35
Key References: Bourissou, D; Guerret, O.; Gabbai, F.; Bertrand, G. Chem. Rev. 2002, 100, 39-91. Enders, D.; Balensifer, T. Acc. Chem. Res. 2004, 37, 534-541. Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem. Int. Ed. 2004, 43, 5130-5135. Recent Catalysis with N-Heterocyclic Carbenes

Recent Catalysis with N-Heterocyclic Carbenes...2011/11/06  · Best Resonance Structure for diaminocarbenes N X R Carbene Stability of N-Heterocyclic Carbenes Electronic Stabilization:

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Key References: Bourissou, D; Guerret, O.; Gabbai, F.; Bertrand, G. Chem. Rev. 2002, 100, 39-91.Enders, D.; Balensifer, T. Acc. Chem. Res. 2004, 37, 534-541.Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem. Int. Ed. 2004, 43, 5130-5135.

    Recent Catalysis with N-Heterocyclic Carbenes

  • 1. Stable Carbenes

    •Reasons for Stability•Isolated Carbenes

    2. Reactivity of N-Heterocyclic Carbenes

    •Ligands•Reactants•Catalysts

    3. N-Heterocyclic Carbenes as Catalysts

    •Brief History•Recent Catalysis•Asymmetric Catalysis

    Outline

  • Stable Carbenes

    N

    N

    N

    N

    N N

    N

    N

    S

    cyclicdiaminocarbenes

    imidazol-2-ylidenes

    1,2,4-triazole-3-ylidenes

    1,3-thiazol-2-ylidenes

    NN NO NS

    acyclicdiaminocarbenes

    acyclicaminooxycarbenes

    acyclicaminothiocarbenes

    BB BB

    cyclicdiborylcarbenes

    acyclicdiborylcarbenes

    PSi PP SCF

    F

    F

    FS

    F

    F

    F

    FF F FF

    FS

    F

    phosphinosilyl-carbenes

    phosphinophosphino-carbenes

    sulfenyl-trifluoromethylcarbene

    sulfenyl-pentafluorothiocarbene

  • Stable Carbenes

    N

    N

    N

    N

    N N

    N

    N

    S

    cyclicdiaminocarbenes

    imidazol-2-ylidenes

    1,2,4-triazole-3-ylidenes

    1,3-thiazol-2-ylidenes

    NN NO NS

    acyclicdiaminocarbenes

    acyclicaminooxycarbenes

    acyclicaminothiocarbenes

    BB BB

    cyclicdiborylcarbenes

    acyclicdiborylcarbenes

    PSi PP SCF

    F

    F

    FS

    F

    F

    F

    FF F FF

    FS

    F

    phosphinosilyl-carbenes

    phosphinophosphino-carbenes

    sulfenyl-trifluoromethylcarbene

    sulfenyl-pentafluorothiocarbene

    N-Heterocyclic Carbenes (NHC)

  • Stability of N-Heterocyclic Carbenes

    Electronic Stabilization:1. π-Donation: There is electron donation into the carbene out-of-plane p-orbital by the electron-rich system (N-C=C-X).

    π-Donation moderates typical electrophilic reactivity of carbenes

    2. σ-Withdrawal: Additional stability of the carbene is offered by σ-electron-withdrawal effect of the carbene center by more electronegative atoms (in this case, two nitrogens).

    σ-Effect moderates typical nucleophilic reactivity of carbenes

    Arduengo, A.; Harlow, R.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.

    R2N

    X

    Resonance Forms:

    N X N X N X N X

    Best Resonance Structurefor monoaminocarbenes

    Best Resonance Structurefor diaminocarbenes

    N

    X

    R

    Carbene

  • Stability of N-Heterocyclic Carbenes

    Electronic Stabilization:1. π-Donation: There is electron donation into the carbene out-of-plane p-orbital by the electron-rich system (N-C=C-X).

