller 

    (Refer to User I/O Connection

    diagram)

    ¢Ñ Inside Controller 

    ¢Ñ Inside Controller 

    (Refer to User I/O Connection

    diagram)

    ¢Ñ Inside Controller 

    (Refer to User I/O Connection

    diagram)

     2-19

  • 8/18/2019 RCS Controller.pdf

    48/177

    Chap. 2. Instal lation and Con nectio n 

     á Fig. 2.9.1 User Input (B000~B022) and Sensor Connection (for NPN Type)

      ¡á Sensor type  ç̈ CW Sensor (Normal close) è̈ CCW Sensor (Normal close)  é̈ ORG Sensor (Normal open)

     

     Ä ÁÆ®·Ñ·  ³̄»º ÎÆ÷ Åä Ä¿Ç Ã· ¯ ±̧¼º ÀÔ· Â Ãâ· Â

    +24VoutG24

    +24VoutG24

    +24VoutG24

    CW

    CCW

    ORG

    CW

    CCW

    ORG

    CW

    CCW

    ORG

     ÁÖ) Ç ¥½ Ã¾ÈÂÊ ÀºÄ ÁÆ®·Ñ·  ³̄»º Î  ÀÓ

     Ãⷠ±̧µ¿Àü·ù́ ÂÃÖ́ë80mA ÀỐḮÙ

    10k (ÀÌÇÏ»ý·«)

     ÀϹݽº À§ Ä¡¶Ḉ Â¼¾¼-Á¢¼Óµµ

    ±̧µ¿Àü¿ø ÀÌÇÊ¿äÇѼ¾¼-Á¢¼Óµµ

     Á÷°¢±â±̧¿ëCable ¼¾¼-¼±Á¢¼Óµµ

    DC24V

    DC24V

    DC24V

    PCOM

    PCOM

    PCOM

    G24V

    CW

    CCW

    ORG

    ( Á¡¼±¾È ÀºCable wire labelÀÓ)

    ¢Ñ Photo Coupler   Connection inside  Controller 

    ¢Ñ General Switches or   Sensor 

    Input Photo Coupler  Output

    ¢Ñ Inside Controller (Refer to User I/O Connectiondiagram)

    ¢Ñ Inside Controller 

    ¢Ñ Inside Controller (Refer to User I/O Connectiondiagram)

    ¢Ñ Inside Controller (Refer to User I/O Connectiondiagram)

     Maximum output current is 80mA.

    ¢Ñ For the sensors which

    needed driving power 

    ¢Ñ Cartesian sensor connection (Dashed line is

    Cable wire label)

    Inside Dashed line means inner side of Controller NOTE

     2-20

  • 8/18/2019 RCS Controller.pdf

    49/177

    Chap. 2. Instal lation and Connect io n 

     á 2.10 MPG and Brake Connection

    SERVO

    MOTOR

    SERVOMOTOR

    1 2

    3

    4

    5

    6

    AC 220V

    1) Ç¥ÁØMPG Á¢¼Óµµ( DC 5VẤ¿Üº ÎÀü¿øÀ»»ç¿ëÇ Ï ½Ê½Ã¿À)

    2) DC 24V¿ëBrake Á¢¼Óµµ

    3) Brake unit ¹×DC 90V¿ëBrake Á¢¼Óµµ

    MotorBrake¼±

    Brake unit

    DC 24V

    Varistor 

    DC 5V

    A

    B

    Varistor 

    +5V

    0VController ³»º Î 

    Controller ³»º Î 

    Controller ³»º Î 

    A

    B

    MPG(¼öµ¿ ÆÞ½º¹ß»ý±â)

    MPGA

     /MPGA

    MPGB

     /MPGB

    GND(+5V)

    BRAKE+

    BRAKE-

    BRAKE+

    BRAKE-

    ÁÖ)µ¿±â¿ î ÀüÀ»ÇÒ°æ¿ ì¿¡́ÂMPǴë½Å¿£ÄÚ́õ½ÅÈ£̧¦À§¿Í°°À Ì¿¬°áÇ Ï ¿ ©ÁֽʽÿÀ

    ÁÖ) ð̧ÅÍBrake ǗÀÚ¿¡º Î ÂøµḈÂVaristorẤBrake ÄÚÀ Ï ¿¡ÀÇÇ Ï ¿ ©À ¯ µµµḈÂSurge Àü¾ ÐÈí¼ö¿ë ÀỐ Ï Ù́.  Surge Àü¾ ÐÈí¼ö¿ëDiode³ªVaristorẤ̧ðÅÍÃø¿¡°¡±õ°ÔÁ¢¼ÓÇ Ï ½Ê½Ã¿À.

    BRK+

    BRK-

    BRK+

    BRK-

    +24V

    G24

    ¿ÜÀåRelay

    InsideController 

    ExternalPower Supply

     1) Standard MPG Connection ( Use External Power for DC

     MPG(Manual Pluse Generator)

     Controller Inside

      In case of Syncronizing driving, connect Encoder signal like the above, instead of MPG.NOTE

     Controller Inside

     2) Brake Connection for DC 24V

     3) Brake Unit and Brake Connection for DC 90V

     Motor  Brake Wire

     Varistor attached in Motor Brake port is for absorbing Surge Voltage which is induced by Brake Coil.

     Connect the Diode or Varistor for absorbing Surge Voltage close to Motor side.

     Controller Inside

    NOTE

    External Relay

     2-21

  • 8/18/2019 RCS Controller.pdf

    50/177

    Chap. 3 Parameter Setup 

     

    * Most of parameters are related to I/O and Operation

    No.

