35
1 Recent Developments in the Application of Mathematical Programming to Process Integration Ignacio E. Grossmann Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. International Process Integration Jubilee Conference Gothenburg, Sweden March 18, 2013

Recent Developments in the Application of Mathematical ... · Recent Developments in the Application of Mathematical Programming to Process Integration Ignacio E. Grossmann ... Department

  • Upload
    ngohanh

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

1

Recent Developments in the Application

of Mathematical Programming

to Process Integration

Ignacio E. Grossmann

Center for Advanced Process Decision-making

Department of Chemical Engineering

Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

International Process Integration

Jubilee Conference

Gothenburg, Sweden

March 18, 2013

2

Major approaches to Process Integration/Process SynthesisHeuristics (Knowledge Base)

Physical Insights (Pinch Analysis)

Enumerative Search (Means-ends Analysis, Hierarchical Decomposition)

Mathematical Programming (MINLP)

After 30 years, religion war is over!Take best of each approach and combine

Gundersen, T. and I.E. Grossmann, "Improved Optimization Strategies for Automated Heat Exchanger

Networks through Physical Insights," Computers and Chemical Engineering 14, 925 (1990).

Goal: Overview state-of-art and progress of mathematical programming techniques and their application in Process Integration

a) What progress has ben made with mathematical programming tools

(LP, MILP, NLP, MINLP, GDP)?

b) What has been their impact on Process Integration Problems?

3

Math Programming Approach

to Process Synthesis/Integration

1. Develop a superstructure of alternative designs

2. Develop an LP/NLP or (MILP/MINLP, GDP) model to

select topology and parameters of design

3. Solve LP/NLP or (MILP/MINLP, GDP) model to

extract optimum design embedded in superstructure

LP = Linear Programming

NLP = Nonlinear Programming

MILP = Mixed-integer linear programming

MINLP = Mixed-integer nonlinear programming

GBD = Generalized Disjunctive Programming

4

Mathematical Programming

MINLP: Mixed-integer nonlinear programming

mnyRx

yxg

yx hts

yxfZ

1,0,

0,

0),(..

),(min

∈∈

=

=

)(

LP: f, h, g linear, only x

qnmnn RRxgRRxhRRxf →→→ :)(,:)(,:)( 1

NLP: f, h, g nonlinear, only x

MILP: f, h, g linear

5

x1

x2

x1

x2

LP: Linear Programming Kantorovich (1939), Dantzig (1947)

NLP: Nonlinear Programming Karush (1939); Kuhn, A.W.Tucker (1951)

IP: Integer Programming R. E. Gomory (1958)

y1

y2

Evolution of Mathematical Programming

6

- Interior Point Method for LP Karmarkar (1984)

- Convexification of Mixed-Integer Linear ProgramsLovacz & Schrijver (1989), Sherali & Adams (1990),

Balas, Ceria, Cornuejols (1993)

- MINLP Duran & Grossmann (1986)

- Global Optimization Floudas(1990), Sahinidis (1996)

- Logic-based optimization Hooker (1991), Raman & Grossmann (1994)

- Hybrid-systems Barton & Pantelides (1994), Bemporad & Morari (1998)

Major developments in last 30 years

- Modeling Systems GAMS, AMPL, AIMMS

- MILP codes: CPLEX, GUROBI, XPRESS

- NLP codes: MINOS, CONOPT, SNOPT, IPOPT

Process Design

Process Synthesis/Integration

Applications of Mathematical Programming

in Chemical Engineering

Plant

WarehousePlant Distr.

CenterRetailer

End

consumers

Material flow

Information flow

(Orders)

Demand for

A

Making of A, B & C

Demand for

B

Demands for C

Plant

WarehousePlant Distr.

CenterRetailer

End

consumers

Material flow

Information flow

(Orders)

Demand for

A

Demand for

A

Making of A, B & C

Demand for

B

Demand for

B

Demands for C

Demands for C

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t+Nt-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t+Nt-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t+Nt-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t+k|t)

y(t+k|t)

w(t+k|t)

t-1 t+1 t+kt ......

