22
Current Biology 19, 1–6, April 14, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.02.041 Report Recent Region-wide Declines in Caribbean Reef Fish Abundance Michelle J. Paddack, 1,2, * John D. Reynolds, 1 Consuelo Aguilar, 3 Richard S. Appeldoorn, 4 Jim Beets, 5 Edward W. Burkett, 6 Paul M. Chittaro, 7 Kristen Clarke, 8 Rene Esteves, 4 Ana C. Fonseca, 9 Graham E. Forrester, 10 Alan M. Friedlander, 11 Jorge Garcı ´a-Sais, 4 Gaspar Gonza ´ lez-Sanso ´ n, 3 Lance K.B. Jordan, 12 David B. McClellan, 13 Margaret W. Miller, 13 Philip P. Molloy, 1 Peter J. Mumby, 14 Ivan Nagelkerken, 15 Michael Nemeth, 4 Rau ´ l Navas-Camacho, 16 Joanna Pitt, 17 Nicholas V.C. Polunin, 18 Maria Catalina Reyes-Nivia, 16,19 D. Ross Robertson, 20 Alberto Rodrı ´guez-Ramı ´rez, 16 Eva Salas, 9 Struan R. Smith, 21 Richard E. Spieler, 12 Mark A. Steele, 22 Ivor D. Williams, 23 Clare L. Wormald, 22 Andrew R. Watkinson, 2 and Isabelle M. Co ˆ te ´ 1 1 Department of Biological Sciences Simon Fraser University Burnaby, BC V5A 1S6 Canada 2 School of Environmental Sciences University of East Anglia Norwich NR4 7TJ UK 3 Centro de Investigaciones Marinas Universidad de La Habana Playa, CP11300, Ciudad Habana Cuba 4 Department of Marine Sciences University of Puerto Rico Mayagu ¨ ez, PR 00681-9013 USA 5 Department of Marine Science University of Hawai‘i at Hilo Hilo, HI 96720 USA 6 Department of Biology and Earth Sciences University of Wisconsin-Superior Superior, WI 54880 USA 7 Northwest Fisheries Science Center National Marine Fisheries Service Seattle, WA 98112 USA 8 Center for Marine Sciences University of the West Indies Mona Jamaica 9 Centro de Investigacio ´n en Ciencias del Mar y Limnologı´a Ciudad de la Investigacio ´n Universidad de Costa Rica San Pedro, PO 2060 San Jose ´ Costa Rica 10 Department of Natural Resources Science University of Rhode Island Kingston, RI 02881 USA 11 Hawaii Cooperative Fishery Research Unit Department of Zoology University of Hawaii Honolulu, HI 96822 USA 12 Oceanographic Center and National Coral Reef Institute Nova Southeastern University Dania Beach, FL 33004 USA 13 NOAA Fisheries Southeast Fisheries Science Center Miami, FL 33149 USA 14 Marine Spatial Ecology Lab School of BioSciences University of Exeter Exeter EX4 4PS UK 15 Department of Animal Ecology and Ecophysiology Institute for Water and Wetland Research Faculty of Science Radboud University Nijmegen 6500 GL Nijmegen The Netherlands 16 Programa Biodiversidad y Ecosistemas Marinos Instituto de Investigacio ´ nes Marinas y Costeras (INVEMAR) Zona Portuaria (AA 1016) Santa Marta Colombia 17 Marine Resources Section Department of Environmental Protection Bermuda Government Coney Island Bermuda 18 School of Marine Science & Technology University of Newcastle Newcastle-upon-Tyne NE1 7RU UK 19 Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam 1090 GT Amsterdam The Netherlands 20 Smithsonian Tropical Research Institute (Panama ´) STRI, Unit 0948 APO, AA 34002-0948 USA 21 Department of Biology Georgia State University Atlanta, GA 30302-4010 USA 22 Department of Biology California State University Northridge, CA 91330-8303 USA 23 Hawaii Cooperative Fishery Research Unit & Hawaii Division of Aquatic Resources Kailua-Kona, HI 96740 USA *Correspondence: [email protected] Please cite this article in press as: Paddack et al., Recent Region-wide Declines in Caribbean Reef Fish Abundance, Current Biology (2009), doi:10.1016/j.cub.2009.02.041

Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Please cite this article in press as: Paddack et al., Recent Region-wide Declines in Caribbean Reef Fish Abundance, Current Biology(2009), doi:10.1016/j.cub.2009.02.041

Recent Region-wide Decline

Current Biology 19, 1–6, April 14, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.02.041

Reports

in Caribbean Reef Fish Abundance

Michelle J. Paddack,1,2,* John D. Reynolds,1

Consuelo Aguilar,3 Richard S. Appeldoorn,4 Jim Beets,5

Edward W. Burkett,6 Paul M. Chittaro,7 Kristen Clarke,8

Rene Esteves,4 Ana C. Fonseca,9 Graham E. Forrester,10

Alan M. Friedlander,11 Jorge Garcıa-Sais,4

Gaspar Gonzalez-Sanson,3 Lance K.B. Jordan,12

David B. McClellan,13 Margaret W. Miller,13 Philip P. Molloy,1

Peter J. Mumby,14 Ivan Nagelkerken,15 Michael Nemeth,4

Raul Navas-Camacho,16 Joanna Pitt,17

Nicholas V.C. Polunin,18 Maria Catalina Reyes-Nivia,16,19

D. Ross Robertson,20 Alberto Rodrıguez-Ramırez,16

Eva Salas,9 Struan R. Smith,21 Richard E. Spieler,12

Mark A. Steele,22 Ivor D. Williams,23 Clare L. Wormald,22

Andrew R. Watkinson,2 and Isabelle M. Cote1

1Department of Biological SciencesSimon Fraser UniversityBurnaby, BC V5A 1S6Canada2School of Environmental SciencesUniversity of East AngliaNorwich NR4 7TJUK3Centro de Investigaciones MarinasUniversidad de La HabanaPlaya, CP11300, Ciudad HabanaCuba4Department of Marine SciencesUniversity of Puerto RicoMayaguez, PR 00681-9013USA5Department of Marine ScienceUniversity of Hawai‘i at HiloHilo, HI 96720USA6Department of Biology and Earth SciencesUniversity of Wisconsin-SuperiorSuperior, WI 54880USA7Northwest Fisheries Science CenterNational Marine Fisheries ServiceSeattle, WA 98112USA8Center for Marine SciencesUniversity of the West IndiesMonaJamaica9Centro de Investigacion en Ciencias del Mar y LimnologıaCiudad de la InvestigacionUniversidad de Costa RicaSan Pedro, PO 2060San JoseCosta Rica10Department of Natural Resources ScienceUniversity of Rhode IslandKingston, RI 02881USA

*Correspondence: [email protected]

11Hawaii Cooperative Fishery Research UnitDepartment of ZoologyUniversity of HawaiiHonolulu, HI 96822USA12Oceanographic Center and National Coral Reef InstituteNova Southeastern UniversityDania Beach, FL 33004USA13NOAA FisheriesSoutheast Fisheries Science CenterMiami, FL 33149USA14Marine Spatial Ecology LabSchool of BioSciencesUniversity of ExeterExeter EX4 4PSUK15Department of Animal Ecology and EcophysiologyInstitute for Water and Wetland ResearchFaculty of ScienceRadboud University Nijmegen6500 GL NijmegenThe Netherlands16Programa Biodiversidad y Ecosistemas MarinosInstituto de Investigaciones Marinas y Costeras (INVEMAR)Zona Portuaria (AA 1016)Santa MartaColombia17Marine Resources SectionDepartment of Environmental ProtectionBermuda GovernmentConey IslandBermuda18School of Marine Science & TechnologyUniversity of NewcastleNewcastle-upon-Tyne NE1 7RUUK19Institute for Biodiversity and Ecosystem DynamicsUniversity of Amsterdam1090 GT AmsterdamThe Netherlands20Smithsonian Tropical Research Institute (Panama)STRI, Unit 0948APO, AA 34002-0948USA21Department of BiologyGeorgia State UniversityAtlanta, GA 30302-4010USA22Department of BiologyCalifornia State UniversityNorthridge, CA 91330-8303USA23Hawaii Cooperative Fishery Research Unit & Hawaii Division

of Aquatic ResourcesKailua-Kona, HI 96740USA

Page 2: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Current Biology Vol 19 No 72

