71
Recent Development of Recent Development of FinFET Technology for FinFET Technology for CMOS Logic and Memory CMOS Logic and Memory Chung-Hsun Lin Chung-Hsun Lin EECS Department EECS Department University of California at Berkeley University of California at Berkeley

Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

Embed Size (px)

Citation preview

Page 1: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

Recent Development of Recent Development of FinFET Technology for FinFET Technology for

CMOS Logic and MemoryCMOS Logic and Memory

Chung-Hsun LinChung-Hsun Lin

EECS DepartmentEECS Department

University of California at BerkeleyUniversity of California at Berkeley

Page 2: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 2

OutlineOutline Why FinFETWhy FinFET

FinFET processFinFET process Unique features of FinFETUnique features of FinFET

Mobility, workfunction engineering, corneMobility, workfunction engineering, corner effectr effect, , QM, volume inversionQM, volume inversion

IssuesIssues Recent Recent FinFETFinFET Develop Develop

Triple-gate FinFET, Omega FET, Nanowire FinFETTriple-gate FinFET, Omega FET, Nanowire FinFET, , Independent gate, Multi-channel FinFET, Independent gate, Multi-channel FinFET, Metal-gate/high-K Metal-gate/high-K FinFET, FinFET, SStrained FinFETtrained FinFET, Bulk FinFET, Bulk FinFET

MemoryMemory DRAM, SONOS, SRAMDRAM, SONOS, SRAM

ConclusionConclusion

Page 3: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 3

MOSFET ScalingMOSFET Scaling

Same transistordesign concept

2000 2005 2010 2015 20201

10

100

GAT

E LE

NG

TH (n

m)

YEAR

LOW POWER HIGH PERFORMANCE

ITRS 2001 Projection

Technology Scaling

Investment

Market Growth

Better Performance/Cost

The first transistor 1947

The Power5 microprocessor

Page 4: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 4

Scaling : Moore’s lawScaling : Moore’s law

•Source: Intel

Technology Drivers

• Reduced cost / function

• Improved performance

• Greater circuit functionality

Page 5: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 5

Bulk-Si MOSFET Scaling IssuesBulk-Si MOSFET Scaling Issues

Leakage current is the primary barrier to scaling To suppress leakage, we need to employ:

Higher body doping lower carrier mobility, higher junction capacitance, increased junction leakage

Thinner gate dielectric higher gate leakage Ultra-shallow S/D junctions higher Rseries

Substrate

Gate

Source DrainLeff

Nsub

Xj

Lg

Tox

Desired characteristics:

- High ON current (Idsat)

- Low OFF current

G

S

Dcourtesy of Prof. Kuroda

Keio University

Page 6: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 6

Issues for Scaling Issues for Scaling LLgg to <25 nm to <25 nm

VT variation (statistical dopant fluctuations)

Leakage

Incommensurate gains in Idsat with scaling

— limited carrier mobilities

— parasitic resistance

Page 7: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 7

Advanced MOSFET StructuresAdvanced MOSFET Structures

Leakage can be suppressed by using a thin body

Ultra-Thin Body

GateGate

Silicon Substrate

Source Drain

TBOX

TSi

SiO2

SOI

Double Gate

Source Drain

Gate 1Gate 1 Vg

Tox

TSiSOI

Gate 2Gate 2

Page 8: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 8

Thin-Body MOSFETsThin-Body MOSFETs

Control short-channel effects with Tbody

No channel doping needed! Relax gate oxide (Tox) scaling

Double-Gate is even more effective Scalable to 10nm gate lengths

Tbody

Ultra-Thin Body Double-Gate

Gate

Source Drain

Gate

Buried Oxide

Substrate

Source Drain

Gate

Page 9: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 9

Electric Field ReductionElectric Field Reduction

Reduced vertical field in DG and UTB

No doping =No Qdepl!

Expected to benefit: Mobility Gate Leakage

Si

deplinveff ε

QQηE

+=

Gate

Buried Oxide

Substrate

Qinv

Thin-Body

Gate Qinv

QdeplBulk

Page 10: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 10

Thin-Body MOSFETsThin-Body MOSFETs

Control short-channel effects with Tbody

No channel doping needed! Relax gate oxide (Tox) scaling

No channel doping needed!