    ¡á When setting Parameter for Operation

    ¡á When setting Parameter for I/O

    4

    ¡á When setting Parameter for Manupulator 

    ¡á When setting Parameter for Servo

    T/P DisplayT/P KeyContents

    3 Select Parameter  

    1 Turn Control ler Power On

    2 Select Teach Pendant F1

    F3

    F1

    F2

      RCS-7000T Ver1.0A F1: Teach Pendant F2: RS-422 Multipoint F3: Data up/down Load

      Servo Controller 

     ROBOT PLC PARA VIEW

      Parameter Setting

     SERVO MECH OPER I/O

      Servo Parameter 

     AMP/MOT GAIN BRAKE

      MECH. Parameter  MIN_LMT MAX_LMT

    F3  OPER. Parameter 

      MODE JOG DFT ETC.

    F4   I/O Setting

     INPUT BRAKE OUTPUT

    (PARA)

    (SERVO)

    (MECH)

    (OPER)

    (I/O)

      Chapter 3. Parameter Setup

     3-1. Opening Parameter Display

     3-1

  • 8/18/2019 RCS Controller.pdf

    51/177

    Chap. 3 Parameter Setup 

     

    ¡á  Setup embedded Servo Driver Capacity (AMP)

    Group Default

     AMP/

    MOT

    ¡Ü  Do not change parameter too much. It can cause unstable moti

    Servo Driver Capacity AMP

    Setting Range

    1

    ContentName

    0~8

    ¡Ü  To avoid unexpected movement, check each parameter before  running.

      - Servo Driver Capacity, Servo Motor Capacity, Encoder Type, Gain, Condition for   Brake motor can be set.  - Three Groups are in this mode (AMP/MOT, GAIN, BRAKE)

      ¡á Setup Procedure: SERVO ¡æ AMP/MOT ¡æ

      AMP,MOT_TYPE, L, R, Kt, Jm, R_I, R_RPM, MAX_RPM, POLE,MAX_TRQ

      ¡á Parameter Classification  - SERVO ¡æ Parameter for Servo  - MECH ¡æ Parameter for Mechanic (Manipulator)  - OPER ¡æ Parameter for Operation  - I/O ¡æ Parameter for I/O

     0 : 100W (RCS-6001) 1 : 200W (RCS-6002) 2 : 500W (RCS-6004) 3 : 600W (RCS-6005) 4 : 1000W (RCS-6010) 5 : 1300W (RCS-6015) 6 : 1800W (RCS-6020)

     7 : 2900W (RCS-6030) 8 : 5000W (RCS-6045)

      3-2. Parameter Setup

      3-2-1. Parameter for SERVO

      1> AMP / MOT

     3-2

  • 8/18/2019 RCS Controller.pdf

    52/177

    Chap. 3 Parameter Setup 

     á  Setting up Servo Motor Capacity & Constant

      : MOT_TYPE,L,R,Kt,Jm,R_I,R_RPM,MAX_RPM,POLE,MAX_TRQ

    Group Default

     MOT_TYPE Type of Motor to be used 0~99 94

     L Phase Inductance 0~999.99 (mH) 7.8

     AMP/ R Phase Resistance  0~999.99 (§Ù) 2.3

    MOT Kt Torque Constant 0~999.99 (kgfcm/A) 0

     Jm Inerita Moment 0~999.999 (gfcms2) 0.17

     R_I Rated Current 0~999.999 (A) 1.6

     R_RPM Rated Rotation Speed 1~10000 (RPM) 3000

     MAX_RPM Maximum Rotation Speed 1~10000 (RPM) 5000

     POLE Number of Pole 1~99 (POLE) 8

     MAX_TRQ Instant Maximum Torque 0~999.999 (Nm) 1.91

    ¢  MOT_TYPE : (Refer to Fig. 3.1)

      1) Setting Servo Motor Capacity to be used

      4) Example, how to select value

      - If MOT_TYPE is set for LF 0.6KW Motor : 32 (3 : Colume, 2 : Row)

      2) If MOT_TYPE is set to 1~99, L ~ MAX_TRQ value is set automatically,  it can not be edit individually.

      If wrong value is entered, controller and motor can be damaged.

      1) Setup embedded AMP capacity

      2) The value is decided by the capacity of controller purchased.

    Name Content Setting Range

      3) If an undesignated motor type is used or L ~MAX_TRQ needs to be revised  individually, the MOT_TYPE should be set to 0

      If the motor to be used and number of MOT_TYPE is different,  Motor can be damaged

      Description

      Description

     3-3

  • 8/18/2019 RCS Controller.pdf

    53/177

    Chap. 3 Parameter Setup 

    ¢¹  L, R, Kt, Jm, R_I, R_RPM, MAX_RPM, POLE, MAX_TRQ :

    ¡á  Fig. 3.1 Motor TYPE

    N60 N80 LF- TF- KF- TBL-I LN,TN KN,CN Minas

    1 2 3 4 5 6 7 8 9

    1 100 100 400 0.3K 450 750 50 LN 0.3 KN 0.6 0.03

    2 200 200 600 0.6K 850 1.0K 100 LN 0.6 KN 1.0 0.05

    3 300 300 800 0.9K 1.3K 1.5K 200 LN 0.9 KN 1.5 0.1

    4 400 400 1.0K 1.2K 1.8K 2.2K 400 LN 1.2 KN 2.0 0.2

    5 500 500 2.0K 2.9K 3.5K 600 TN0.45 CN 0.8 0.4

    6 450 3.0K 4.4K 5.0K 800 TN0.85 CN 1.5 0.75

    7 850 TN 1.3 CN 2.0

    8 1.3K TN 1.6 CN 3.0

    9 1.8K

    DefaultNo.