Please cite this article in press as: Paddack et al., Recent Region-wide Declines in Caribbean Reef Fish Abundance, Current Biology(2009), doi:10.1016/j.cub.2009.02.041

Summary

Profound ecological changes are occurring on coral reefsthroughout the tropics [1–3], with marked coral cover losses

and concomitant algal increases, particularly in the Carib-bean region [4]. Historical declines in the abundance of large

Caribbean reef fishes likely reflect centuries of overexploita-tion [5–7]. However, effects of drastic recent degradation of

reef habitats on reef fish assemblages have yet to be estab-lished. By using meta-analysis, we analyzed time series of

reef fish density obtained from 48 studies that include 318reefs across the Caribbean and span the time period 1955–

2007. Our analyses show that overall reef fish density hasbeen declining significantly for more than a decade, at rates

that are consistent across all subregions of the Caribbeanbasin (2.7% to 6.0% loss per year) and in three of six trophic

groups. Changes in fish density over the past half-centuryare modest relative to concurrent changes in benthic cover

on Caribbean reefs. However, the recent significant declinein overall fish abundance and its consistency across several

trophic groups and among both fished and nonfishedspecies indicate that Caribbean fishes have begun to

respond negatively to habitat degradation.

Results and Discussion

A thorough search for fishery-independent, quantitative time-series data on Caribbean reef fish density yielded 23 peer-reviewed papers, 4 reports, and 21 unpublished data sets,which together spanned 53 years, 273 reef fish species, and20 countries and dependent territories. A rate of change infish density was calculated for each of the 12,897 species 3reef-specific time-series obtained from these 48 studies. Ameta-analysis of these data revealed that annual rates ofchange in reef fish density in the Caribbean shifted from beingpositive or indistinguishable from zero to negative over theperiod from 1955 to 2007 (Figure 1). Averaged over the entiretime period, the annual rate of change in fish density wasstatistically indistinguishable from zero (Ar, of 0.53%; bias-cor-rected 95% confidence interval, CI = 20.39% to 1.48%, whichis not significant because it overlaps zero), but this averagingof rates from different time periods masks significant differ-ences among them (QM = 25.89, p = 0.004). Between 1955and 1995, rates of change in fish density were indistinguish-able from zero or significantly positive (1981–1985). For bothof the final two time periods (1996–2000 and 2001–2007), ratesof change in fish density were significantly negative (Figure 1).The only time period showing positive change (1981–1985)coincides with an important ecological event in the Caribbean,the mass mortality of a once ubiquitous reef herbivore, the seaurchin Diadema antillarum [8]. A positive response in fish pop-ulations to this event [9, 10] may have delayed the onset of thedownward trend.

There was also significant variation in annual rates of changein fish density among subregions (QM = 52.00, p = 0.001). Threeof the five major subregions of the Caribbean (Figure S1 avail-able online)—the SW N Atlantic, the Lesser Antilles, andCentral America—show significant negative rates of changein fish density between 1996 and 2007 (Figure 2). The causesof variation among subregions are unclear, but two potentialsources can be ruled out. Marine protected areas (MPAs)usually have higher fish densities [11, 12], and unequal contri-butions of MPAs across subregions could, therefore, generatevariation in trends in fish density. However, only 5% of density

estimates were derived from MPAs, and removing these datadid not alter the overall rate of change (Ar without MPAs =0.48%, CI = 20.41% to 1.46%) nor did it remove the heteroge-neity among subregions (QM = 48.34, p = 0.001). Geographicvariation in rates of change of fish density also cannot beexplained by geographic differences in rates of loss of coralcover, because no evidence of such regional variation wasfound in a meta-analysis of more than 250 Caribbean reefs[4]. Moreover, geographic variation in rates of change of fishdensity were not attributable to absolute loss of coral coverover the past 30 years, which has varied among subregions[4], as indicated by the fact that areas with the greatest abso-lute declines in coral cover (e.g., parts of the Greater Antilles[4]) had nonsignificant rates of change in fish density. None-theless, our results suggest that declines in reef fish densitieshave occurred recently and across most reefs of the region.

We found little evidence for a role of fishing in driving therecent declines in Caribbean reef fishes. Rates of change indensity of fished and nonfished species were similar (QM =0.47, p = 0.59), with both groups posting significantly negativeannual rates of change in the most recent time period (2001–2007, fished species: Ar = 22.90%, CI = 24.26% to 21.49%;nonfished species: Ar = 23.55%, CI = 25.44% to 21.58%).Moreover, large-bodied species and those at higher trophiclevels which are usually most strongly impacted by fishingpressure [13–15] showed no greater declines than othergroups as indicated by a lack of a relationship between rateof change in density and maximum attainable total length ofeach species (slope < 0.0001, p = 0.34). Furthermore, piscivo-rous fishes, which are heavily fished in the region [16, 17],showed no evidence of decline (Figure 3). Previous studiesindicate that the long history of intensive fishing in the Carib-bean depleted populations of top-level predators long beforethe first scientific surveys in this area [5]. As a result, popula-tions of such species may now be persisting at low densitiesowing to strong density dependence. The declines acrossa wide range of species, including lower trophic levels andsmaller-bodied species not targeted by fisheries, suggestthat they are not due to fishing pressure alone.

Counterintuitively, the decline in fish density that we docu-ment could be caused by recovery of large predators. Thesespecies live at low densities but can consume large numbersof smaller reef fishes, reducing overall fish density [18, 19].Such an effect has been observed in comparisons of relativelypristine and heavily exploited Pacific reefs and appears attrib-utable to the abundance of large sharks on unfished reefs[20–22]. There is no evidence, however, that populations ofsharks or piscivorous fishes have been increasing in the Carib-bean region [23, 24]. Thus, we find no evidence that declines indensity of Caribbean reef fishes have been driven by recoveryof large predators in the region.

During the period of decline (1996–2007), three trophicgroups—the herbivores, invertivores, and generalist carni-vores—had significantly negative annual rates of change(i.e., CIs did not overlap zero), whereas the three other groupshad rates of change that were indistinguishable from zero(Figure 3). Nevertheless, because of largely overlapping confi-dence intervals, trophic groups did not differ significantly fromeach other in mean rate of change (QM = 10.23, p = 0.26). Thedecline in herbivorous fishes is of particular concern, given therole of this group in maintaining low algal biomass, thus facil-itating coral recruitment and survival [25, 26].

Corals have declined drastically across the Caribbeanregion in the past few decades, with an 80% reduction in cover

Page 3: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Figure 1. Annual Percent Change in Fish Density m22 per 5-Year Period

Bars are 95% confidence intervals. Two time periods (pre-1980 and

post-2000) included more than 5 years to avoid low sample sizes.

Sample sizes are given in parentheses and represent the number of indi-

vidual fish density estimates included in the analysis for each group.