Ion

Cload

Double-Gate is even more effective Scalable to 10nm gate lengths Potentially less Vt scatter (dopant fluctuation)

— Improved mobility•Lower vertical electric field•No impurity scattering

— Improved swing•Better control of SCE

•Lower VT

— No depletion or junction capacitance

Bulk

Idra

in

Vgate

DG

Page 11: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 11

Circuit level benefitsCircuit level benefits

Thin body devices

Good control of SCE

Steep Sub-threshold swing

Higher Idsat

Lower Capacitance - No Cjunc and Cdepl

Better CV/I delay at lower power

2

4

68

10

20 Bulk UTB DG

Technology Lgate [nm]F

O4

Inve

rter

Del

ay [

ps]

50 35 25 18

Tbody,UTB

= 5nm

Tbody,UTB

< 5nm

Source: Leland Chang

Page 12: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 12

Double-Gate MOSFETsDouble-Gate MOSFETs

Gate 1

Gate 2Current flow

S

Planar DG MOSFET

D

Vertical DG MOSFET

S

D

Current flow

Gate 1Gate 2

FinFET

S

D

Current flow

Gate 1Gate 2

Page 13: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 13

Multi-Gate FinFETMulti-Gate FinFET

Rotation allows for self-aligned gates Layout similar to standard SOI FET

Gate

Drain Drain

Gate

Drain

Gate

Source

Gate

Source

Source

Drain

Gate

PlanarDG-FET

90° Rotation

FinFET

Gate

Source Drain

Gate

Page 14: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 14

Poly Gate Deposition/Litho

Gate EtchSpacer Formation

S/D Implant + RTASilicidation

FinFET Process FlowFinFET Process Flow

SiO2

SOI SubstrateFin Patterning

Si Fin

BOX

Poly

Resist

Si3N4

Spacer

NiSi

Page 15: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 15

FinFET Device StructureFinFET Device Structure

• All features defined by optical lithography and aggressive trimming

Gate

Source

Drain

Page 16: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 16

10nm FinFET TEM10nm FinFET TEM

220ÅSiO2 cap

Lg=10nm

BOX

NiSi

Poly-Si

Si Fin

Page 17: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 17

10nm FinFET I-V10nm FinFET I-V

Dual N+/P+ poly gates:- Need VT control

Low DIBLNMOS: 120 mV/V PMOS:

71 mV/V

Good SCE despite thick Tox (27Å EOT) & Wfin (26nm)- Due to large S/D doping gradient & spacer thickness

-1 0 110-9

10-7

10-5

10-3

10-9

10-7

10-5

10-3

NMOS PMOS

S=101mV/dec

S=125mV/dec

Vd=1.2V

0.1V

Vd=-1.2V

Dra

in C

urr

ent

[A/

m]

Gate Voltage [V]

-0.1V

Page 18: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 18

Short-Channel EffectsShort-Channel Effects

Acceptable DIBL and subthreshold slope down to below 20nm Lgate

Nearly ideal (60mV/dec) subthreshold slope at long Lgate

NMOS better than PMOS due to slower As diffusion

0 20 40 60 80 1000

40

80

120

160

0

40

80

120

160

NMOS PMOS

Wfin

=26nm

DIB

L (m

V/V

)

Sub

thre

shol

d S

lope

(m

V/d

ec)

Gate Length (nm)

Page 19: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 19

OrientationOrientation

Rotation by 45º changes orientation from (110) to (100) Intermediate rotation similar to (111)

<100>

<110>

(110)Surface

Gate

Sou

rce

Dra

in

(110) (100)

~(111) (110)

Page 20: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 20

0.2 0.4 0.6 0.8 1.00

100

200

300

400

500Oxynitride

(111)

(110)

(100)

Ele

ctro

n M

ob

ility

[cm

2 /Vs]

Effective Field [MV/cm]0.2 0.4 0.6 0.8 1.0

0

100

200

300

400

500Oxynitride

(111)

(110)

(100)

Ho

le M

ob

ility

[cm

2 /Vs]

Effective Field [MV/cm]

How Mobility ChangesHow Mobility Changes

By shifting away from (100): e is degraded, h is enhanced

Can we benefit from changing the N/P ratio?

Page 21: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 21

0

5

10

15

20

Oxynitride

Fanout=4

% D

elay

Sp

eed

up

vs.

(10

0)

Orientation(100) (111) (110) (100) NMOS

(110) PMOS

h, e

NAND

Inv

NOR

Gate DelayGate Delay

PMOS enhancement (20%) is larger than NMOS degradation (8%)

Net delay improvement

Trade off h and e

NOR: PMOS stack h very important Most improvement

NAND: NMOS stack h less important Least improvement

Lgate=35nm

Page 22: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 22

Optimized FinFETOptimized FinFET

Trade off layout area for performance

Gate

Source

Drain

Source

Drain

Gate

Source

Drain

SourceDrain

(100) NMOS(110) PMOS

Page 23: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 23

FinFET Layout AreaFinFET Layout Area

Non-(100) orientation saves area Higher PMOS Idsat reduces drawn W

45º orientation is less area efficient for smaller W These devices are small anyway…does it matter? Use only in critical path?