      If MOT_TYPE is set to 1~99, L ~ MAX_TRQ value is set automatically.  If wanting to modify indivisually, MOT_TYPE should be set to 0.

     3-4

  • 8/18/2019 RCS Controller.pdf

    54/177

    Chap. 3 Parameter Setup 

     á  Setting up Encoder Constant (ENC_TYPE, ENC_PLS)

    Group Default

      Encoder Type to use

     AMP/

    MOT

      Pulse number to use 2500

    1) Setting up Encoder to use.

    2) Normal 15 signals Incremental Encoder is that consists of A,B,Z,U,V,W signal.

    4) 10 line Incremental Encoder is that consists of A,B,Z,Rx signal.

    Content

    ENC_TYPE

    Setting Range

    0

     0~2

    ENC_PLS 1~10000 (Pulse)

    3) 9 signals Incremental Encoder is that consists of A,B,Z signal.  The Encoder outputs the signal of U, V, W during power input 5[msec] and after that  it outputs signal of A,B,Z. The signal of Z corresponds to the electric angle 0°.

    5) The applicable Absolute Encoder is SUMTAK's AEF-010-2048.  It is possible to use other Encoder having same signal specification.

    6) When changing Encoder Type, Main Power of controller should be recycled.  (Turn Off and turn on)

    7) Setting up the Encoder pulse number.  - In case of Minas Motor : 2500 Pulse

    Name

      ¢º Setting Encoder Type  0 : Normal Incremental Encoder (15 line)  1 : 9 line type Incremental Encoder   2 : Absolute Encoder 

      Description

     3-5

  • 8/18/2019 RCS Controller.pdf

    55/177

    Chap. 3 Parameter Setup 

     á  Setting up GAIN (POS_P, SPD_P, SPD_I, FEED_FWD)

    Group Default

    GAIN

    5) Feed-Forward Ratio depends on application, but Generally it is set to about 70%.

      SPD_P

    Name Contents

      Propotional gain for position  control loop

     POS_P

      SPD_I

    Setting Range

      FEED_FWD 0~100 (%)

    10

    100

      Integral Gain of speed control  loop

    10~150

    15~300 (1/s)

      Propotional gain for speed  control loop 2~500

    2) In a normal application, it is recommended to adjust it from SPD_P.  If it is not successfully adjust with SPD_P, try to adjust it with POS_P.

    3) When setting up SPD_P first, calculate the inertia moment of load converted to  servo motor axis, and then if it is n times from inertia moment, use default value  with n*10 +10.

      Feed-forward ratio of speed  calculated at Acc & Dec  Calculator 

    4) The ACC/DEC (Acceleration & Deceleration) Calculator is satisfied with condition  of ACC/DEC time and Motion Speed, it calculates the speed and position to reach  desired position.  The Feed-Forward Ratio means the ratio reflecting to the speed command of   speed controller directly without pass by the position controller.

    0

    50

    1) The position control uses a Proportional(P) Control, while the speed control applies

      Proportional Integral(PI) control.

      ¡á Procedure to set  SERVO ¡æ GAIN ¡æ POS_P, SPD_P, SPD_I, FEED_FWD

      Description

      2> GAIN

     3-6

  • 8/18/2019 RCS Controller.pdf

    56/177

    Chap. 3 Parameter Setup 

     á  Fig. 3.2 GAIN Adjustment

    ¡á   Position Proportional Gain ( POS_P )

    ¡á   Speed Proportional, Integral Gain ( SPD_P,SPD_I )

      Speed Proportional Gain ( SPD_P )

      Speed integral Gain ( SPD_I )

      Do not change parameter too much. It can cause malfunction  of controller or motor.

    - The position proportional Gain is the value mediating the position following state.  The larger the value, the faster the position response. But the time arriving at the  steady state is delayed due to the overshoot proportional to this.

    - Therefore the proper value is fixed when the motor is rotated. The proper value is  about 80 ~120, generally it is fixed as 100.

    - In the speed controller, the speed proportion Gain revises the difference between  the standard value and the return-track value at the rate of as much as the value  set up in the speed proportion Gain.

    - Therefore, if this value increases, the speed change rate decreases, but the  torque ripple increases due to the connection with the current controller.

    - The proper value of speed controller should be mediated with the speed proportion  Gain proportionally.

    - The speed integral Gain improves the response about the normal state by accumulating  the value about the speed deflection, and it does not affect the change about the  external disturbance (generally Noise, Disturbance).

    - If this value becomes large, the torque of motor can have an effect but the ripple  becomes large in proportion with it.

    - The proper speed integral Gain value should be added or subtracted according to the  state of load from 30 ~ 70.

    - In case of being attached the inertia load on a Motor, set the value between 40~70 to  lower the mechanical Overshoot.

    - Set 30~50 in a Cartesian Robot.

     3-7

  • 8/18/2019 RCS Controller.pdf

    57/177

    Chap. 3 Parameter Setup 

     á   Feed-forward Gain ( FEED_FWD )

     

    ¡á  For rectangular machinery and tools

     - Using with rectangular machinery and tools, generally set SPD_I Gain below 40.

     - When controller drives heavy load by belt or reduction gear, set SPD_I 40~100.

    6005 6010

    120 150

    30 35

    50 50

    ¡á  Driving inertial load like rotational circular plate

    6005 6010

    120 150

    50 50

    60 60

    35

    50

    120

    SPD_I 60 55 55

    35

    POS_P 120 120 150

    SPD_P 50 30

    6015~20 6020~30

    50

    30

     - When driving rotational load by a motor or belt reduction gear with a direct connection,  regulate the value of SPD_P and SPD_I as below.