Caribbean-wide Reef Fish Declines3

Please cite this article in press as: Paddack et al., Recent Region-wide Declines in Caribbean Reef Fish Abundance, Current Biology(2009), doi:10.1016/j.cub.2009.02.041

since the mid-1970s [4]. The overall lack of congruencebetween the trajectory of fish density and that of coral coverwithin this time period is surprising, considering that declinesin density of many coral reef fish species have been linked toloss of coral in other regions [27–31]. Responses of fish popu-lations to loss of coral in the Indo-Pacific have been shown tolag by 5–10 years [29]. In contrast, in the Caribbean, wherecoral has been lost gradually since at least the mid-1970s [4],our analyses indicate that overall reef fish density began todecline significantly only in the last decade (Figure 1). Thelag in response to coral loss by Caribbean reef fish may there-fore be longer than for Indo-Pacific fishes.

The regional difference in lag times may simply reflect differ-ences in the temporal scale of coral loss, because this studyexamines changes in reef fish density throughout a multideca-dal period of continual coral loss, whereas the Indo-Pacificstudies followed discrete catastrophic coral mortality events.However, differences between Caribbean and Indo-WestPacific fishes in response to declines in coral cover may bereal and reflect differing historical and ecological causes.

Figure 2. Annual Percent Change in Fish Density m22 across Five Subre-

gions of the Caribbean Basin 1996–2007

Bars are 95% confidence intervals. Sample sizes are given in parentheses

and represent the number of individual fish density estimates included in

the analysis for each group.

Caribbean reef fish may not depend on corals to the sameextent as do their Indo-Pacific counterparts. Noncoral habi-tats appear to have been important for speciation andpersistence of Caribbean fish taxa, particularly duringperiods of high coral extinction rates [32–36]. Today, a fewsmall-bodied species in the Caribbean associate closelywith coral substrata [37, 38], but in contrast to Indo-Pacificspecies, no Caribbean fish feeds exclusively on corals[39]. Nonetheless, structural complexity is important forCaribbean fishes [40, 41] and it is likely that the three-dimen-sional relief of Caribbean reefs has been gradually

deteriorating, particularly in recent years as corals—thebuilding blocks of reef platforms—have been reduced to verylow abundance.

Our study reveals recent region-wide declines in Caribbeancoral reef fish density that are largely consistent across subre-gions and in three of six trophic groups. Although Caribbeanreef fishes seem to have been slower in responding to degra-dation of coral reef habitats than Indo-Pacific reef fishes,declines have recently become evident. The consistency ofthese declines across a range of species with varying ecolo-gies and an array of reefs throughout the Caribbean suggestsa degradation debt, with fishes in this region now declining inresponse to habitat-related changes.

Experimental Procedures

Systematic Data Search

Temporally replicated, quantitative data of Caribbean reef fish density (no.

of individuals m22) from in situ surveys conducted only by highly trained

scientists were identified via (1) electronic and manual searches of pub-

lished literature, (2) manual searches of unpublished reports and theses,

and (3) contributions of raw data by researchers. Electronic literature

searches were conducted with ISI Web of Science (1900–2008), Aquatic

Sciences and Fisheries Abstracts (ASFA; 1971–2008), and ProQuest Digital

Dissertations (1861–2008). References cited in these publications were also

checked. Manual searches of unpublished reports and theses were carried

out at Caribbean research institutions with significant library holdings

Figure 3. Annual Percent Change in Fish Density m22 by Major Trophic

Group during the Time Period 1996–2007

Bars are 95% confidence intervals. Sample sizes are given in parentheses

and represent the number of individual fish density estimates included in

the analysis for each group.

Page 4: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Current Biology Vol 19 No 74

Please cite this article in press as: Paddack et al., Recent Region-wide Declines in Caribbean Reef Fish Abundance, Current Biology(2009), doi:10.1016/j.cub.2009.02.041

and/or research programs. These included the Smithsonian Tropical

Research Institute in Panama, Bellairs Research Institute, Barbados Fish-

eries Institute and the University of the West Indies in Barbados, Caribbean

Marine Biology Institute in Curacao, Discovery Bay Marine Laboratory,

Montego Bay Marine Park, the University of the West Indies in Jamaica,

the University of Puerto Rico, the University of the Virgin Islands and the

National Park Service in the Virgin Islands, Rosenstiel School for Marine

and Atmospheric Science and NOAA Southeast Fisheries Science Center

in Miami, the Centro de Investigacion en Ciencias del Mar y Limnologıa

(CIMAR) from the Universidad de Costa Rica, in San Jose, Costa Rica,

and Universidad Autonoma de Yucatan and CINVESTAV in Mexico. Finally,

an advertisement of the project with request for data was posted to an inter-

national list-serve of coral reef researchers (‘‘coral-list’’) managed by the

National Oceanic and Atmospheric Administration.

To be included, each study needed to have (1) reported a density estimate

of at least one reef fish species from a reef site within the Caribbean region,

(2) surveyed the same species at the same reef site over more than one year,

and (3) replicated measurements within each survey.

Data were compiled from 48 multiyear quantitative surveys of reef fish

density, which included 12,897 reef- and species-specific time series.

When data from published sources were presented in aggregated form,

disaggregated data were sought directly from the authors. When species-

specific data were not available, the lowest taxonomic or trophic group

possible was used (e.g., some studies only reported to family, or by trophic

group, such as ‘‘herbivores’’). The data spanned the years 1955–2007, came

from both published (56%) and unpublished sources, and encompassed

273 species (Table S2) from 318 reefs in 20 countries and dependent territo-

ries (Table S1, Figure S1).

Meta-analysis is a method specifically designed to synthesize quantita-

tively the results of separate studies. It entails the calculation of an ‘‘effect

size’’ for each study, i.e., a common currency by which to measure the

magnitude of the response of interest within each study, which are then

combined into an overall effect size across studies in order to detect

whether trends are consistent across studies. Meta-analytic methods can

overcome the limited spatial and temporal extent of many coral reef moni-

toring programs and are used increasingly in ecological and conservation

studies [4, 27, 42–44].

The effect size used here was the annual rate of change in density, AR,

measured as:

AR = ½log Ae 2 log Ai �=d

where Ae and Ai are numerical densities of a given reef fish species at the

end and start, respectively, of the time series at a given reef, and d is the

length of the time series in years. Individual effect sizes were weighted by

the spatial area covered in each fish survey (e.g., area of transect multiplied

by number of replicate transects per survey), because this has been found

to be a robust and relevant weighting factor for meta-analyses involving

subtidal data [45]. Mean effect sizes (overall or within-group) were therefore

calculated as:

Ar =

Pn

x = 1

ðWx*Ar xÞ

Pn

x = 1

Wx

where w is the reef area surveyed. Confidence intervals (CI) were calculated

as:

CI = Ar 6 ta=2½n 2 1�*O1=Xn

x = 1

A significant effect is one for which the CI does not encompass 0.

Heterogeneity in the overall mean effect size was evaluated with the test

statistic QT [46], which measures the extent to which individual effect sizes

coincide in direction and magnitude. To investigate the causes of any signif-

icant heterogeneity, data were subdivided into biologically meaningful

groups to partition the variation, and differences among groups were evalu-

ated via the test statistic QM [43]. This test determines whether there are

significant differences in magnitude and direction of response among cate-

gorical groups. Note that it is possible to have a similar magnitude and direc-

tion of response among groups (i.e., a nonsignificant QM) while some or all

individual groups show a significant effect size (i.e., individual CIs do not

overlap zero). We examined four categorical groupings: subregion, time

period, trophic group, and fishing status. Five broad subregions within the

Caribbean were considered: the southwestern North Atlantic, the Greater

Antilles, the Lesser Antilles, northern South America, and Central America.