    π-Donation moderates typical electrophilic reactivity of carbenes

    2. σ-Withdrawal: Additional stability of the carbene is offered by σ-electron-withdrawal effect of the carbene center by more electronegative atoms (in this case, two nitrogens).

    σ-Effect moderates typical nucleophilic reactivity of carbenes

    Arduengo, A.; Harlow, R.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.

    R2N

    X

    Resonance Forms:

    N X N X N X N X

    Best Resonance Structurefor monoaminocarbenes

    Best Resonance Structurefor diaminocarbenes

    N

    X

    R

    Carbene

  • Stability of N-Heterocyclic Carbenes

    Stability Due to Steric Hindrance: Adamantyl substituents contribute to kinetic stability.

    Arduengo, A.; Harlow, R.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.

    First isolated crystalline carbene!

    Bulky substituents clearly kinetically stabilize all types of carbenes

    An Example:

    NN AdAd

    •Steric hindrance can help stablize carbenes, however, it is not necessary.

    •Electronic stabilization is necessary.

  • Isolation of N-Heterocyclic Carbenes

    N

    NPh

    Ph

    HCCl3 -HCCl3

    N

    NPh

    Ph

    N

    NPh

    PhN

    N

    Ph

    Ph

    Wanzlick, H. W.; Kleiner, H.J. Angew. Chem. 1961, 73, 493.

    First carbene isolationattempt.

    N

    NAd

    Ad

    H

    H

    H

    Cl

    NaH

    THF, cat. DMSO N

    NAd

    Ad

    H

    HRT, quantitative

    Arduengo, A.; Harlow, R.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.

    Stable in the absence of oxygen and moisture.

    N

    NMe

    Me

    Me

    Me

    H

    Cl

    NaH

    THF, cat. KOtBu N

    NMe

    Me

    Me

    MeRT, quantitative

    Arduengo, A.; Dias, H.; Harlow, R.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530-5534.

    Electronic stabilization more importantthat steric hindrance.

  • Isolation of N-Heterocyclic Carbenes

    Commercially available fromEburon Organics Product List

    N

    N N

    Ph

    Ph

    PhH

    OMe

    0.1 mbar, 80 °C N

    N N

    Ph

    Ph

    Ph

    Ender, D.; Bruer, K.l Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1021.

    N

    NMe

    Me

    Me

    Me

    H

    Cl

    NaH

    N

    NMe

    Me

    Me

    Me

    A more general, rapid approach found to access carbenes.liq. NH3

    Herrmann, W. A.; Elison, M.; Fischer, J.; Kocher C., Artus, G. Chem. Eur. J. 1996, 2, 772.

    N

    NS

    R

    RMe

    Me

    K

    THF, 80 °C N

    N

    R

    RMe

    Me

    Kuhn, N.; Kratz, T. Synthesis 1993, 561.

    Versatile approach to alkyl-substitutedN-heterocyclic carbenes.

  • Isolated N-Heterocyclic Carbenes

    NN

    N

    N

    N

    N

    N N

    N

    S

    N

    N N

    N O

    N SMe

    Me

    Me

    MeMe Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    Me

    Me

    Me

    Me

    Me Me

    Me MeMe

    Me

    MeMe

    MeMeMe

    Me

    MeMe

    Chem. Rev. 2000, 100, 39-91.

    Examples of carbenes that have been isolated

  • Reactivity of N-Heterocyclic Carbenes

    NX

    R

    RR

    Ligands Reactants

    Catalysts

    NHCs have been foundto be excellent ligandsfor many transition metals.

    NHCs can be employed in several types of reactions, includingmulticomponent couplings andcycloadditions, as reactants.

    NHCs are able to catalyze a variety of reactions, mainly various acyl anion additions.

  • N-Heterocyclic Carbenes as Ligands

    -In the early 90's NHC were found to have bonding properties similar to trialklyphosphanes and alkylphosphinates.