    Gain RCS-6001~4

    50

    6020~30RCS-6001~4

    150

    6015~20

    120

    SPD_I

    30

    POS_P

    Gain

    SPD_P

     ¡Ú

     Standard Gain

    - The Feed forward Gain is the rate ordering to the speed controller directly in  the position-speed controller without passing the position controller.

    - The larger this value, the better the response of the controller, but the over-  shoot becomes large and affects the speed ripple. The proper value is 30 ~ 70,  it is in a state of flux according to the kinds of motor.

    - In addition, In case of Feeding equipment, set '0', taking the rolling condition  of material into consideration.

     3-8

  • 8/18/2019 RCS Controller.pdf

    58/177

    Chap. 3 Parameter Setup 

     á  Brake Operation Condition Setting (BRK_TIME, BRK_DLY, BRK_RPM)Group Default

    BRAKE

    1) Start to brake when speed down to BRK_RPM before BRK_DLY. (*1)

    3) Perform the brake run from Servo OFF to Motor Stop

    4) It does not move during BRK_TIME after Servo ON even Move Command is applied.

    0

    0

    2000

    BRK_DLY

    Name Contents Setting range

    0~1000 (ms)BRK_TIME

    0~1000 (ms)

    2000~3000 (RPM)BRK_RPM

     Waiting time until first moving after Servo ON

      Maximum time keeping Brake  Run after Servo OFF

     Motor Speed to run Brake after Servo OFF

    2) Start to brake when speed does not go down below than BRK_RPM  even passing over BRK_DLY regardless speed. (*2)

      ¡á Procedure to set  SERVO ¡æ BRAKE ¡æ BRK_TIME, BRK_DLY, BRK_RPM

      Description

      3> BRAKE

    ¼º̧ON

    BRK_TIME

    À Ìµ¿µ¿ÀÛ°¡́É

    ¼º̧OFF

    BRK_RPM

    °ü¼ºÀÌÅ«º ÎÇ Ï 

    °ü¼ºÀÌÀÛÀºº ÎÇ Ï 

    BRK_DLY

    *1 *2

    ½Ã°£

    À̵¿̧í·É

    ¼ÓµµSpeedLow inertia load

    High inertia loadMove

    Command

    BrakeOFF

    Servo ON Servo OFF

    Time

    Brake OFFBRK-TIME

    BRK-DLY

     3-9

  • 8/18/2019 RCS Controller.pdf

    59/177

    Chap. 3 Parameter Setup 

     á  Setting up the operation field (MIN_LMT, MAX_LMT)Group Name

      MIN_LMT  -99999.999~99999.999 -99999.999

      MAX_LMT  -99999.999~99999.999 99999.999

    ¡á  Setting up the operation limit (LMT_RPM, LMT_TRQ)Group Default

      LMT_RPM 3000

      LMT_TRQ 300

    Default

    Name Contents Setting range

    MECH1~10000 (RPM)

    0~300 (%)

    Set the Max. of operation speed

    Limited torque value in poeration

    Setting rangeContents

    Min.coordinate value in the operation fieldMECH

    Max.coordinate value in the operation field

      ¡á The equipment parameter is data related to the motor and machinery. Be careful  for the fact that tampering with wrong values may damage the equipment.

      ¡á Procedure to set  MECH ¡æ MIN_LMT, MAX_LMT, LMT_RPM, LMT_TRQ,  ORG_OFS, MOV_MOT, MOV_MECH, MOV_POL,  MPG_MOV0, MPG_PLS0, MPG_MOV1, MPG_PLS1, T_CYCLE

     3-2-2. Parameter for MECH

     ¢Ñ

      Description

      ¢Ñ   Description

    1) During the Robot operation, if the position command is beyond limits of this parameter,  it is treated as an alarm.

    2) This parameter value is ignored in the JOG and Origin operations, and the common  area that can be calculated is used as a limit value among user's coordinate value  and the number of encoder pulse. (-99999.999

  • 8/18/2019 RCS Controller.pdf

    60/177

    Chap. 3 Parameter Setup 

     á  Setting up the user's the coordinate value(ORG_OFS, MOV_MOT,

      MOV_MECH, MOV_POL)Group Default

    MECH

     MOV_MOT Rotation quantity of motor 1

     MOV_MECH Movement quantity of machinery 10

     MOV_POL

    Name Setting range

     1~10000

     ORG_OFS

    Contents

     Coordinate value of orgin position in the user's coordinate system

    1

     Set the sign of User's coordinate system

     (0: In clockwise rotation

     of motor + movement)

    0

     (1: In counterclockwise rota -tion of motor - movement)

    -99999.999~99999.999

     1~10000

     0~1

      ¢Ñ   Description

    1) The coordinate value of origin position is inputted in the ORG_OFS on the basis of coordinate  system that the user wants.

    2) The position of power input is used as ORG_OFS until the origin is searched.

    3) At the time of machinery application without origin, it is convenient to fix 0 as a value of   ORG_OFS.

    4) MOV_MOT and MOV_MECH set up the movement quantity of the user's coordinate system  and the ratio converting the number of encoder pulse. 

    Ex1) If the coordinate system of [mm] is used on machinery moving 10[mm] per 1 motor   rotations, MOV_MOT is set to “1” and MOV_MECH is set to “10”. 

    Ex2) If the coordinate system of [°] is used on machinery moving 360,000[°] per 50 motor 

      rotations, MOV_MOT is set to “50” and MOV_MECH is set to “360”.

    5) The available scope as a coordinate value of user's coordinate system is –99999.999  ~99999.999.

    6) The operation of Servo uses encoder pulse number, and the available scope of encoder   pulse number is -99999999¡ 99999999.

    7)Though the allowable position value (No.4) in the user's coordinate system, if the pulse number   about its position exceeds the limited area(No.5) it is treated as an alarm.