Time periods were evaluated in 5-year intervals, with two exceptions: years

prior to 1981 (31 years) and after 2000 (7 years) were combined because of

low sample sizes included in these intervals. The earliest time interval

(<1981) includes data from the 1970s and the only older study available

(1955), so extrapolation of the results to pre-1970s should be considered

cautiously; however, results are unchanged by the removal of the 1955 study

(pre-1981 rate of change in fish density, with 1955 study: Ar = 1.34%, CI =

23.86% to 5.97%; without 1955 study: 2.54%, CI = 22.43% to 7.55%).

Note that the total sample size for the temporal analysis (9886 time series)

was lower than that of the overall analyses because some time series did

not have replicate surveys within a given 5-year interval, so could not be

included. We repeated the temporal analysis with longer time intervals

(12 years), and patterns were consistent (i.e., significant decline in the

most recent time interval: 1996–2007: Ar = 22.97%, CI = 24.52% to 21.42%).

Fish species were categorized into one of six major trophic groups (Table

S2), similar to those designated by previous authors [47, 48] and represent-

ing potentially important differences in ecological roles and behavior and

thus in susceptibility to impacts such as fishing pressure or habitat change.

The trophic groups were (1) herbivores (consume detritus, turf algae, and/or

macroalgae, <10% of diet is animal matter); (2) invertivores (consume

benthic-associated invertebrates, <10% of diet by volume contains algae/

plants/detritus); (3) piscivores (prey on living fishes, <10% invertebrates or

plant/algae/detritus); (4) carnivores (eat both invertebrates and fishes, and

if plants/algae/detritus, <10% by volume); (5) omnivore (diet contains both

animal and plant matter, >10% of both); and (6) planktivores (consume

macro and micro zooplankton, including larval fishes). Finally, fish species

were also separated into two categories of fishing status: fished or unfished.

Fished species were identified by conducting searches in FishBase (http://

www.fishbase.org) and primary literature. Nonfished species include those

that are not marketed, have unknown fishing status, or are included only in

the aquarium trade. Designations are listed in Table S2.

The effect of one continuous variable, maximum attainable total length of

species, on annual rates of change in density was also examined. Maximum

total length data were obtained from FishBase (http://www.fishbase.org)

(Table S2). The significance of this meta-regression is reported as the prob-

ability of the slope being different than zero [46].

We tested for nonindependence, publication, and methodological biases

in several ways. The calculation of overall effect size was repeated multiple

times, excluding sequentially individual studies with >50 species or >5 reefs.

The results remained consistent, indicating that no single, large study had

an undue influence on the overall result. Publication bias could occur if

studies are published only when they show a strong effect. We compared

the overall effect sizes obtained with only peer-reviewed and only non-

peer-reviewed data sources and found no significant difference (QM =

1.24, p = 0.36). A lack of publication bias was also evident in the clear funnel

shape exhibited by the relationship between individual effect sizes and

sample sizes [46]. There was no relationship between annual rate of change

in fish density and study duration (slope = 0.0003, p = 0.33), and the effect

sizes generated by studies of short duration (i.e., two years) were as variable

as those from studies of longer duration (short studies: QT = 1202.22, p <

0.001; longer studies: QT = 20465.14, p < 0.001). Finally, to examine potential

biases introduced by combining studies with different surveying methods,

we compared the rates of change in overall fish density obtained with tran-

sects, cine-transects, point counts, quadrats, and whole-reef counts—the

five methods used in the studies included—for the decade in which we

had the most data (1996–2007). This revealed no significant differences

among methods (QM = 11.39, p = 0.08).

All AR and CI are presented as back-transformed data so that they can be

easily interpreted as percent change in fish density per year. Insufficient

data were available to permit analyses of changes in fish length, biomass,

or species composition (because not all studies examined the entire species

assemblage).

Supplemental Data

Supplemental Data include one figure and two tables and can be found with

this article online at http://www.current-biology.com/supplemental/S0960-

9822(09)00751-9.

Acknowledgments

This project was funded by the UK’s Natural Environment Resource Council,

NE/C004442/1. J.B. and A.M.F. acknowledge the National Park Service,

Page 5: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Caribbean-wide Reef Fish Declines5

Please cite this article in press as: Paddack et al., Recent Region-wide Declines in Caribbean Reef Fish Abundance, Current Biology(2009), doi:10.1016/j.cub.2009.02.041

USGS, and NOAA-Biogeography Branch. P.M.C. was supported by the

National Science and Engineering Research Council of Canada (Grant #

OGP015284). R.E. and J.G.-S. were supported by the Puerto Rico National

Coral Reef Monitoring Program sponsored by NOAA and administered by

the P.R. Department of Natural and Environmental Resources (PRDNER).

A.C.F. and E.S. thank CARICOMP and Jorge Cortes. G.E.F. acknowledges

Falconwood Corporation for funding and Lianna Jarecki for logistical

support. M.W.M. and D.B.M. were supported by NOAA Coral Reef Conser-

vation Program. P.P.M. was supported by BBSRC (Biotechnology and Bio-

logical Sciences Research Council) studentship # 01/A1/S/08113 and the

John and Pamela Salter Charitable Trust. I.N. was supported by a Vidi grant

from the Netherlands Organisation for Scientific Research (NWO). M.G.G.

Grol is thanked for help with the field work in Grand Cayman. R.N.-C.,

A.R.-R., and M.C.R.-N. were funded by MAVDT, COLCIENCIAS. and

UNEP-CAR/RCU. CORALINA, CEINER, UAESPNN, and CARICOMP

contributed with funds and logistical support. N.V.C.P. was supported by

UK DFID. D.R.R. was supported by The Smithsonian Tropical Research

Institute, the Government of the Republic of Panama, the Kuna General

Congress. Field assistance to D.R.R.: E. Pena, A. Cedeno. M.A.S., C.L.W.,

and G.E.F. appreciate long-term financial support from the National Science

Foundation; financial and logistical support from the NOAA National

Undersea Research Program; and the help of numerous field assistants.

I.M.C. was supported by the National Science and Engineering Research

Council of Canada.

Received: September 15, 2008

Revised: February 5, 2009

Accepted: February 9, 2009

Published online: March 19, 2009

References

1. Wilkinson, C.R. (1999). Global and local threats to coral reef functioning

and existence: review and predictions. Mar. Freshw. Res. 50, 867–878.

2. Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R.,

Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J.B.C., Kleypas,

J., et al. (2003). Climate change, human impacts, and the resilience of

coral reefs. Science 301, 929–933.

3. Bruno, J.F., and Selig, E.R. (2007). Regional decline of coral cover in the

Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2,

e711.

4. Gardner, T.A., Cote, I.M., Gill, J.A., Grant, A., and Watkinson, A.R. (2003).

Long-term regional declines in Caribbean corals. Science 301, 958–960.

5. Jackson, J.B.C. (1997). Reefs since Columbus. Coral Reefs 16,

S23–S32.

6. Pandolfi, J.M., Bradbury, R.H., Sala, E., Hughes, T.P., Bjorndal, K.A.,

Cooke, R.G., McArdle, D., McClenachan, L., Newman, M.J.H., Paredes,

G., et al. (2003). Global trajectories of the long-term decline of coral reef

ecosystems. Science 301, 955–958.

7. McClenachan, L., and Cooper, A.B. (2008). Extinction rate, historical

population structure and ecological role of the Caribbean monk seal.

Proc. Biol. Sci. 275, 1351–1358.

8. Lessios, H.A., Robertson, D.R., and Cubit, J.D. (1984). Spread of Dia-

dema mass mortality through the Caribbean. Science 226, 335–338.

9. Robertson, D.R. (1991). Increases in surgeonfish populations after mass

mortality of the sea urchin Diadema antillarum in Panama indicate food

limitation. Mar. Biol. 111, 437–444.