N

u(t)

w(t)

u(t+k|t)

y(t+k|t)

y(t)

w(t+k|t)

t+NLP, MILP, NLP, MINLP, Optimal Control

Production Planning

Process Scheduling

Supply Chain Management

Process Control

Parameter Estimation

Major contribution: new problem representations and models

8

Progress in Mixed-Integer Linear Programming

Unit-Commitment Model: California 7-Day Model

2,856 0-1 vars, 22,899 cont vars, 48,939 constr.

1999 CPLEX 7.0: 1 hr initial LP, unfinished after 8 hours

2010 Gurobi 3.0: ~3 min (195 secs) to optimality!

=> 80,000 speed-up!!

Bixby, Rothberg and Gu (2011)

CPLEX 1.2 to Gurobi 3.0

on same computer

9

NLP: Algorithms (variants of Newton's method)

Sucessive quadratic programming (SQP) (Han 1976; Powell, 1977)

Reduced gradient Interior Point Methods

Major codes: MINOS (Murtagh, Saunders, 1978, 1982)

CONOPT (Drud, 1994)

SQP: SNOPT (Murray, 1996) OPT (Biegler, 1998) KNITRO (Nocedal, 2000) IP: IPOPT (Wächter, Biegler, 2002) www.coin-or.org Typical sizes: 100,000 vars, 100,000 constr. (unstructured) 1,000,000 vars (few degrees freedom) Convergence: Good initial guess essential (Newton's) Nonconvexities: Local optima, non-convergence

Nonlinear Programming

11

Algorithms Branch and Bound (BB) Ravindran and Gupta (1985),

Stubbs, Mehrotra (1999), Leyffer (2001) Generalized Benders Decomposition (GBD) Geoffrion (1972)

Outer-Approximation (OA) Duran and Grossmann (1986),Fletcher and Leyffer (1994)

LP/NLP based Branch and Bound Quesada, Grossmann (1994)

Extended Cutting Plane(ECP) Westerlund and Pettersson (1992)

Availability of New Codes: SBB GAMS simple B&B

MINLP-BB (AMPL)Fletcher and Leyffer (1999)

Bonmin (COIN-OR) Bonami et al (2006) FilMINT Linderoth and Leyffer (2006)

KNITRO Nocedal (2009)

DICOPT (GAMS) Viswanathan and Grossman (1990)

AOA (AIMSS)

α−α−α−α−ECP Westerlund and Peterssson (1996) MINOPT Schweiger and Floudas (1998)

BARON Sahinidis et al. (1998)

Couenne Belotti, Margot (2008)

Mixed-integer Nonlinear Programming

Typical sizes: up to 1000 0-1 variables, 10,000 cont. vars./constraints

12

13

(((( ))))

Ω

,0)(

0)(

)(min

1

falsetrue,Y

Rc,Rx

trueY

K k

γc

xg

Y

Jj

xs.t. r

xfc Z

jk

k

n

jkk

jk

jk

k

kk

∈∈∈∈

∈∈∈∈∈∈∈∈

====

∈∈∈∈

====

≤≤≤≤∈∈∈∈

≤≤≤≤

∑∑∑∑ ++++====

∨∨∨∨

Raman and Grossmann (1994) (Extension Balas, 1979)

Motivation: Facilitate modeling discrete/continuous problems

Codes: LOGMIP, EMP

Objective Function

Common Constraints

Continuous Variables

Boolean Variables

Logic Propositions

OR operator

Disjunction

Fixed Charges

Constraints

Generalized Disjunctive Programming (GDP)

14

Global Optimization Algorithms

Algorithms based on spatial branch and bound method

and use of underestimators/convex envelopes (Horst & Tuy, 1996)

•Nonconvex NLP/MINLP

ααααBB (Adjiman, Androulakis & Floudas, 1997; 2000)