     3-11

  • 8/18/2019 RCS Controller.pdf

    61/177

    Chap. 3 Parameter Setup 

    Group Setting range

    MECH MPG_PLS0 1~10000

     MPG_PLS1

     MPG_MOV0 0.001~500.000

     MPG_MOV1

    0~10000.000

    Contents

     Input quantity of MPG pulse

    ¡á

     Setting up the special movement condition(MPG_MOV0, MPG_PLS0, MPG_MOV1,  MPG_PLS1, T_CYCLE)

     Movement quantity of equipment partabout the inputted MPG pulse

     The position value of user's coordinatesystem equivalent to a circle of machnery (Use in the MOVT command)

     T_CYCLE

    Default

    1

    0.001

    0

    Name

      ¢Ñ Description

    1) By using MOVM of the Robot command, it can move into the fixed position using MPG  pulse. At this time, the input frequency of MPG pulse should be lower than the  movement speed fixed after (decel) accelerating lower than the acceleration &  deceleration condition.  If the acceleration & deceleration of MPG or the movement speed is larger than the  fixed value, It is operated in the controller according to the fixed value.  Also if the order value of MPG pulse exceeds the target position, it goes beyond to  next program after moving until the target position.

      ex) MOV_MOT=1, MOV_MECH=1, MPG_PLS0=1, MPG_MOV=1 are fixed, the motor 

      rotates one time by the MPG 1 pulse.

    2) (MPG_PLS0, MPG_MOV0), (MPG_PLS1, MPG_MOV1) the selection of combination is  determined according to the contact point input of MPG_RATE.  If the contact point input of MPG_RATE is 0, select the MPG_PLS0, MPG_MOV0.

    3) With MOVM among the Robot command the fixed position value is selected according  to the contact point value IO_POS3¡ 0 among the P0¡ P15.  It starts movement if the contact point of MOVT_ST becomes to 1.

    4) From a machinery structure viewpoint moving into coordinate 360.000 returns to the  same position.

      If it is needed to move from the present position of 359.000 to 0.000, it needs to move  -359.000 without regard to the rotation direction.  But, since 0.000 and 360.000 are the same the desired position can be achieved by  moving 1.000 only from 359.000. In this case if the value of T_CYCLE is fixed as 360.000,  the controller make it move near position automatically at the time of MOVT command.  However, this function is used at the time of using the incremental encoder only.

    5) If a pipe or wire exists in the load, do not use it since the wiring may intertwined  if T_CYCLE function is used.

    6) If the value of T_CYCLE is set to 0.000, this function is not used.

     3-12

  • 8/18/2019 RCS Controller.pdf

    62/177

    Chap. 3 Parameter Setup 

    Group Default

    0

    0

     AUTO_ORG

    MODE

      0~1(1:PLC AUTO RUN)

     0~1(1:ORG AUTO RUN)

    In putting power-Origin auto-run

    ContentsName

     AUTO_PLC In putting power-PLC auto-run

    ¡á  Setting up the auto-operation in putting power   (AUTO_PLC, AUTO_ORG)

    Setting range

      ¡á It sets up the controller movement related parameter such as the operation  program selection and the origin operating method.

      ¡á It is devided into 4 group. (MODE, DFT, JOG, ETC)

      ¡á Procedure to set 

    OPER ¡æ MODE ¡æ AUTO_PLC, AUTO_ORG, S_MODE,  ORG_RULE, MPG_MODE

      3-2-3. Parameter for OPER

      1> MODE

      ¢Ñ   Description

    1) If the value of AUTO_PLC is fixed as "1", the PLC program selected by PLC_PGM  parameter is operated automatically at the time of power input. If the PLC program  concerned is not programmed or there is error in the grammar, it is treated as an  alarm. 2) If the value of AUTO_ORIGIN is fixed as "1", the movement of return to origin is  operated automatically according to the method selected by ORIGIN_RULE parameter   at the time of power input.  When using the absolute encoder, this function does not operate.

     3-13

  • 8/18/2019 RCS Controller.pdf

    63/177

    Chap . 3 Parameter Setup 

    ¡  á  Setting up the SOFT acceleration& deceleration (S_MODE)Group Default

    3

      0 : No filter 

      1 : 2 (msec)

      7 : 191 (msec)

      3 : 11 (msec)

      4 : 23 (msec)

      5 : 47 (msec)

      6 : 95 (msec)

    S_MODEMODE Selection of filter in the acceleration & deceleration

      2 : 5 (msec)

    0~7

    contents Setting rangeName

      ¢Ñ   Description

    1) The acceleration & deceleration calculator can calculate the wave of the  acceleration & deceleration by the set-up parameter to the target position. 

    The calculated velocity wave has a trapezoid shape. The stairs type

      torque(acceleration & deceleration) is occurred by each corner of the trapezoid  speed wave and owing to this the stairs-type torque, the vibration may be  occurred in some equipment. 

    In order to soften this feature, the acceleration & deceleration time is fixed long  or the value of S_MODE is arranged.

    2) The filter operated by the S_MODE, is a first delay type filter.

    3) Though there is a difference according to the set-up of the acceleration &  deceleration time, if S_MODE is used, the time needs 4 times as the normal filter   time constant to the motion additionally in comparison with the trapezoid

      acceleration & deceleration. (Maximum 8 times)

    4) If the delay by the S_MODE filter is exceeded excessively, the movement time  may be reduced by extending the acceleration & deceleration time and by using  the filter having a short time constant.

    5) The S_MODE movement can be applied to the all movement commands.