10. Carpenter, R.C. (1990). Mass mortality of Diadema antillarum II. Effects

on population densities and grazing intensity of parrotfishes and sur-

geonfishes. Mar. Biol. 104, 79–86.

11. Mosqueira, I., Cote, I.M., Jennings, S., and Reynolds, J.D. (2000).

Conservation benefits of marine reserves for fish populations. Anim.

Conserv. 4, 321–332.

12. Halpern, B.S., and Warner, R.R. (2002). Marine reserves have rapid and

lasting effects. Ecol. Lett. 5, 361–366.

13. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., and Torres, F.J.

(1998). Fishing down marine food webs. Science 279, 860–863.

14. Myers, R.A., and Worm, B. (2003). Rapid worldwide depletion of preda-

tory fish communities. Nature 423, 280–283.

15. Jennings, S., and Polunin, N.V.C. (1997). Impacts of predator depletion

by fishing on the biomass and diversity of non-target reef fish commu-

nities. Coral Reefs 16, 71–82.

16. Chiappone, M., Sluka, R., and Sealy, K.S. (2000). Groupers (Pisces: Ser-

ranidae) in fished and protected areas of the Florida Keys, Bahamas and

northern Caribbean. Mar. Ecol. Prog. Ser. 198, 261–272.

17. Polunin, N.V.C., and Roberts, C.M. (1993). Greater biomass and value of

target coral reef fishes in two small Caribbean marine reserves. Mar.

Ecol. Prog. Ser. 100, 167–176.

18. Graham, N.A.J., Evans, R.D., and Russ, G.R. (2003). The effects of

marine reserve protection on the trophic relationships of reef fishes

on the Great Barrier Reef. Environ. Conserv. 30, 200–208.

19. Hixon, M.A., and Beets, J.P. (1993). Predation, prey refuges, and the

structure of coral reef fish assemblages. Ecol. Monogr. 63, 77–101.

20. Friedlander, A.M., and DeMartini, E.E. (2002). Contrasts in density, size,

and biomass of reef fishes between the northwestern and the main

Hawaiian islands: the effects of fishing down apex predators. Mar.

Ecol. Prog. Ser. 230, 253–264.

21. Sandin, S.A., Smith, J.E., DeMartini, E.E., Dinsdale, E.A., Donner, S.D.,

Friedlander, A.M., Konotchick, T., Malay, M., Maragos, J.E., Obura, D.,

et al. (2008). Baselines and degradation of coral reefs in the Northern

Line Islands. PLoS One 3, 1–11.

22. DeMartini, E.E., Friedlander, A.M., Sandin, S.A., and Sala, E. (2008).

Differences in fish-assemblage structure between fished and unfished

atolls in the northern Line Islands, central Pacific. Mar. Ecol. Prog.

Ser. 365, 199–215.

23. Baum, J.K., Myers, R.A., Kehler, D.G., Worm, B., Harley, S.J., and Doh-

erty, P.A. (2003). Collapse and conservation of shark populations in the

Northwest Atlantic. Science 299, 389–392.

24. Baum, J.K., and Myers, R.A. (2004). Shifting baselines and the decline of

pelagic sharks in the Gulf of Mexico. Ecol. Lett. 7, 135–145.

25. Mumby, P.J., Dahlgren, C.P., Harborne, A.R., Kappel, C.V., Micheli, F.,

Brumbaugh, D.R., Holmes, K.E., Mendes, J.M., Broad, K., Sanchirico,

J.N., et al. (2006). Fishing, trophic cascades, and the process of grazing

on coral reefs. Science 311, 98–101.

26. Mumby, P.J., Hastings, A., and Edwards, A.J. (2007). Thresholds and the

resilience of Caribbean coral reefs. Nature 450, 98–101.

27. Wilson, S.K., Graham, N.A.J., Pratchett, M.S., Jones, G.P., and Polunin,

N.V.C. (2006). Multiple disturbances and the global degradation of coral

reefs: are reef fishes at risk or resilient? Glob. Change Biol. 12, 1–15.

28. Doherty, P.J., Meekan, M.G., Miller, I.R., Osborne, K., and Thompson,

A.A. (1997). Catastrophic loss of coral cover from reefs in the southern

Great Barrier Reef and the impact on fish recruitment. Proc. 8th Int.

Coral Reef Symp. 1, 1005–1010.

29. Graham, N.A.J., Wilson, S.K., Jennings, S., Polunin, N.V.C., Robinson,

J., Bijoux, J.P., and Daw, T.M. (2007). Lag effects in the impacts of

mass coral bleaching on coral reef fish, fisheries, and ecosystems.

Conserv. Biol. 21, 1291–1300.

30. Pratchett, M.S., Wilson, S.K., and Baird, A.H. (2006). Declines in the

abundance of Chaetodon butterflyfishes following extensive coral

depletion. J. Fish Biol. 69, 1269–1280.

31. Graham, N.A.J., McClanahan, T.R., MacNeil, M.A., Wilson, S.K., Polunin,

N.V.C., Jennings, S., Chabanet, P., Clark, S., Spalding, M.D., Letour-

neur, Y., et al. (2008). Climate warming, marine protected areas and

the ocean-scale integrity of coral reef ecosystems. PLoS One 3, e3039.

32. Budd, A.F., Johnson, K.G., and Stemann, T.A. (1993). Plio-Pleistocene

extinctions and the origin of the modern Caribbean reef-coral fauna.

In Proceedings of the Colloquium on Global Aspects of Coral Reefs:

Health, Hazards and History, R.N. Ginsburg, ed. (Miami, FL: University

of Miami Publ.), pp. 7–13.

33. Jackson, J.B.C. (1994). Constancy and change of life in the sea. Philos.

T. R. Soc. B 344, 55–60.

34. Bellwood, D.R. (1997). Reef fish biogeography: habitat associations,

fossils, and phylogenies. Proc. 8th Int. Coral Reef Symp. 1, 379–384.

35. Bernardi, G., Robertson, D.R., Clifton, K.E., and Azzurro, E. (2000).

Molecular systematics, zoogeography, and evolutionary ecology of

the Atlantic parrotfish genus Sparisoma. Mol. Phylogenet. Evol. 15,

292–300.

36. Bellwood, D.R. (1994). A phylogenetic study of the parrotfishes family

Scaridae (Pisces: Labroidei), with a revision of the genera. Rec. Aust.

Mus. (Supplement 20), 1–86.

37. Whiteman, E.A., and Cote, I.M. (2004). Individual differences in micro-

habitat use in a Caribbean cleaning goby: a buffer effect in a marine

species? J. Anim. Ecol. 73, 831–840.

38. Clarke, R.D. (1999). Diets and metabolic rates of four Caribbean tube

blennies, genus Acanthemblemaria (Teleostei: Chaenopsidae). Bull.

Mar. Sci. 65, 185–199.

Page 6: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Current Biology Vol 19 No 76

Please cite this article in press as: Paddack et al., Recent Region-wide Declines in Caribbean Reef Fish Abundance, Current Biology(2009), doi:10.1016/j.cub.2009.02.041

39. Randall, J.E. (1967). Food habits of reef fishes of the West Indies. Stud.

Trop. Ocean. Miami 5, 665–847.

40. Luckhurst, B.E., and Luckhurst, K. (1978). Analysis of the influence of

substrate variables on coral reef fish communities. Mar. Biol. 49,

317–323.

41. Pittman, S.J., Christensen, J.D., Caldow, C., Menza, C., and Monaco,

M.E. (2007). Predictive mapping of fish species richness across

shallow-water seascapes in the Caribbean. Ecol. Modell. 204, 9–21.

42. Cote, I.M., Mosqueira, I., and Reynolds, J.D. (2001). Effects of marine

reserve characteristics on the protection of fish populations: a meta-

analysis. J. Fish Biol. 59, 178–189.