0.0

0.2

0.4

0.6

0.8

(100) (110) (111)

45oN / 90oP

90oN / 45oP

Idsatn,p=1.1mA

Lay

ou

t A

rea

[m

2 ]0

10

20

30

40

50

Idsatn,p=110mA

Lay

ou

t A

rea

[m

2 ]

Inverter

Page 24: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 24

Hybrid-Orientation-Technology (HOT)

Super HOT: SOI version DSB: bulk version

Page 25: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 25

VVTT: What CMOS Needs…: What CMOS Needs…

Need symmetrical VT’s for proper CMOS operation

Need low VT’s for speed

InputO

utp

ut

Inverter Response

VDD

VDD0

VIN=

VTN

VIN=

VDD-VTP

Page 26: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 26

Single gate material VTn = -VTp = 0.4V

N+/P+ Poly VTn = -VTp = -0.2V

• For low body doping, desired M values are:

~ 4.5 eV for NMOS ~ 5.0 eV for PMOS

Need two separate work functions for NMOS and PMOS!

Gate Work FunctionGate Work Function

4.2 4.4 4.6 4.8 5.0 5.2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

4.95eV

VT=0.2V

4.52eVP

+ Po

ly

N+ P

oly

VT=0.4V

VTn -VTp

Th

resh

old

Vo

ltag

e [V

]

Gate Workfunction [eV]

Page 27: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 27

Molybdenum Molybdenum MM Engineering Engineeringby Ion Implantationby Ion Implantation

M can be lowered by N+ implantation and thermal annealM increases with

dose energy

(N segregates to SiO2

interface & forms Mo2N)

Anneal time = 15m except for 900oC (15s)TMo = 15nm

P. Ranade et al., IEDM 2002

Page 28: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 28

Mo-Gated FinFETs (PMOS)Mo-Gated FinFETs (PMOS)

Y.-K. Choi et al., IEDM 2002

-0.8 -0.6 -0.4 -0.2 0.0 0.210-13

10-11

10-9

10-7

10-5

10-3

Drai

n Cu

rren

t, Id

[A/u

m]

Gate Voltage, Vg[V]

Mo

MoN(N2=5x1015cm-2)

Vt shift

Lg=80nm, TSi=10nm

Vds=0.05V

• Alternative technique:Full silicidication (NiSi) of n+/p+ Si gates(J. Kedzierski et al., W. Maszara et al., Z. Krivokapic et al., IEDM 2002)

• |Vt|=0.2V for lightly doped body, and is adjustable

by N+ implantation

Potential issues include: - dopant penetration- thermal stability - stress/adhesion- gate dielectric reliability

Page 29: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 29

Corner Effect in Triple or More Corner Effect in Triple or More GatesGates

Corner EffectCorner Effect Different VDifferent Vthth at corner region at corner region Significant subthreshold leakage currentSignificant subthreshold leakage current Strong corner radius, body doping Strong corner radius, body doping

dependencedependence

B. Doyle et al., VLSI Tech., p. 133, 2003

Page 30: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 30

Corner Effect [1]Corner Effect [1]

0 5 10 15 20 25 300

1

2

3

C

urre

nt D

ensi

ty (

A/c

m2 )

Position (nm)

z direction y direction

0 5 10 15 20 25 300

1x106

2x106

3x106

4x106

Cu

rre

nt

De

nsi

ty (

A/c

m2 )

Position (nm)

z direction y direction

DESSIS 3-D device DESSIS 3-D device simulatorsimulator

Ideal rectangular Ideal rectangular fin shapefin shape

NNsubsub=1e15cm=1e15cm-3-3

Vg=1 V

y

z Vg=0.2 V

y

z

2D current density distribution 2D current density distribution

S

D

G

Page 31: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 31

Corner Effect [2]Corner Effect [2]

Nsub=5e18cm-3

Vg=0.2 V

Vg=1 V

2D current density distribution

y

z

y

z

2D current density distribution

-0.015-0.010

-0.0050.000

0.0050.010

0.015

0

1x1020

2x1020

3x1020

4x1020

0.000

0.005

0.0100.015

0.0200.025

0.030

Ele

ctro

n D

en

sity

(cm

-3)