     3-14

  • 8/18/2019 RCS Controller.pdf

    64/177

    Chap. 3 Parameter Setup 

     á  Setting up the method of return to origin(ORG_RULE)

    Group Default

    MODE RG_RULE 0

    searching

    for origin

    Setting up the method of

    Name Contents Setting range

    0~16

     0 : No searching for Origin 1,2 : CW switch 3,4 : CCW switch 5,6 : CWdirection, ORG switch 7,8 : CCWdirection, ORG switch 9,10 : CW¡æCCWdirection, ORGswitch 11,12 : CCW¡æCWdirection,ORGswitch

     13,14 : CW Damper  15,16 : CCW Damper 

     ¢º Odd: Last arriving position=Last Z phase pulse position + Value fixed in the  ORG_OFS parameter. Last coordinate value is "0" .

     ¢º Even: Last arriving position=Last Z phase pulse position  Last coordinate value is "ORG_OFS" set-up value.

      ¢Ñ   Description

    1) The final sign to be decided the originsi c(z) phase of encoder.2) The regular direction, from the point view of Servo motor, is the rotation direction  at the time of moving in the order of U¡æV¡æW, and for the LG servo motor, it is  CCW direction3) In using the CCW limit switch, install it at the end of the rotation of the regular   direction. (CW is reverse direction.)4) The last origin position may be different in accordance with the operating method  of odd(1,3,..15) and even(2,4..16) numbers.

    5) In operating the origin, use the DFT_ACCand DFT_DEC as acceleration and  deceleration time.

    6) If the origin command is receive, it is converted into Servo ON  automatically even at servo OFF.The servo ON/OFF can be determined using  ORG_SV (OPER¡æETC¡æORG_SV) parameter after completing the origin operation.7) If the absolute encoder is fixed as a encoder(ENC_TYPE = 2), set up the origin by using  the JOG function after moving until the Origin position. At this time, reset hardwarely  the absolute encoder.8) If the absolute encoder is fixed as a encoder(ENC_TYPE = 2), the origin command  by the contact point or the AUTO_ORG function is ignored, and the origin can be  operated in the T/P only.

     3-15

  • 8/18/2019 RCS Controller.pdf

    65/177

    Chap. 3 Parameter Setup 

     á  Reference 3.3 ORIGIN RULE Explanation

      ¢   The method of detection origin about ORG_RULE 1 ~ 4

      ¢   The method of detection origin about ORG_RULE 5 ~ 8

     ¢Ñ For ORG_RULE 5, 7 , refer to the Description 4).

    CCW limitswitch area

    Z phase

    CW limitswitch area

    CW direction CCW direction

    ORG_RULE= 2

    ORG_RULE = 4

    Moving to

    ORG_SPD0

    Moving toORG_SPD1

    ORG_RULE= 1

    ORG_RULE = 3

    ORG_OFS

    Moving asDFT_SPD to

    ORG_OFS  Origin positionORG_OFS

    CCW limitswitch area

    Z phase

    ORIGINswitch area

    CW limitswitch area

    CW direction CCW direction

    ORIGINERROR

    ORIGINERROR

    ORG_RULE= 6

    ORG_RULE= 8

    Moving asORG_SPD0

    Moving asORG_SPD1

     3-16

  • 8/18/2019 RCS Controller.pdf

    66/177

    Chap. 3 Parameter Setup 

      ¢   The method of detection origin about ORG_RULE 9 ~ 12

     

    ¢   The method of detection origin about ORG_RULE 13 ~ 16

      1) When ORG_RULE is 9 ~ 12, if the origin switch is not in the shuttle part of CW Limit switch  and the CCW Limit switch it is treated as an alarm.  2) For ORG_RULE 9, 11, refer to the description 4).

      1) For ORG_RULE 13, 15, refer to the Description 4).  2) If the torque occurs more than the value fixed in the parameter ORG_TRQ after colliding  with the damper, it starts to rotate toward the reverse direction.

    CCW limit

    switch area

    Z phase

    ORIGIN

    switch area

    CW limit

    switch area

    CW direction CCW direction

    ORG_RULE

    = 10

    ORG_RULE

    = 12

    Moving as

    ORG_SPD0

    Moving asORG_SPD1

    CCW Damper area

    Z phase

    CW Damperarea

    CW direction CCW direction

    ORG_RULE= 14

    ORG_RULE = 16

    Moving asORG_SPD0

    Moving asORG_SPD1

    ORG_RULE= 13

    ORG_RULE = 15

    ORG_OFS

    Moving asDFT_SPD

    to ORG_OFS

      Origin positionORG_OFS

    3-17

  • 8/18/2019 RCS Controller.pdf

    67/177

    Chap. 3 Parameter Setup 

     á  Setting up the method of operating MPG (MPG_MODE)

    Group Default

      Counterclockwise

     A phase: Lead

     B phase: Lag

     ¢¹ The max. allowable frequency of the input width is 400KHZ.

    3

    1

    2

     B phase

     A phase

     A phase

     B phase

     B phase

    ContentsName

    MODE

    How to input MPG pulse

    Set-up value

    Setting range

    0

    Input pulse width

    Clockwise

    0~3

     A phase

    MPG_MODE

    Remarks

     A phase:  clockwise

     B phas:  counterclock  wise

     A phase:  pulse

     B phase:  direction

     0 : Not operating MPG 1 : A (Lead) , B (Lag) pulse 2 : A pulse ¡æ clockwise, B pulse ¡æ  counterclockwise 3 : A ¡æ input pulse, B ¡æ operation direction

      1

     ¢Ñ

      Description

     3-18

  • 8/18/2019 RCS Controller.pdf

    68/177

    Chap. 3 Parameter Setu p 

     á  Set-up JOG the jog operation(JOG)