43. Shurin, J.B., Borer, E.T., Seabloom, E.W., Anderson, K., Blanchette,

C.A., Broitman, B., Cooper, S.D., and Halpern, B.S. (2002). A cross-

ecosystem comparison of the strength of trophic cascades. Ecol.

Lett. 5, 785–791.

44. Marczak, L.B., Thompson, R.M., and Richardson, J.S. (2007). Meta-

analysis: trophic level, habitat, and productivity shape the food web

effects of resource subsides. Ecology 88, 140–148.

45. Cote, I.M., Gill, J.A., Gardner, T.A., and Watkinson, A.R. (2005).

Measuring coral reef decline through meta-analyses. Philos. T. R. Soc.

B 360, 385–395.

46. Rosenberg, M.S., Adams, D.C., and Gurevitch, J. (2000). MetaWin:

Statistical Software for Meta-Analysis Ver. 2.0 (Sunderland, MA: Sinauer

Associates).

47. Ferreira, C.E.L., Floeter, S.R., Gasparini, J.L., Ferreira, B.P., and Joyeux,

J.C. (2004). Trophic structure patterns of Brazilian reef fishes: a latitudi-

nal comparison. J. Biogeogr. 31, 1093–1106.

48. Dominici-Arosemena, A.D., and Wolff, M. (2005). Reef fish community

structure in Bocas del Toro (Caribbean, Panama): gradients in habitat

complexity and exposure. Caribb. J. Sci. 41, 613–637.

Page 7: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Fig. S1. Distribution of study sites in the wider Caribbean basin. Areas from which data were sourced are shown as circles. Boundaries of Caribbean sub-regions are defined by lines.

Supplemental Data

Page 8: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Appendix

Table S1. Supplementary reef site and data source information. N = number of replicates per survey. Sample unit is measurement type & dimensions (note: Cylinder

dimension is radius). Survey targets: A = all non-cryptic species, H = herbivores, P = predators, R = researcher-defined guild, S = single species. N/A = information not

obtainable. Note that the sample size contributed by each study equals the number of reef sites × the number of species within the relevant time period.

* Data not provided to species

Data

source

Researcher(s) Region Country/

Island

Reef Site Years No.

Yrs

Surveys

/year

Depth

(m)

N Sample

unit

No.

species

Survey

targets

1 Alevizon, W SW N Atlantic Bahamas Deep Water

Caye

1979-

1980

2 1 6 60 Transect

40x3m

4 H

2 Alevizon, W

Porter, J

SW N Atlantic Bahamas Cay Sal Bank 1974-

2004

30 1974: 1

2004: 1

9-12 24,

10

Video

60x4m

42 A

3 Alevizon, W

Porter, JW

SW N Atlantic Florida

(Upper

Keys)

Key Largo Dry

Rocks

1974-

2004

30 1974: 1

2004: 1

1-9 25,

28

Video

60x4m

55 A

4 Aronson, RB

Precht, WF

Greater

Antilles

Jamaica Discovery Bay 1993-

1999

7 1 5 6 Transect

25x2 m

15 H

5 Ault, JS SW N Atlantic Florida

(Dry Tortugas)

Dry Tortugas

National Park

1999-

2004

5 1 <33 202 Cylinder

7.5 m

21 R

6 Bardach, JE SW N Atlantic Bermuda North 1955-

1957

3 1 10 2 Transect

457x12

16 R

7 Beets, J Lesser Antilles St John Yawzi Pt

Cocoloba Cay

1988-

1991

4 12 15

15

2 Cylinder

7.5 m

22* A

8 Friedlander, AM

Beets, J

Lesser Antilles St John 4 site average:

Yawzi Pt

Tektite Reef

Newfound Bay

Haulover West

1991-

2006

6 1 10 64-

96

Cylinder

7.5 m

195 A

9 Bohnsack, JA Kellison, T

SW N Atlantic Florida (Upper &

Mid Keys)

Molasses Reef Looe Key

1979-1998

20 1 10

4 Cylinder, 7.5 m

145 A

10 Burkett, E Central

America

Mexico

(Cozumel)

Paraiso:

Terrace 1

Terrace 2

Step 1

1994-

1996

3 1

3

10

5

3,6 Transect

40x4 m

27 R

11 Bustamante, G Greater

Antilles

Dominican

Republic

Parque

Nacional del

Este

1996-

1997

2 1 17 142 Transect

20x5 m

12 P

12 Carpenter, RC Lesser Antilles St Croix

(Tague Bay)

Backreef/crest

Shallow fore Mid forereef

Deep forereef

1983-

1987

5 12 2

2 5

10

4 Transect

155x2m

15 H

Supplemental Data

Page 9: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Data

source

Researcher(s) Region Country/

Island

Reef Site Years No.

Yrs

Surveys

/year

Depth

(m)

N Sample

unit

No.

species

Survey

targets

13 Chittaro, PM Lesser Antilles St Croix

(Tague

Bay)

20 Tague Bay

backreef patch

reefs

1991-

1996

6 1991: 1

1992-95: 2

1996: 1

4 1 Whole reef

count

90 A

14 Clarke, K Greater

Antilles

Jamaica

(Discovery

Bay)

8 sites in

Discovery Bay

(7 backreef, 1 forereef)

1995-

1996

2 1 3-8 6 Cylinder

5 m

15 Clarke, RD Lesser Antilles St Croix Tague Bay

Reef (W)

1980-

1995

16 1 10 50 Transect

10x1 m

2 R

16 Claro, R Greater

Antilles

Cuba Sabana-

Camagüey

(mean of 11

sites)

1988-

2000

13 1988: 1

2000: 1

Slope &

crest

8 Transect

50x2 m

118* A

17 de Boer, BA N S America Curaçao Curaçao 1972-

1974

3 52 7 52 Transect

10x10 m

1 S

18 Fonseca, AC

Salas, E

Central

America

Costa Rica

(Cahuita)

Eduardo

Meager Shoal

2004-

2007

4 1 3

7

5 Transect

30x2

64 R

19 Forrester, GE Lesser Antilles British Virgin

Islands

Bigelow Beach Crab Cove

Grand Ghut

Iguana Head

Monkey Pt

Muskmellon

Pelican Ghut

White Bay

1992-2007

16 1 8-9 8-9

8-9

8-9

8-9

8-9

8-9

8-9

5 Transect 30x1.5

106 A

20 Garcia-Sais, J

Esteves, R

Greater

Antilles

Puerto

Rico

Desecheo

Mayaguez Bay

Rincon

Caja de Muertos

Derrumbadero

Guanica

2004-

2006

3 1 5,10,15,

20,30 at

each

site

5 Transect

10x3 m

115 A

21 Hay, ME Lesser Antilles St Thomas Brewer’s Bay 1982-

1983

2 1 3 18 Transect

50x3 m

15 H

22 Hernández, I

Aguilar, C

González-

Sansón, G

Greater

Antilles

Cuba Havana C30 2001-

2003

3 12 1-15 25 Quadrat

5x5m

4 R

Page 10: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Data

source

Researcher(s) Region Country/

Island

Reef Site Years No.