    -compatible with both high and low oxidation state metals

    -examples

    WCO

    OC COCOOC

    NN MeMe

    VCl

    ClNHCCHNNHCCHN Ti

    ClClClCl

    ReMe

    OO

    NN

    N N

    MeMe

    Me Me

    O

    N N MeMe

    -reaction employing NHC's as ligands:

    Heck and Suzuki CouplingsAryl AminationAmide α-ArylationHydrosiylationOlefin MetathesisMetathesis Cross-CouplingSonogashira CouplingEthylene/Carbon Monoxide Copolymerization

    Kumada CouplingStille CouplingC-H ActivationHydrogenation, HydroformylationFuran Syntheis and Alkyne CouplingOlefin CyclopropanationArylation and Alkenylation of AldehydesReduction of Aryl HalidesAtom-Transfer Radical PolymerizationAsymmetric Catalysis

    Herrmann, W. Angew. Chem. Int. Ed. 2002, 41, 1290-1309.

  • N-Heterocyclic Carbenes as Reagents

    N N

    N

    Ph

    PhPh Toluene

    Heat

    R

    R

    +N N

    N

    Ph

    PhPh R

    RN N

    N

    Ph

    PhPh R

    R N N

    N

    Ph

    PhPh

    R

    R

    68% R=CO2MeEnders, D.; Breuer, J. Raabe, J.; Runsink, J.; Teles, J.; Melder, S. Angew. Chem. , Int. Ed., 1995, 34, 1021.

    N N

    N

    Ph

    PhPh

    +NCO

    Ph

    THF

    RT N N

    N

    Ph

    PhPh

    NH

    O Ph-NCO

    N N

    N

    Ph

    PhPh

    N

    N

    O

    O

    Ph

    Ph

    Kuhn, N.; Weyers, G.; Henkel, G. Chem. Commun., 1997, 627. 90%

    [3+2]

    N

    NPh

    Ph

    CCl3H N

    N NN

    Ph

    Ph

    Toluene

    Heat+ N

    N N

    NPh

    Ph

    Ph

    Ph[4+1]

    Mohrle, H.; Dwuletzki, H. Chem.-Ztg. 1987, 111, 9.

    N

    NMes

    Mes

    ClCO2Me

    CO2Me

    CHO

    Cl

    NaH

    THF, Ar, RT30 min, 80% N

    N

    O

    CO2Me

    H

    CO2Me

    Cl

    Mes

    Mes

    + +

    Nair, V.; Bindu, S.; Sreekumar, V.; Rath, N. Org. Lett. 2003, 5, 665.

    98%

    Ph

  • N-Heterocyclic Carbenes as Catalysts

    - 1958, Breslow was first to recognize the role of N-heterocyclic carbenes as catalysts.

    N

    S

    HO

    Me

    N

    NNH2

    Me

    Cl

    Thiamine

    - catalyzes decarboxylation of pyruvic acid- catalyzes the benzoin condensation

    - using NHC's as catalysts, both aryl and alkyl aldehydes can condense

    H

    O

    +

    NH

    S O

    Ph

    R

    R

    NH

    S OH

    Ph

    R

    R

    NH

    S OPh

    R

    R OHPh

    O

    OH

    S

    NR

    R

    R

    Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.

  • N-Heterocyclic Carbenes as Catalysts:The Stetter Reaction

    N

    N

    Me

    MeCl Base

    CH2O N

    N

    Me

    MeOH

    H

    O

    Me

    MeMe

    MeO

    Me

    Me

    MeMe

    O

    H

    R R

    O

    α,β-Unsaturated Ketones

    Mannich Bases

    NMe

    Me

    Vinyl Ketones

    R

    O

    α,β-Unsaturated Nitriles

    RCN

    R OR

    O

    Carboxylic Esters

    Possible Electrophiles

    R

    Stetter, H. Angew. Chem. Int. Ed. 1976, 15, 639-712.