Y Axis

X Axis

flat

corner

-0.015-0.010

-0.0050.000

0.0050.010

0.015

0.0

5.0x106

1.0x107

1.5x107

2.0x107

0.000

0.005

0.0100.015

0.0200.025

0.030

Cu

rre

nt D

en

sity

(A

/cm

2)

Y Axis

X Axis

Page 32: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 32

3D Simulation w/ Various Shape of 3D Simulation w/ Various Shape of CornerCorner

Lg=1m, Wsi=30nm, Hsi=30nm, Tox=1nm R=0, 5, 10, 15m

0.0 0.5 1.0 1.5 2.01E-13

1E-11

1E-9

1E-7

1E-5

Nor

mal

ized

Dra

in C

urre

nt (

A/

m)

Gate Voltage (V)

R=15nm R=10nm R=5nm R=0nm

0.0 0.5 1.0 1.5 2.00.0

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

Nor

mal

ized

Dra

in C

urre

nt (

A/

m)

Gate Voltage (V)

R=15nm R=10nm R=5nm R=0nm

Page 33: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 33

Short Channel BehaviorShort Channel Behavior

MG device with sharp corner shows better short channel behavior than the rounded corner

0 200 400 600 800 10000

20

40

60

80

100

D

IBL

(mV

/V)

Gate Length (nm)

R=0nm R=15nm

Page 34: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 34

Double-humps induced by cap Double-humps induced by cap transistortransistor

30x30nm structure, Tox=3nm, Lg=1mm, Nsub=5e18cm-3

Cap transistor induced lower Vt is very significant.

It may attribute to thicker Tox, and more partial depleted.

0.3 0.6 0.9 1.2 1.5 1.80.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

dGm

/dV

g

Gate Voltage (V)

30x30nmL

g=1m, T

ox=3nm

Nsub

=5e18cm-3

0.0 0.5 1.0 1.5 2.01E-17

1E-15

1E-13

1E-11

1E-9

1E-7

1E-5

Dra

in C

urre

nt (

A)

Gate Voltage (V)

Page 35: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 35

Volume Inversion [1]Volume Inversion [1]

eDensity

6.1E+13

5.3E+13

4.5E+13

3.6E+13

2.8E+13

2.0E+13

Gate Gate Gate Gate

Oxide Oxide

eDensity

6.1E+13

5.3E+13

4.5E+13

3.6E+13

2.8E+13

2.0E+13

N sub =10 15 cm -3 N sub =10 18 cm -3

T si T si

The electron density distribution from the 3-D ISE device simulator. Volume inversion is significant in intrinsic channel SDG (left).

Page 36: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 36

Volume Inversion [2]Volume Inversion [2]

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Nsub

= 1015 cm-3

s0, 10nm

s, 10nm

s0, 20nm

s, 20nm

Ele

ctri

c P

ote

nti

al (

V)

Gate Voltage (V)

For intrinsic channel doping, volume inversion is valid and the potential through the Si film is flat in the subthreshold region.

The inversion charge (current) in the subthreshold region is proportional to Tsi.

0.0 0.2 0.4 0.6 0.8 1.01E-15

1E-13

1E-11

1E-9

1E-7

1E-5

Tsi

Nsub

= 1015

cm-3

Tsi = 10 nm Tsi = 20 nm

Inve

rsio

n c

har

ge

shee

t d

ensi

ty (

C/c

m2 )

Gate Voltage (V)

Page 37: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 37

QM Surface Potential CorrectionQM Surface Potential Correction

Undoped case

Page 38: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 38

I-V VerificationI-V Verification

Model can predict both subthreshold and strong inversion region well.

0.0 0.5 1.0 1.5 2.00.0

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

Dra

in C

urre

nt (

A/

m)

Gate Voltage (V)

Symbols: 2D simulationLines: Model

Classic QM

0.5 1.0 1.5 2.01E-14

1E-12

1E-10

1E-8

1E-6

1E-4

Dra

in C

urre

nt (

A/

m)

Gate Voltage (V)

Symbols: 2D simulationLines: Model

Classic QM

Page 39: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 39

S/D Series Resistance IssueS/D Series Resistance Issue

S/D series resistance will degrade the performance of thin body device

Can be improved by the selective Si epitaxy raised S/D

J. Kedzierski et al., IEDM 2001

Page 40: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 40

OutlineOutline Why FinFETWhy FinFET

FinFET processFinFET process Unique features of FinFETUnique features of FinFET

Mobility, workfunction engineering, corneMobility, workfunction engineering, corner effectr effect, , QM, volume inversionQM, volume inversion