Yrs

Surveys

/year

Depth

(m)

N Sample

unit

No.

species

Survey

targets

23 Hunt von

Herbing, I

Lesser Antilles Barbados Sandridge

Greensleeves

Heron Bay

Golden Palms

Glitter Bay

N Bellairs

1984-

1985

2 104 N/A 3 Transect

50x1 m

1 S

24 Jordan, L

Spieler, R

SW N Atlantic Florida

(Broward

County)

25 sites in

Broward

County

2001-

2007

7 1 3-18 2 Transect

30x2 m

147 A

25 Knowlton, N Greater

Antilles

Jamaica West

Central-1

Central-2

East

1982-

1987

6 1982, 1986,

1987: 1

1983-85: 2

9-12 14-

42

Quadrat

1x1 m

1 H

26 Labelle, M Lesser Antilles Barbados Heron Bay 1980-

1981

2 1980: 14

1981: 32

2 14 Transect

57x1 m

1 S

27 Luckhurst, BE SW N Atlantic Bermuda 4 site average:

E of N Rock

W Blue Cut SW Breaker

Outside John

Smith’s Bay

1991-

1993

3 7-11 10 10 Cylinder

7.5 m

69 R

28 Miller, MW

McClellan, D

Greater

Antilles

Navassa Multiple site

average for E,

N, W, SE areas

of island

2002-

2006

5 2002,04,06:

1

30 14 Cylinder

7.5 m

165 A

29 Molloy, P Greater

Antilles

Anguilla Black Garden

Frenchman

Limestone

Shoal Bay

2003-

2004

2 1 5,10

5,10

5,10

5,10

5 Transect

30x6 m

103 A

30 Mumby, PJ Central

America

Belize Glovers Reef 1998-

2007

9 1998: 3

1999-07: 1

10 10 Transect

30x4 m

8 H

31 Nagelkerken, I N S America Curaçao Klein Curaçao

A & B

1998-

1999

2 1 2,5,10,

15 each

site

8 Transect

50x3 m

17 R

32 Nagelkerken, I N S America Curaçao SW Coast 1973-

2003

30 1973: 1

2003: 1

3-36 3 Transect

40x6 m

1 S

33 Nemeth, M

Appeldoorn, RS

Greater

Antilles

Puerto

Rico

Enrique

Hoyo

2003-

2007

5 2,6,11

20

9 Transect

25x4 m

63 A

Page 11: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Data

source

Researcher(s) Region Country/

Island

Reef Site Years No.

Yrs

Surveys

/year

Depth

(m)

N Sample

unit

No.

species

Survey

targets

34 Paddack, MJ SW N Atlantic Florida

(Upper

Keys)

Turtle Rock

Ogden 4

Algae Reef

Dry Rocks

Molasses

French Reef Sand Island

Pickles

White Banks

Little Grecian

Three Sisters

2000-

2003

4 4 1.5-4

4-9

3-4

1-7

3-8

3-8 3-7

4-5

1.5-4.5

3-8

3-4

10 Transect

25x2 m

51 H, P

35 Roberts, CM Lesser Antilles Saba Saba Marine

Park

1991-

1993

3 1991: 1

1993: 1

5 23 Cylinder

5 m

26 R

36 Robertson, DR Central

America

Panama San Blas: 138

patch reefs

1979-

1998

20 1 1-5 1 Whole reef

counts

31 A

37 Rodríguez-

Ramírez, A

Navas-Camacho, R

Reyes-Nivia,

MC

N S America Colombia San Andrés

Tayrona

Santa Marta Rosario

San Bernardo

Urabá

1998-

2006

9 1 1-19 2-9 Transect

30x2 m

86 A

38 Schmitt, EF SW N Atlantic Florida

(Upper

Keys)

Conch Reef 1995-

1996

2 4 5 25 Transect

25x4 m

13 H

39 Smith, SR

Pitt, J

SW N Atlantic Bermuda Hog

Twin

1987-

2000

12 3 5-7

5-7

12 Video

Quadrat

2x2 m

40 H, P

40 Steele, MA

Forrester, GE

SW N Atlantic Bahamas

(Lee Stocking

Island)

Goby Spot

Square Rock Windsock

Tug & Barge

Rainbow

1999-

2002

4 2003: 2

2004-06: 3 2007: 1

8

7 4

3

4

25 Quadrat

1.5x1.5 m

2 R

41 Steele, MA

Forrester, GE

SW N Atlantic Bahamas

(Lee

Stocking

Island)

Goby Spot

Square Rock

Windsock

Tug & Barge

Rainbow

1999-

2002

4 1999: 3

2000: 6

2001: 3

2002: 1

8

7

4

3

4

5 Transect

50x2 m

31 R

42 Steele, MA

Forrester, GE

Samhouri, JF

SW N Atlantic Bahamas

(Lee

Stocking Island)

Goby Spot

Square Rock

Windsock Tug & Barge

Rainbow

2003-

2007

5 2003: 2

2004-06: 3

2007: 1

8

7

4 3

4

16 Quadrat

4x4 m

54 R

Page 12: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Data

source

Researcher(s) Region Country/

Island

Reef Site Years No.

Yrs

Surveys

/year

Depth

(m)

N Sample

unit

No.

species

Survey

targets

43 Steele, MA

Wormald, CL

Forrester, GE

SW N Atlantic Bahamas

(Lee

Stocking

Island)

Goby Spot

Square Rock

Windsock

Tug & Barge

Rainbow

2003-

2007

5 2003-06:3

2007:1

8

7

4

3

4

25 Transect

50x4 m

70 R

44 Van Rooij, JM N S America Bonaire Karpata 1988-1992

5 1988: 5 1989: 15

1990: 8

1992: 3

10 3 Quadrat 15x15 m

1 H

45 Williams, AH Greater

Antilles

Jamaica

(Discovery

Bay)

Discovery Bay,

east backreef

1976-

1981

6 14 4 18 Whole

coral-head

count

ca. 0.7x0.7

1 H

46 Waltho, ND

Kolasa, J

Greater

Antilles

Jamaica

(Discovery

Bay)

Discovery Bay:

Total from 40

patches

1991-

1994

4 3 3-8 45 Quadrat

2.6x2.6 m

71 A

47

Williams, ID

Polunin, NVC Nagelkerken, I

Greater

Antilles

Grand

Cayman

5 sites (i, ii, iv-

vi)

1997-

2006

10 1997:1

2006: 1

10-15 5 Cylinder

10 m

10 H

48 Wormald, CL SW N Atlantic Bahamas

(Lee

Stocking

Island)

Bock Rock

Goby Spot

Square Rock

Windsock

Tug & Barge

Rainbow

N Norman

S Norman

2002-

2005

4 2002: 2

2003: 3

2004: 7

2005: 6

4

8

7

4

3

4

4

3

7 Transect

50x10 m

5 P

Data sources

1. Alevizon, W. and Landmeier, D. (1984). Variability in population structure of four western Atlantic parrotfishes. Environ Biol Fish 10:149-158.

2-3. Alevizon, W.,and Porter, J., pers. comm.

4. Aronson, R.B., and Precht, W.F. (2000). Herbivory and algal dynamics on the coral reef at Discovery Bay, Jamaica. Limnol Oceanogr 45:251-255.

5. Menza, C., Ault, J., Beets, J., Bohnsack, J., Caldow, C., Christensen, J., Friedlander, A., Jeffrey, C., Kendall, M., Luo, J., Monaco, M., Smith, S., Woody, K. (2006). A

Guide to Monitoring Reef Fish in the National Park Service’s South Florida / Caribbean Network. NOAA Technical Memorandum. NOS NCCOS 39, p 166.

6. Bardach , J.E. (1959). The summer standing crop of fish on a shallow Bermuda reef. Limnol Oceanogr 4:77-85.

7. Beets, J. (1993). Long-term monitoring of fisheries in Virgin Islands National Park: Chapter I. Baseline data, 1988-1992, with emphasis on the impact of Hurricane

Hugo. U.S. National Park Service Technical Report VINP 1/93, p 17.