    60-95% 30-91%

    29-68%10-61%

    34-91%

  • N-Heterocyclic Carbenes as Catalysts:Addition of Aldehydes to Acylimines

    Murry, J.; Frantz, D.; Soheili, A.; Tillyer, R.; Grabowski, E; Reider, P. J. Am. Chem. Soc. 2001, 123, 9696-9697.

    R1

    O

    H R2

    SO2

    NH

    O

    R3

    Tol N

    S

    R4Me

    OHX

    Et3N, CH2Cl235 °C

    R2HN R3

    OR1 O

    +

    4-PyridylPh2-Br-Ph3-OMe-Ph4-CN-Ph2-Furyl3-PyridylCH3BnOCH2PhCH=CH4-Pyridyl4-Pyridyl

    PhPhPhPhPhPhPhPhPhPhc-C6H11H

    HOtBuOtBuOtBuOtBuOtBuOtBuOtBuOtBuc-C6H11PhPh

    86758668807393627580

  • N-Heterocyclic Carbenes as Catalysts:Synthesis of Substituted Imidazoles

    Frantz, D.; Morency, L.; Soheili, A.; Murry, J.; Grabowski, E.; Tillyer, R. Org. Lett. 2004, 6, 843-846.

    R5

    O

    H R4

    SO2

    NH

    O

    R2

    Tol N

    S

    R4Me

    OHI

    Et3N, CH2Cl235-60 °C

    R4HN R3

    OR5 O

    +R1NH2

    AcOH N

    NR2

    R1R5

    R4(5-20 mol%)

    NH

    N 68%

    NH

    N

    F

    NH

    N

    N

    N

    N

    HO2C

    Ph

    82%

    78%

    73%>98% ee

    N

    N

    BnO

    N

    22%

    N

    N

    N

    OH

    75%

  • N-Heterocyclic Carbenes as Catalysts:Nucleophilic Aromatic Substitution Reactions

    F

    H

    O

    +N

    NMe

    Me

    I

    NaH, DMF, 46-77%

    O Ar

    Suzuki, Y.; Toyota, T.; Imada, F.; Sato, M. Miyashita, A. Chem. Commun. 2003, 1314.

    R R

    R1

    R R1 Yield (%)

    4-CN

    4-C6H5CO

    2-F-4-NO2

    2-F-4-NO2

    2-F-4-NO2

    Ph

    Ph

    Ph

    3-ClC6H5

    3-MeOC6H5

    37

    32

    75

    56

    60

  • N-Heterocyclic Carbenes as Catalysts:Transesterification

    R' OR''

    OROH

    NHC

    4A M.S., RT, THF+

    R' OR

    OR''OH+

    Grasa, G.; Kissling, R.; Nolan, S. Org. Lett. 2002, 4, 3583-3586.

    Ester Alcohol Product Yield(%)

    O

    O

    O

    OMe

    OMe

    OMeO

    OMe

    O2N

    OMe

    O

    OH OAc 96

    OH OAc

    OH O

    OOMe

    OMe

    OH

    O2N

    OBn

    O

    95

    95

    96

  • N-Heterocyclic Carbenes as Catalysts:Living Polymerization

    N-Heterocyclic Carbenes can be employed as ring-opening polymerization catalysts.

    O

    O

    Me

    NN MeMeI 1.2 eq

    1 eq KOt-butoxideMe

    O

    O

    N

    N

    Me

    O

    O

    N

    N

    Me

    O

    O

    N

    N

    O

    O

    Me n

    Comparison of Carbenes: (ROP of lactide)Catalyst Time Conv. (%) M/I

    N

    S

    MeMe

    OMe

    O I

    NS

    Me

    MeI

    NN

    NNMe MeCl

    MeMe

    Me

    Me

    Me

    Me Cl

    48 83 60

    72 83 120

    0.25 99 200

    0.25 97 200

    Nyce, G.; Glauser, T.; Connor, E.; Mock, A.; Waymouth, R.; Hedrick, J. J. Am. Chem. Soc. 2003, 125, 3046-3056.