IssuesIssues Recent Recent FinFETFinFET Develop Develop

Triple-gate FinFET, Omega FET, Nanowire FinFETTriple-gate FinFET, Omega FET, Nanowire FinFET, , Independent gate, Multi-channel FinFET, Independent gate, Multi-channel FinFET, Metal-gate/high-K Metal-gate/high-K FinFET, FinFET, SStrained FinFETtrained FinFET, Bulk FinFET, Bulk FinFET

MemoryMemory DRAM, SONOS, SRAMDRAM, SONOS, SRAM

ConclusionConclusion

Page 41: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 41

Triple-Gate TransistorTriple-Gate Transistor

B. Doyle et al., VLSI Tech. 2003

Page 42: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 42

Omega-Gate TransistorOmega-Gate Transistor

Page 43: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 43

5nm Nanowire FinFET5nm Nanowire FinFET

Page 44: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 44

Independent Gate FinFETIndependent Gate FinFET

Control the threshold voltage Ideal rectangular shape of Si fin

Page 45: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 45

Independent Gate FinFETIndependent Gate FinFET

Page 46: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 46

Multi-Channel FinFETMulti-Channel FinFET

Page 47: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 47

Metal Gate FinFETMetal Gate FinFET

Page 48: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 48

Metal-Gate FinFETMetal-Gate FinFET

Vth adjustment Improvement of IonK.G. Anil et al., VLSI Tech. 2005

Page 49: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 49

TiN/HfO2 FinFETTiN/HfO2 FinFET

Vth adjustment Reduce Gate

leakageN. Collaert et al., VLSI Tech. 2005

Page 50: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 50

Inverted T Channel (ITFET)Inverted T Channel (ITFET)

UTB + FinFET Continuous effective width

L. Mathew et al., IEDM 2005

Page 51: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 51

Strained FinFETStrained FinFET

25% drain current enhancement of PFET by introducing recessed Si0.8Ge0.2 S/D

Compressive stress and raised S/D P. Verheyen et al., VLSI 2005

Page 52: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 52

Impact of Gate-Induced StrainImpact of Gate-Induced Strain

MuGFETs with TiSiN gate (+3GPa stress as deposited)

Eeff=0.4MV/cm

Stress [MPa] Mobility Enhancement [%]

σxx σyy σzz(100)

NMOS(110)

NMOS(100)

PMOS(110)

PMOS

Experiment 4 59 8 10

Inverse PR Model -540 -290 -1900 4 59 -1 10

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8

(100) metal(110) metal(100) poly ref(110) poly ref4%

59%

NMOS0

100

200

300

400

0 0.2 0.4 0.6 0.8

(100) metal(110) metal(100) poly ref(110) poly ref10%

8%

PMOS

xy

z

xy

z

Page 53: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 53

Issue of Fin FormationIssue of Fin Formation

Neutral beam etching can accomplish damage (defect) free fabrication of high aspect ratio fin.

Higher mobility is obtained in NB device due to atomically-flat surface

K. Endo et al., IEDM 2005

Page 54: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 54

Sidewall Spacer Transfer (SWT) Sidewall Spacer Transfer (SWT) ProcessProcess

Both gate and fin are formed by SWT SiN is selected as hard mask

material for Si RIE on top of fin Can be used as the CMP stopper

during poly gate planarization (important for gate SWT)

Suppress the agglomeration of Si fin during selective Si epi

Prevent the leakage of the top corner Used as RIE stopper in the gate RIE

processA. Kaneko et al., IEDM 2005

Page 55: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 55

SWT ProcessSWT Process

The threshold voltage uniformities for SWT FinFETs of 15nm fin and 15nm gate length over the wafer is better than ArF and EB lithography

Page 56: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 56

Selective Gate Sidewall Spacer Selective Gate Sidewall Spacer Formation Formation

Page 57: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 57

FinFET on Bulk Si SubstrateFinFET on Bulk Si Substrate

Bulk FinFET has the advantages of cheaper wafer cost, ease of combination with conventional bulk CMOS.