BARON (Branch and Reduce) (Ryoo & Sahinidis, 1995,

Tawarmalani and Sahinidis, 2002)

Branch and cut (Kesavan, Allgor, Gatzke and Barton, 2004)

Branch and Contract (Zamora & Grossmann, 1999)

Transformation signomials (Bjoerk, Lindberg, Westerlund, 2002)

Couenne (COIN-OR) (Belotti & Margot, 2008)

•Nonconvex GDP

Two-level Branch and Bound (Lee & Grossmann, 2001)

Bound strengthening (Ruiz, Grossmann, 2010)

Typical sizes: up to 100 0-1 variables, 1,000 cont. vars./constraints

15

http://www.minlp.org

16

Synthesis of Heat Exchanger NetworksYee and Grossmann (1990)

H1

H1-C1

H2

H1-C1

H1-C2

H2-C1

H2-C2

H1-C2

H2-C1

H2-C2

Stage k=1 Stage k=2

C1

C2

temperature

location

k=1

temperature

location

k=2

temperature

location

k=3

H1,1t

H1,2t

C1,1tC1,2t

C1,3t

H1,3t

H2,1t

H2,2tC2,1t C2,2t

C2,3t

H2,3t

S1

S1

CW

CW

Multiple stages with potential heat exchangers zijk = 0,1

3 hot, 4 cold streams

MINLP 67 0-1, 270 cont vars, 258 constr. 3s CPU-time (DICOPT-2013)

17

18

1

2

3

4

5

6

H1

H2

H3

H4

C2

C1

QFuel

R1

R2

R3

R4

R5

QLP

QHP

2000

1800

1000

800

3600

2000

2000

3500

2000

2000

3500

3500

4700

9000

9000

2500

2500

2500

4500

3000

14500

18000

QCW

4700

10500

11600

5600

LP Transshipment Model for Min Utility CostPapoulias and Grossmann (1983)

Unknowns:

a) Utility loads

QFuel, QHP, QLP, QCW

b) Heat residuals:

R1,…R5

Transshipment Model

19

Case Study Results for Similar Fcps (Academic)

Problem Size LP Transshipment Model MILP Transshipment Model

# of Hot Streams *

# of Cold Stream

# of

Variables

# of

Constraints

CPU

Time

(seconds)

# of

Continuous

Variables

# of Binary

Variables

# of

Constraints

Optimum

Solution /

Best

Bound

LP

Relaxation

CPU Time

(seconds)

2 * 2 38 22 0.031 38 10 32 8 7 0.156

3 * 3 72 37 0.031 72 17 54 8 6.179 0.047

5 * 5 235 89 0.031 235 67 156 24 16.302 0.421

10 * 10 1057 256 0.031 1057 219 475 42 28.848 1059.309

15 * 15 2692 506 0.031 2692 421 927 57 40.149 3600*

20 * 20 6284 902 0.031 6284 778 1680 83 56.868 3600*

* Time limit

Chen, Miller, Grossmann (2013)

20

Problem Size LP Transshipment Model MILP Transshipment Model

# of Hot Streams

# of Cold Stream

# of

Variables

# of

Constraints

CPU

Time

(seconds)

# of

Continuous

Variables

# of Binary

Variables

# of

Constraints

Optimum

Solution /

Best

Bound

LP

Relaxation

CPU Time

(seconds)

2 * 2 38 22 0.047 38 12 34 9 7.650 0.187

3 * 3 72 37 0.031 72 24 61 14 11.624 0.189

5 * 5 235 89 0.031 235 67 156 26 17.931 0.311

10 * 10 1057 256 0.047 1057 196 452 39 29.194 23.104

15 * 15 2692 506 0.016 2692 392 898 55 41.258 760.583

20 * 20 6284 902 0.031 6284 712 1614 81 56.469 3600*

Transshipment Model

Case Study Results for Dissimilar Fcps (Industrial)

* Time limit

MILP Industrial Problems Easier to Solve!