  • N-Heterocyclic Carbenes as Catalysts:Synthesis of β-Hydroxyesters

    R1 H

    OO

    R2

    + R3OH

    NS

    Me Me

    Bn

    10 mol %

    8 mol % DIPEA30 °C, 3-15h

    R1 OR3

    O

    R2

    OH R1

    O

    S

    N

    Me

    Me

    BnOH

    R2

    Activated Carboxylate

    Chow, K.; Bode, J. J. Am. Chem. Soc. 2004, 126, 8126-8127.

    Ph OBn

    O

    Me

    OH

    Ph OCD3

    O

    Me

    OH

    Ph OEt

    OOH

    OMe

    O

    Me

    OH

    OEt

    OMe

    89

    81

    84

    82

    85

    10:1

    9:1

    7:1

    D(H)

    HO

    Me

    Me

    Product Yield dr Product Yield dr

  • S

    N

    Me

    Me

    Bn

    R2R1 H

    OO

    R2R1

    OO

    S

    NMe

    Me

    BnH

    R2R1

    OHO

    S

    NMe

    Me

    Bn

    R2R1

    OH

    S

    NMe

    Me

    BnO

    R2R1

    O

    S

    NMe

    Me

    BnOH

    R2R1

    O

    S

    NMe

    Me

    BnOH

    R1 OR3

    OOH

    R2

    R3OH

    Catalytic Cycle for β-Hydroxyester Synthesis

  • N-Heterocyclic Carbenes as Catalysts:Internal Redox Reaction

    Reynolds, N.; Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004. ASAP

    H

    O

    Br

    20 mol % Catalyst1 equiv BnOH

    1 equiv Et3Ntoluene, 25 °C, 4h

    OBn

    O

    N

    S

    Ph

    HO

    Me

    Cl

    Catalyst:

    77%

    N N

    N

    Ph

    Cl80%

    N

    N

    Me

    Me

    Me

    Me

    Me

    Me

    Cl trace

    BrH

    O

    Ph H

    O

    Br

    Ph H

    O

    Cl

    H

    OBr

    Aldehyde

    60%

    80%

    65%

    99%

    Alcohols

    MeOH

    PhOH

    OH

    OH

    NH2

    HOOEt

    O

    Me

    78%

    73%

    66%

    55%

    91%

    56%

  • N-Heterocyclic Carbenes as Catalysts:Internal Redox Reaction

    Reynolds, N.; Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004. ASAP

    H

    O

    Br

    20 mol % Catalyst1 equiv BnOH

    1 equiv Et3Ntoluene, 25 °C, 4h

    OBn

    O

    N

    S

    Ph

    HO

    Me

    Cl

    Catalyst:

    77%

    N N

    N

    Ph

    Cl80%

    N

    N

    Me

    Me

    Me

    Me

    Me

    Me

    Cl trace

    Ph H

    O

    Br

    NN

    NPh

    Bn

    Cl

    20 mol%

    2 equiv rac-ethyl lactate1 equiv Et3N

    toluene, 25 °C, 4h

    Ph O

    OOEt

    O

    Me

    71% yield32% ee

    H

    OBr

    PhPh

    OH

    OH

    NN

    NPh

    Bn

    Cl

    10 mol%

    1 equiv Et3Ntoluene, 25 °C, 12h

    O

    O

    PhPh

    OH75% yield83% ee

  • N-Heterocyclic Carbenes as Catalysts:Synthesis of Functionalized Preanthraquinones

    O

    O NOMOM

    O

    N

    S

    Et

    HO

    Me

    Cl

    10-70 mol% DBUtBuOH, 40 °C 0.5h

    79-96%

    OMOM

    O

    NO

    OH

    OMOM

    O

    NO

    OH

    Pd/C, H2, RTthen

    air, 110 °C

    toluene, 75%

    OH NH OMOM

    O

    aq. H2SO4

    MeOH, DioxaneRT

    86%

    OH O OH

    O

    Hachisu, Y.; Bode, J.; Suzuki, K. J. Am. Chem. Soc. 2003, 125, 8432-8433.