K. Okano et al., IEDM 2005

Page 58: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 58

Characteristics of Bulk FinFETCharacteristics of Bulk FinFET

Better subthreshold swing Better short channel control Negligible body effect

T. Park et al., VLSI 2003

Page 59: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 59

OutlineOutline Why FinFETWhy FinFET

FinFET processFinFET process Unique features of FinFETUnique features of FinFET

Mobility, workfunction engineering, corneMobility, workfunction engineering, corner effectr effect, , QM, volume inversionQM, volume inversion

IssuesIssues Recent Recent FinFETFinFET Develop Develop

Triple-gate FinFET, Omega FET, Nanowire FinFETTriple-gate FinFET, Omega FET, Nanowire FinFET, , Independent gate, Multi-channel FinFET, Independent gate, Multi-channel FinFET, Metal-gate/high-K Metal-gate/high-K FinFET, FinFET, SStrained FinFETtrained FinFET, Bulk FinFET, Bulk FinFET

MemoryMemory DRAM, SONOS, SRAMDRAM, SONOS, SRAM

ConclusionConclusion

Page 60: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 60

DRAM application of Bulk FinFETDRAM application of Bulk FinFET

Page 61: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 61

DRAM application of Bulk FinFETDRAM application of Bulk FinFET

Negative word line bias is introduced due to lower VT

Page 62: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 62

NWL SchemeNWL Scheme

Lower VT (doping concentration) FinFET combined with NWL scheme can provide lower leakage and higher performance

NWL bias is critical to refresh fail bit

Page 63: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 63

SONOS Application of FinFETSONOS Application of FinFET

High Performance FinFET SONOS flash cells with gate length of 20nm is demonstrated.

Program/erase window of 2V with high P/E speed (Tp=10ms, TE=1ms)

J. Hwang et al., TSMC 2005

Page 64: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 64

SONOS Application of FinFETSONOS Application of FinFET

Excellent endurance: up to 10K P/E cycles

Good retention: 1.5V after 10years retention time

J. Hwang et al., TSMC 2005

Page 65: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 65

FinFETs based 6-T SRAMsFinFETs based 6-T SRAMs

Large fraction of the total chip area will be memory1

Leakage problem

Limited by impact of variations

WL

BL

V DD

M 5 M 6

M 4

M 1

M 2

M 3

BL

VR VL

pulldown

access

load

FinFETs offer good control of short channel effects

1Source : Ranganathan, 2000

Page 66: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 66

Static Noise MarginStatic Noise Margin

• The minimum noise voltage at the storage node needed to flip the state

• Large SNM is desirable

Make pulldown device stronger relative to access transistor

Source: Bhavnagarwala, 2001

Page 67: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 67

SNM spread with variationsSNM spread with variations

Thicker Si body better Higher performance

due to Rs limitations Greater noise

immunity (SNM) Lesser spread in

SNM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.15 0.2 0.25SNM (V)

Pro

bab

ilit

y

Tsi = 11nm

Tsi = 15nm

Taurus Device Simulation

Page 68: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 68

SNM spread with variationsSNM spread with variations

To improve SNMa) Wpulldown - 2 fins

b) Laccess

c) eff, pulldown>eff, access

(100)pulldown device

(110) access device

0

0.1

0.2

0.3

0.1 0.15 0.2 0.25SNM (V)

Pro

bab

ility

(100)/1fin

(100 )/ 2 fins

(110) / 1fin

TSi = 15nm

Taurus Device Simulation

Page 69: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 69

FinFET Circuit design tradeoffsFinFET Circuit design tradeoffs

Advantages Excellent SCE

control Scalability Double-gates are

self-aligned Insensitivity to

channel doping

Limitations Gate material Contact/Series

resistance Area efficiency

(fin pitch) Back gate routing

Page 70: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 70

ConclusionConclusion

Unique FinFET physics are introduced.Unique FinFET physics are introduced.

Recent developing effort on FinFET Recent developing effort on FinFET technology are discussedtechnology are discussed Triple-gate FinFET, Omega FET, Nanowire Triple-gate FinFET, Omega FET, Nanowire

FinFETFinFET, , Independent gate, Multi-channel Independent gate, Multi-channel FinFET, Metal-gate/high-K FinFET, Metal-gate/high-K FinFET, FinFET, SStrained trained FinFETFinFET, Bulk FinFET, Bulk FinFET

FinFET based CMOS and memory cells are FinFET based CMOS and memory cells are very promising for sub-32 technology very promising for sub-32 technology node.node.

Page 71: Recent Development of FinFET Technology for CMOS Logic and Memory Chung-Hsun Lin EECS Department University of California at Berkeley

NTUEE Seminar 2006/04/29NTUEE Seminar 2006/04/29 Chung-Hsun Lin - 71

Thank you very much Thank you very much for your attentionfor your attention