21

Carnegie Mellon

Superstructure of the integrated water network

MINLP: 72 0-1 vars, 233 cont var, 251 constr

optcr=0.01 197.5 CPUsec (BARON)

22

Carnegie Mellon

Optimal design of the simplified water network

with 13 removable connections

Optimal Freshwater

Consumption

40 t/h

vs

300 t/h conventional

HEAT TARGETING

PROCESS FLOWSHEET

WATER

TARGETING

Cold

streams

Hot

streamsMUC*

*MUC – minimum

utility consumption

Hot utility

Cold utility

MUC*Water

streams

Wastewater

Fresh

waterUtility

networks

PROCESS STRUCTURE

WN

STRUCTUREHEN STRUCTURE

PROCESS FLOWSHEET WITH HEN AND WN23

Strategy for simultaneous optimizationDuran, Grossmann (1986) Yang, Grossmann (2011)

24

Carnegie Mellon

outin

k

j

pkp

j

i

j

piin

p

out

i

out

p

in

k

inout

i

j

k

j

in

si

ik

out

mi

iU

ji

kU

jk

out

mi

ik

pkpiPUpj

CGainFLCLossF

piPUpPF

pkPUpPF

sksiSUsjCC

skSUsFF

mkMUmjCFCF

mkMUmFF

out

in

in

∈∈∈∀∀

−=+−

∈∈∀=

∈∈∀=

∈∈∀∈∀∀=

∈∈∀=

∈∈∀∀≥

∈∈∀=

,,,

)()(

,

,

,,

,

,,

,s.t.

,

fwFZ =min

Splitters mass

balances

Process

unit mass

balances

Mixer mass

balances

LP Targeting model for minimum freshwater consumption

Assumes only process units (reuse, recycle)

Yang, Grossmann (2012)

25

Carnegie Mellon

SEQUENTIAL SIMULTANEOUS

Profit (1000 $/yr) 62,695 73,416

Investment cost (1000 $) 1,891 1,174

Operating parameters

electricity (KW) 6.59 1.84

freshwater (kg/s) 36.43 29.25

heating utility (109 KJ/yr) 0.293 0

cooling utility (109 KJ/yr) 67.3 72.7

Steam generated (109 kJ/yr) 2448 1965

overall conversion 0.68 0.88

Material flowrate (106 kmol/yr)

feedstock 48.04 37.13

product 10.89 10.89

Sequential vs. simultaneous result comparison

Methanol Process

from Syngas

17%

improvement

17%

improvement

LP exact target!LP exact target!

2626

Optimization of Number of Trays

Discrete variables: Number of trays, feed tray location.

Continuous variables: reflux ratio, heat loads, exchanger areas, column diameter.

No liquid on tray

No vapor on tray

Existing trays

Vapor Flow

Liquid Flow

Viswanathan & Grossmann (1993)

Non-existing tray

Non-existing tray

1=mzr

1=nzb

1,0=izb

MINLP =>

1,0=izr

Acetone-acetonitrile-water, max 25 trays, Virial-UNIQUAC

MINLP: 22 0-1 vars, 891 cont, vars, 957 const.

Number

trays

40 minutes in 1992, 10 secs in 2013!!

27

Problem Specs

Mixture: Methanol/ Ethanol/ Water

Feed composition: 0.5/ 0.3/ 0.2

Feed: 10 moles/s

Pressure: 1 atm

Max no. trays: 20 (per section)

Min purity: 95%

Ideal/Wilson models

F

methanol

ehtanol

Azeotrope

Water

ethanol

Superstructure

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.10.20.30.40.50.60.70.80.91.0Mole Fraction Methanol

Mole Fraction Ethanol

Feed Liq. Col. 1 Liq. Col. 2 Liq. Col. 3 Liq. Col. 4 Liq. Col. 5Initialization

GDP Model

Discrete Variables 210

Continuous Variables 9025

Constraints 8996

Bartfeld, Aguirre, Grossmann (2004)