    - Although the isoxazole functionality is not essential for reaction, it serves as a convenient masking group for the synthesis of anthraquinoid structures.

  • N-Heterocyclic Carbenes as Catalysts:Asymmetric Catalysis and the Benzoin Condensation

    -The first research into the asymmetric benzoin condensation was carried out by Sheehan and coworkers in 1966.-Examples of chiral thiazolium salts tested:

    N

    S

    Ph

    O

    O

    Me *Br N

    S

    MeBr

    Me

    N

    S

    Me

    Cl

    Me

    Me

    MeN N

    S S

    II

    2% ee 52% ee6% yield

    35% ee20% yield

    27% ee41% yield

    O

    HR

    CatalystO

    OH

    *

    Sheehan et. al. J. Am. Chem. Soc. 1966, 88, 3666-3667.

    Sheehan et. al. J. Org. Chem. 1974, 39, 1196-1199.

    Tagaki et. al. Bull. Chem. Soc. Jpn. 1980, 53, 478-480.

    Calahorra et. al. Tetrahderon Lett. 1993, 34, 521-524.

    Acc. Chem Res. 2004, 37, 534-541.

  • Synthesis of Chiral Thiazolium Salts

    Me NH2H SK

    S+

    H2O

    Me NH S

    Me

    OCl

    Benzene26%

    93%

    Me NS

    Me

    Cl49% HBF4Me N

    S

    Me

    BF4Me N

    S

    Me

    Br

    Sheehan, J.; Hara, T. J. Org. Chem. 1974, 39, 1196-1199.

  • N-Heterocyclic Carbenes as Catalysts:Asymmetric Catalysis and the Benzoin Condensation

    -The first research into the asymmetric benzoin condensation was carried out by Sheehan and coworkers in 1966.-Examples of chiral thiazolium salts tested:

    O

    HR

    CatalystO

    OH

    *

    Acc. Chem Res. 2004, 37, 534-541.

    N

    S

    OSiMe2tBu

    21% ee50% yield

    Leeper et. al. Tetrahedron Lett. 1997, 38, 3611-3614.

    NS

    N OOBr

    Leeper et. al. Tetrahedron Lett.1997, 38, 3615-3618,

    26% ee100% yield

    TfO

  • Synthesis of Chiral Thiazolium Salts

    N

    S

    Me

    NBS, AIBN

    Benzene70%

    N

    S

    Br

    O

    OMeMe

    OH

    KOC(CH3)3N

    S

    O O

    OMeMe

    50%

    10% HCl100%

    N

    S

    O OH

    OHTBDMSCl

    N

    S

    O OTBDMS

    OH50%

    Triflic AnhydrideN

    S

    O

    Knight, R.; Leeper, F. Tetrahedron Lett. 1997, 38, 3611-3614.

    OTf

    OTBDMS

  • Synthesis of Chiral Thiazolium Salts

    Me3SiO NO

    OR

    + Heat

    Me3SiO N OO

    R

    NS

    N OO

    R

    BuONO

    TiCl4 ON O

    O

    R

    HON

    84%87%

    ZnHCO2H

    HgCl2(Cat.)78%

    ON O

    O

    R

    HNH

    ODavy's

    Reagent61%

    NS

    N OO

    R

    R

    MeIPhCH2Br orPhCH2OTf

    X

    Gerhard, A.; Leeper, F. Tetrahedron Lett. 1997, 38, 3615-3618.

    PS P

    S

    SS

    Me

    SS

    MeDavy Reagent:

  • N-Heterocyclic Carbenes as Catalysts:Asymmetric Catalysis and the Benzoin Condensation

    -The first research into the asymmetric benzoin condensation was carried out by Sheehan and coworkers in 1966.-Examples of chiral triazolium salts tested:

    O

    HR

    CatalystO

    OH

    *

    Acc. Chem Res. 2004, 37, 534-541.