    Group Default

    100

    500

    1000

    JOG 3000

    0.250

    0.500

    0.750

    1.000

    0~99999.999

    Setting range

    1~10000

      : JOG_SPD0, JOG_SPD1, JOG_SPD2, JOG_SPD3, JOG_RES0, JOG_RES1,  JOG_RES2, JOG_RES3

    1 time transfer quantityat the time of Incremental

    JOG movement

     JOG_SPD0

     JOG_SPD1

    Name Contents

    The movement speed of JOG

    JOG_RES2

     JOG_RES3

     JOG_SPD2

     JOG_SPD3

     JOG_RES0

     JOG_RES1

      ¡á Procedure to set  OPER ¡æ JOG ¡æ JOG_SPD0, JOG_SPD1, JOG_SPD2, JOG_SPD3, JOG_RES0,  JOG_RES1, JOG_RES2, JOG_RES3

      2> JOG

     ¢Ñ

      Description

    1) A 4 step JOG speed can be used at the time of JOG operation.  This value of movement speed is fixed by JOG_SPD0¡ 3 parameter.

    2) If the value fixed by JOG_SPD0¡ 3 is 10,000, it is operated by the speed  determined by the LMT_RPM (MECH¡æ LMT_RPM) parameter.  The speed is determined in the value less than that in accordance with the ratio.  (50% in case of 5,000)

    3) The movement quantity about 1 time movement command is fixed by 4 steps at the  time of IJOG operation. This movement quantity is inputted by the value of user's  coordinate system.

    4) The JOG movement may be stopped if it meets CW Limit switch during the operation  of JOG/IJOG.

    5) DFT_ACC and DFT_DEC is used as the acceleration & deceleration time at the time  of JOG/IJOG operation.

    6) If the JOG/IJOG command is received, it is converted into Servo ON automatically  even at servo OFF. The servo can be ON/OFF by using JOG_SV parameter after   completing JOG/IJOG operation.

     3-19

  • 8/18/2019 RCS Controller.pdf

    69/177

    Chapter 3. Parameter Setup 

     á Set- up the basic movement condition(DFT_SPD, DFT_ACC,DFT_DEC)Group Default

      1~10000 1000

    DFT 1~500 (10ms) 20

      1~500 (10ms) 20

    Setting range

    DFT_ACC

    DFT_DEC Value of basic deceleration time

    Value of basic acceleration time

    Name Contents

    Value of basic movement speedDFT_SPD

      ¡á Procedure to set  OPER ¡æ DFT ¡æ DFT_SPD, DFT_ACC, DFT_DEC,ORG_SPD0,  ORG_SPD1, IO_SPD0, IO_SPD1, IO_SPD2, IO_SPD3

      ¢Ñ   Description

      3> DFT

    1) If the Robot program is operated, the speed fixed in the DFT_SPD is used as movement  speed until speed set-up is changed using SPD command.  To resume the Robot operation after stopping it temporarily, the speed value before the  suspension is used, DFT_SPD is used in case when the program is started from the

      beginning.

    2) If the value fixed by DFT_SPD is 10000, it is operated by the speed determined by  LMT_RPM (MECH->LMT_RPM) parameter.  The speed in the value less than that is determined in accordance with the ratio.  (50% in case of 5,000)

    3) The value of acceleration time fixed by DFT_ACC is used in case when the Robot  program is started from the beginning, when it is moved with Jog and when the origin  is operated.

    4) The value of DFT_ACC is the time value necessary for accelerating until MAX_RPM

      (SERVO -> AMP/MOT-> MAX_RPM)If this value is 10, it is accelerated as much 0.10  [sec].

    5) The value of deceleration time fixed by DFT_DEC is used if the Robot program is  started from the beginning, when it is moved with Jog/IJog, and when the origin is  operated.

    6) The value of DFT_DEC is the time value necessary for decelerating until MAX_RPM.  If this value is 10, it is decelerated as much 0.10 [sec].

     3-20

  • 8/18/2019 RCS Controller.pdf

    70/177

    Chapter 3. Parameter Setup 

     á  Set-up the origin moving speed(ORG_SPD0, ORG_SPD1)

    Group Default

    The moving speed until confirming the last

    port at the time of operating the origin

    The moving speed from the last port to the Z

    phase at the time of operationg the origin

    DFT

    ORG_SPD1

    Setting range

    500

    1000

     1~10000

    Name Contents

    ORG_SPD0

     ¢Ñ

      Description

    1) In origin operation, it is moved by ORG_SPD0 speed until the last contact  point and moved by ORG_SPD1 speed until Z phase position.

    2) If user selects ORG_RULE(OPER->MODE->ORG_RULE) moving into the  fixed ORG_OFS(MECH ->ORG_OFS), it is moved by DFT_SPD(OPER-> ¡@  DET->DET_SPD) from Z phase position to the onset.

    3) If the value fixed by ORG_SPD0¡ 1 is 10000, it is operated by the speed  determined by LMT_RPM(MECH ->LMT_RPM) parameter.

      The speed in the value less than that is determined in accordance with the  ratio. (50% in case of 5,000)

    4) DFT_ACC and DFT_DEC is used as the acceleration & deceleration time at  the time of operating the origin.

    5) If the origin command is received, it is converted into Servo ON  automatically even at servo OFF.  The servo can be ON/OFF by using ORG_SV(OPER ->ETC->ORG_SV)  parameter after completing the origin operation.