Azeotropic Example

28

Product Specifications 95%

Optimal Configuration $318,400 /yr

Optimal Solution

Annual Cost ($/year) 318,400

Preprocessing (min) 6.05

Subproblems NLP (min) 36.3

Subproblems MILP (min) 3.70

Iterations 3

Total Solution Time (min) 46.01

667MHz. Pentium III PC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.10.20.30.40.50.60.70.80.91.0

Mol

e Fr

actio

n M

etha

nol

Mole Fraction Ethanol

Fedd Liq. Col 1 Liq. Col 2 Liq. Col 3Profiles Optimal Configuration

F

PP6 = 1.292 mole/sec

95% Water

PP1 = 5.158 mole/sec

95% Methanol

PP4 = 0.836 mole/sec

95% Ethanol

39

38

35

PP5 = 2.376 mole/sec

Azeotrope

622 kW

260 kW

200 kW

4 out of 10 sections deleted

Azeotropic Example

29

A/BCDEFGH

ABCDEFGH

STATES TASKS

AB/CDEFGH

ABCD/CDEFGH

ABCDEF/CDEFGH

ABCDEF/EFGH

ABCD/EFGH

ABCDEF/GH

ABCDEFG/H

ABCDEFG

BCDEFGH

NON-SHARP

A/BCDEFG

AB/CDEFG

ABCD/CDEFG

ABCDEF/CDEFG

ABCDEF/EFG

ABCD/EFG

ABCDEF/G

B/CDEFGH

BCD/EFGH

BCD/CDEFGH

BCDEF/CDEFGH

BCDEF/EFGH

BCDEF/GH

BCDEFG/H

ABCDEF

BCDEFG

CDEFGH

A/BCDEF

AB/CDEF

ABCD/CDEF

ABCD/EF

BCDEF/G

B/CDEFG

BCD/CDEFG

BCDEF/CDEFG

BCDEF/EFG

BCD/EFG

CDEFG/H

CD/EFGH

CDEF/EFGH

CDEF/GH

BCDEF

CDEFG

ABCD

AB

BCD

EFG

CDEF

EFGH

GH

EF

CD

A

B

C

D

F

E

G

H

CD/EFG

CDEF/EFG

CDEF/G

B/CDEF

BCD/CDEF

BCD/EF

A/BCD

AB/CD

CD/EF

EF/GH

EFG/H

B/CD

EF/G

G/H

E/F

C/D

A/B

H2

CH4

C2H4

C3H6

C2H6

C3H8

C4

C5

25 states

53 separation tasks

Feed

GDP→→→→big-M MINLP: 5,800 0-1 vars, 24,500 cont. vars., 52,700 constraints ~3hrs CPU-time

Superstructure Separations Olefins Plant(Lee, Foral, Logsdon, Grossmann, 2003)

A- H2

B- CH4

C- C2H4

D- C2H6

E- C3H6

F- C3H8

G- C4

H- C5

30

Total cost: 110.82 MM$/yr

ABCDEFGH

AB

CDEFGH

EF

CD

B

A

D

C

E

F

H

G

A/B

CH4

C2H4

C3H6

C2H6

C3H8

C4

C5

H2

EFGH

Cold Box

Deethanizer

Dephlegmator

100F

480Psig

83F

160Psig

-141F

900Psig

-41F

160Psig

84F

190Psig

169F

160Psig

D

E

E

F

C

D

123F

140Psig

99F

140Psig

GH

G

H

Depropanizer

C3Splitter

226F

160Psig

compressor

heater

cooler

valve

480Psig

74F

170Psig

72F

140Psig

480Psig

-31F

140Psig

-51F

140Psig

214F

170Psig

109F

140Psig

F

G

Debutanizer

236F

140Psig

238F

140Psig

AB

CD

900Psig

Chemical Absorber

410 Mkwh/yr

valve

compressor

pump

pump

MINLP optimal solution

Dephlegmator first process

7 separation units

1 dephlegmator

1 absorber

4 distillation columns

1 cold box

1 heat exchange

20M$/yr cost saving

31

Power

Grid

CHP plantTypically multiple boilers and

turbines (steam, gas)

Chemical

plant

Fuel

Electricity

Steam at

different

pressure

levels

Raw

materials

Products

Use the flexibility

of the CHP plant to

adjust steam production

for variability

in electricity price

Electricity prices

vary on an

hourly basis

Account for

variability in

electricity prices

in production

planning1

The incentives given by utilities and grid operators to adjust power consumption/

production increase profitability, if the processes are able to cope with variability2.