    R

    R

    N

    N

    NPh

    OO

    Ph

    MeMe

    Enders et. al. Helv. Chim. Acta. 1996, 79, 1217-1221.

    75% ee66% yield

    ClO4 N

    N

    N

    O

    Ph

    Me

    MeMe

    BF4

    80-95% ee8-100% yield

    Enders et. al. Angew. Chem. Int. Ed. 2002, 41, 1743-1745.

    N N

    N

    Ph

    MeO

    Cl

    11-47% yield20-68% ee

    Leeper et. al. J. Chem Soc., Perkin Trans. 11998, 1891-1892.

  • Synthesis of Chiral Triazolium Salts

    NH

    O

    Ph

    Me3OBF4

    77% N

    O

    PhOMe

    PhNHNH2 HCl

    85% NH

    O

    PhNH

    HNPh

    Cl HC(OMe)3

    100%N

    NN

    O

    Ph

    Ph

    Cl

    Knight, R.; Leeper, F. J. Chem. Soc., Perkin Trans. 1 1998, 1891-1893.

    ONH

    O

    tBu

    Me3OBF4

    QuantitativeO

    N

    OMe

    tBu

    PhNHNH2

    77%O

    NH

    tBu

    NHN

    Ph HBF4 in Et2O

    HC(OMe)365%

    N

    N

    N

    O

    Ph

    tBu

    BF4

    Enders, D.; Kallfass, U. Angew. Chem. Int. Ed. 2002, 41, 1743-1745.

    O

  • N-Heterocyclic Carbenes as Catalysts:Asymmetric Catalysis and the Stetter Reaction

    Acc. Chem Res. 2004, 37, 534-541.

    Me H

    O

    Ph Ph

    O S

    N

    MePh

    Me

    Me

    Cl

    +K2CO3

    CHCl3/H2O

    Me

    O

    Ph

    Ph

    O

    *

    4% yield39% ee

    Tiebes, J. Diploma Thesis., Technical University of Aachen, 1990.-Both chiral thiazolium and triazolium salts have found to be unsuccessful catalysts for intermoleculat stetter reactions.

    H

    O

    O CO2R O

    O

    CO2RCatalyst (20 mol%)

    K2CO3, THF22-73%

    41-74% ee

    N

    N

    NPh

    OO

    Ph

    MeMe

    Catalyst

    Enders, D.; Breuer, K.; Runsink, J.; Teles, J. Helv. Chim. Acta 1996, 79, 1899-1902.

  • N-Heterocyclic Carbenes as Catalysts:Asymmetric Catalysis and the Stetter Reaction

    Acc. Chem Res. 2004, 37, 534-541.

    H

    O

    X CO2R X

    O

    CO2R

    Catalyst (20 mol%)KHMDS, Xylenes, RT, 24 h

    63-95%

    82-97% ee

    Catalyst

    N

    N

    N

    O

    OMe

    BF4

    Kerr, M.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298-10299.

    H

    O

    CO2Et

    Catalyst (20 mol %)KHMDS, toluene

    RT, 24h81%

    OCO2Et

    *

    H

    O

    CO2Et

    CO2Et

    Catalyst (20 mol%)KHMDS, toluene

    RT, 36h97%

    O

    CO2Et

    CO2Et

    *

    95% ee

    82% eeN

    N

    NPh

    Bn

    Cl

    Catalyst

    Kerr, M.; Rovis, T. Synlett 2003, 1934-1936.

  • Conclusions

    • The stability of N-heterocyclic carbenes is mainly due to electronic effects.

    • N-Heterocyclic carbenes can participate in a variety of reactions as either a ligand, substrate or catalyst.

    • Asymmetric variants of reactions relying on a chiral carbenes are difficult to master.

    • N-Heterocyclic carbenes are viable catalysts for a number of reactions.