     3-21

  • 8/18/2019 RCS Controller.pdf

    71/177

    Chapter 3. Parameter Setup 

     á  Set-up the operation speed with the contact point(IO_SPD0,  IO_SPD1,IO_SPD2,IO_SPD3)

    Group Default

    500

    1000

    1500

    2000

    IO_SPD1

    IO_SPD1 IO_SPD0 Selected speed value

     Moving speed in case the speed is fixed by SPD IOSPD during the operation of Robot program

    Setting range

    DFT

    OFF (0)

    IO_SPD2

    IO_SPD3

    IO_SPD0

     1~10000

    IO_SPD3

    IO_SPD0

    IO_SPD1

    IO_SPD2

    Name Contents

    ON (1)

    ON (1)

    OFF (0)

    ON (1)

    OFF (0)

    ON (1)

    OFF (0)

      ¢Ñ   Description

    1) This function is used with the contact points IOSPD1, IOSPD0.

    2) If the commands IOSPD1, IOSPD0 exist in Robot program operation according to  the contact point of IOSPD1, IOSPD0 when the command is operated, it is used  as movement speed later by selecting one of the speed values from IO_SPD0¡  IO_SPD3.

    3) If the value fixed by IO_SPD0 ¡ 3 is 10,000, it is operated by the speed  determined by LMT_RPM(MECH->LMT_RPM) parameter.  The speed in the value less than that is determined in accordance with the

      ratio. (50% in case of 5,000)

     3-22

  • 8/18/2019 RCS Controller.pdf

    72/177

    Chapter 3. Parameter Setup 

     á  Set-up the condition of Servo operation

    Group Default

    Standard for the occurrence of excesive 10.00

    error about the movement deflection

     ROB_PGM Select the Robot program to be operated 0

     PLC_PGM Select the PLC program to be operated 0

     INI_TRQ The initial torque in case of Servo ON 0

     JOG_SV The selection of Serbo On/Off after a JOG/IJOG 0

     ORG_SV The selection of Serbo On/Off after a Origin 0

     ORG_TRQ The torque when operation the Damper Origin 50

     MY_ID 422 Multi point communication ID setting 0

     BIT RATE 422 Multi point communication speed setting 0

     BCD_READ Decide if BCD DATA is applied 0

     BACKLASH BACKLASH compensation 0

     DATA MODE Decide a option of DATA storage 0

     USER MODE Set- up the user's Mode 0

     SENSOR Set- up the type of sensor  11

     -300~300 (%)

    0~999

    0~99

    0~3

    0,1

    -99999.999~99999.999

    0,1

    Name Contents

     FLO_ERR

    ETC.

    Setting range

    0 ~ 8

    0.001~10000.000

      : FLO_ERR, INPOS, INI_TRQ, JOG_SV, ORG_SV, ORG_TRQ, MY_ID BIT RATE,  BCD READ, BACKLASH,DATA MODE,USER MODE,SENSOR

    0~255

    50~200 (%)

    0~1

    0~1

     INPOSThe error scope estimated the movementis completed

    0.001~99999.999 0.05

    0~4

      ¡á Procedure  OPER ¡æ ETC. ¡æ FLO_ERR, INPOS, ROB_PGM, PLC_PGM, INI_TRQ, JOG_SV,  ORG_SV,ORG_TRQ, MY_ID BIT RATE, BCD_READ, BACKLASH,  Data Mode, User Mode,Sensor 

      4> ETC

     ¢Ñ

      Description

    1) The trapezoid type acceleration & deceleration movement is used in every movement.  The Servo control part calculates internally the trapezoid type acceleration & deceleration  wave, and it controls the servomotor in accordance with the calculated position and speed.  If the gain of controller is fixed wrong or there is a wiring error, the large error occurs  between the calculated position and the servo position. In this case, FLO_ERR value is used  as a deflection standard value.

     3-23

  • 8/18/2019 RCS Controller.pdf

    73/177

    Chapter 3. Parameter Setup 

    OFF (0)

    PGM_SEL2

    ON (1)

    ON (1)

    ON (1)

    OFF (0)

    PGM_SEL1

    OFF (0)

    PGM_SEL0 Selected Robot Program

    OFF (0)

    OFF (0)

    OFF (0)

    OFF (0)

    ON (1)

    ON (1)

    ON (1) ON (1)

    OFF (0)

    ON (1)

    ON (1)

    OFF (0)

    ON (1)

    OFF (0)

    ON (1)

    OFF (0)

    ON (1)

    OFF (0)

    NO. 7

    NO. 0

    NO. 1

    NO. 2

    NO. 3

    NO. 4

    NO. 5

    NO. 6

      2) About the various movement operation command, if the difference between  the position of servo motor and the position of target is included within the

      value fixed with INPOS it is perceived as the state which arrives to the position  (IN POSITION).  The INPOS value is used as a standard for the completion of movement in  operation of Robot program (In case of FOS 100).  The INPOS and FLO_ERR value uses the unit of user's coordinate system.

      3) If the ROB_PGM value selected is between 0¡ 7, the program starting first  by the command of Robot run is fixed by value determined in this parameter.  If the ROB_PGM value selected is 8, the Robot operation program number is  selected by the contact point value PGM_SEL2 PGM_SEL1 PGM_SEL0 when the  contact point value PGM_SEL2 is 0¡æ1.

    4) The program number operated by the PLC run command is selected by  PLC_PGM value.

    5) INI_TRQ is used for the restraint of initial drooping state at the time of   converting to servo movement after loosing the brake in case of the gravity  load. If it is fixed as the negative number(‘-‘) it becomes a reverse torque.  It can be fixed from -300 to 300[%] on the basis of the rated torque.

    6) If JOG_SV is fixed as "1", it maintains Servo ON state after moving into JOG  and IJOG commands, and if this is fixed as "0", It becomes Servo OFF state  after moving.

    7) If ORG_SV is fixed as "1", it maintains Servo ON state after operating the  Origin and if this is fixed as "0", It