HRSG

B

1

B

3

ST1 ST2B2

GT~

X

I

II

1. Mitra, S., I.E. Grossmann, J.M. Pinto and Nikhil Arora, "Optimal Production Planning under Time-sensitive Electricity Prices for

Continuous Power-intensive Processes”, Computers & Chem. Eng., 2012, 38, 171-184

2. Samad, T.; Kiliccote, S., “Smart Grid Technologies and Applications for the Industrial Sector”, Computers & Chem. Eng., 2012.

Wassick, J.M., Enterprise-wide optimization in an integrated chemical complex, Computers & Chem. Eng., 2009, 33, 1950–1963

Optimal Scheduling of Industrial Combined Heat

and Power Plants under Time-sensitive Electricity Prices

Mitra, Sun, Grossmann (2012)Demand Side Management

A CHP plant has inherent flexibility in order

to satisfy power and steam demand

32

Given:

- Boilers (B1, B2, B3)

- Steam turbines (ST1, ST2)

- Gas turbines (GT) w/ HRSG

- Demand (HP, MP, LP, electricity)

- Hourly electricity prices eh

Determine:

- Production levels and internal flows

- Mode of operation for

each equipment

- Sales of electricity

- Purchases of electricity

for every

hour for

an entire

week

1. Operating profit =

Electricity sales (internal and external) + Steam sales – Fuel costs – Start-up costs – Electricity purchases

MP steam

demand

LP steam

demand

HP steam

demand

Power

demand

Condensate

Exhaust stream (waste

incineration plant)

HRSG

Connection to power grid

B1

B3

ST1 ST2B2Water

Fuel

Water

Exhaust Gas

Water

GT

Fuel

~

Air

X

How should the plant be operated in order to maximize the operating profit1,

while satisfying power and steam demand of the chemical plant?

Disjunctive Programming (DP) is used as a

modeling framework to represent the CHP plant

33

Disjunction over operating modes to describe feasible region of operation2

- How to represent each component in terms of

state graph and feasible region?

Mass balances, demand constraints and additional constraints

(e.g. energy exchange with the grid, restrictions on shutdowns)

max Electricity sales (internal and external) + Steam sales

– Fuel costs – Start-up costs – Electricity purchases

Objective function:

Maximize operating profit over an entire week (7*24 hours = 168 discrete time periods)

for each

CHP plant

component

Logic constraints to model restrictions of the state graph

- How to address the previously mentioned model requirements?

Ramping constraints

1

2

3

The model has 70,009 constraints, 49,535 variables

(8,722 binaries) and can be solved within 2 minutes (CPLEX 12.4)

Weekly profiles for a case with 61% utilization1

and 2 shutdowns allowed per component

34

Steam profiles

for boilers

and gas turbine

Electricity profiles

for steam

and gas turbines

HP steam input

profiles for

steam turbines

MP, LP and

cond. output

profiles for

steam turbines

Electricity price

profile

1. Capacity utilization as percentage of maximum steam production.

35

Conclusions

1. Discrete/continuous optimization methods have had- tremendous progress in MILP

- very significant progress in MINLP/GDP

- good progress in global MINLP/GDP

3. Math Programming models used increasingly by industry

2. Mathematical Programming has significantly impacted

Process Integration- Heat Exchanger Networks

- Water Networks

- Power Systems

- Separation Systems

- Process Flowsheets

Math Programming can be successfully used in combination

with heuristics, physical insights, enumerative methods