8. Friedlander, A.M., and Beets, J., pers. comm.

9. Bohnsack, J.A., and Kellison, T., pers. comm.

10. Burkett, E.W., pers. comm.

Page 13: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

11. Bustamante, G., Chiappone, M., Geraldes, F.X., Pugibet, E., Schmitt, E., Sluka, R., Sullivan-Sealey, K.M., Torres, R.E., Vega, M., Rodriguez, Y., Alarcon, J.,

Lichtensztajn, Y. (1997). Reef fish assemblages and fisheries in Parque National del Este, Dominican Republic. Proc Gulf Caribb Fish Inst 50:919-937.

12. Carpenter, R.C. (1990). Mass mortality of Diadema antillarum II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar Biol

104:79-86.

13. Chittaro, P.M., pers. comm.; Chittaro, P.M., and Sale, P.F. (2003). Structure of patch-reef assemblages at St. Croix, US Virgin Islands, and One Tree Reef, Australia.

Mar Ecol Prog Ser 249:277-287. 14. Clarke, K., pers. comm.

15. Clarke, R.D. (1996). Population shifts in two competing fish species on a degrading coral reef. Mar Ecol Prog Ser 137:51-58.

16. Claro, R., Cantelar, K., Amargós, F.P., García-Arteaga, J.P. (2007). Cambios en las comunidades de peces de los arrecifes coralinos del Archipiélago Sabana-

Camagüey, Cuba. Rev Biol Trop 55(2): 537-547.

17. de Boer, B.A. (1978). Factors influencing the distribution of the damselfish Chromis cyanea (Poey), Pomacentridae, on a reef at Curaçao, Netherlands Antilles. Bull

Mar Sci 28:550-565.

18. Fonseca, A.C., and Salas, E., pers. comm.

19. Forrester, G.E., pers. comm.

20. Garcia-Sais, J., and Esteves, R., pers. comm.

21. Hay, M.E., Taylor, P.R. (1985). Competition between herbivorous fishes and urchins on Caribbean reefs. Oecologia 65:591-598.

22. Hernández, I., Aguilar, C., González-Sansón, G. (2006). Variacion estacional de la abundancia de especies de peces seleccionadas en el sublitoral rocoso de Cuidad de

la Habana, Cuba. Rev Invest Mar 27:61-68.; Hernández, I., Aguilar, C., González-Sansón, G, pers. comm. 23. Hunt von Herbing, I., Hunte, W. (1991). Spawning and recruitment of the bluehead wrasse Thalassoma bifasciatum in Barbados, West Indies. Mar Ecol Prog Ser

72:49-58.

24. Jordan, L., and Spieler, R., pers. comm.

25. Knowlton, N., Lang, J.C., Keller, B.D. (1990). Case study of natural population collapse: post-hurricane predation on Jamaican staghorn corals. Smithsonian Contrib

Mar Sci 31:1-28.

26. Labelle, M., Nursall, J.R. (1992). Population biology of the redlip blenny, Ophioblennius atlanticus maclurei (Sylvester) in Barbados. Bull Mar Sci 50:186-204.

27. Luckhurst, B.E. (1994). A fishery-independent assessment of Bermuda's coral reef fish stocks by diver census following the fish pot ban: a progress report. Proceedings

of the 46th Gulf and Caribbean Fisheries Institute:309-323.

28. Miller, M.W., and McClellan, D.B., pers. comm.

29. Molloy, P.P., pers. comm.

30. Mumby, P.J., pers. comm.; Mumby, P,J,, Foster, N.L., Glynn Fahy, E.A. (2005). Patch dynamics of coral reef macroalgae under chronic and acute disturbance. Coral Reefs 24:681-692.

31. Nagelkerken, I., pers. comm.,; Nagelkerken, I., Dorenbosch, M., Verberk, W.C.E.P., Cocheret de la Morinière, E., van der Velde, G. (2000). Importance of shallow-

water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Mar Ecol Prog Ser

202:175-192.

32. Nagelkerken, I., Vermonden, K., Moraes, O.C.C., Debrot, A.O., Nagelkerken, W.P. (2005). Changes in coral reef communities and an associated reef fish species,

Cephalopholis cruentata (Lacépède), after 30 years on Curaçao (Netherlands Antilles). Hydrobiologia 549:145-154.

33. Nemeth, M., and Appeldoorn, R.S., pers. comm.

34. Paddack, M.J., pers. comm.

35. Roberts, C.M. (1995). Rapid build-up of fish biomass in a Caribbean marine reserve. Conserv Bio 9:815-826.

36. Roberston, R.A., pers. comm.

37. Rodríguez-Ramírez, A., Reyes-Nivia, M., Navas-Comacho, R., pers. comm.

38. Schmitt, E.F. (1997). The influence of herbivorous fishes on coral reef communities with low sea urchin abundance: a study among reef community types and seasons in the Florida Keys. University of Miami.

39. Smith, S.R., and Pitt, J., pers. comm.; Smith, S.R. (1990). The influence of herbivorous grazers on the recovery of a disturbed coral reef in Bermuda. Ph.D. Thesis,

University of Georgia.

Page 14: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

40-41. Steele, M.A. and Forrester, G.E., pers. comm.

42. Steele, M.A., Forrester, G.E., and Samhouri, J.F., pers. comm.

43. Steele, M.A., Wormald, C.L., and Forrester, G.E., pers. comm.

44. van Rooij, J,M,, Videler,J. (1997). Mortality estimates from repeated visual censuses of a parrotfish (Sparisoma viride) population: demographic implications. Mar Biol

128:385-396.

45. Williams, A.H. (1984). The effects of Hurricane Allen on back reef populations of Discovery Bay, Jamaica. J Exp Mar Bio Ecol 75:233-243. 46. Waltho, N.D., and Kolasa, J. (1996). Stochastic determinants of assemblage patterns in coral reef fishes: a quantification by means of two models. Environ Biol Fish

47:255-267.

47. Nagelkerken, I., pers. comm.; Williams, I.D., Polunin, N.V.C. (2001). Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the

Caribbean. Coral Reefs 19:358-366.

48. Wormald, C., pers. comm.

Page 15: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Table S2. Fish species included in analysis, as designated by researchers, with family, trophic group designation, maximum obtainable length, and fishing status (“Fished” = known part in commercial fishery, “Not” = not marketed, unknown role in market, or aquarium trade only; Fishbase, Froese & Pauly 2006). When data not provided to species, maximum obtainable length provided is that of largest specimen within family or group.

Family SpeciesTrophic group Max. length (cm)

Fishing status

Acanthuridae Acanthuridae Herbivore 39 Fished

Acanthuridae Acanthurus bahianus Herbivore 38 Fished

Acanthuridae Acanthurus bahianus/chirurgus Herbivore 39 Fished

Acanthuridae Acanthurus chirurgus Herbivore 39 Fished

Acanthuridae Acanthurus coeruleus Herbivore 39 Fished

Acanthuridae Acanthurus sp. Herbivore 39 Fished

Apogonidae Apogon binotatus Planktivore 13 Not

Apogonidae Apogon lachneri Planktivore 7 Fished

Apogonidae Apogon maculatus Invertivore 11 Fished

Apogonidae Apogon pseudomaculatus Invertivore 11 Not

Apogonidae Apogon quadrisquamatus Planktivore 7 Fished

Apogonidae Apogon sp. Planktivore 13 Fished

Apogonidae Apogon townsendi Invertivore 6 Not

Apogonidae Apogonid sp. Planktivore 13 Not

Apogonidae Phaeoptyx pigmentaria Invertivore 8 Not

Atherinidae Atherinomorus sp. Planktivore 10 Fished

Atherinidae Atherinomorus stipes Planktivore 10 Fished

Aulostomidae Aulostomus maculatus Carnivore 100 Fished

Balistidae Balistes capriscus Invertivore 60 Fished

Balistidae Balistes vetula Invertivore 60 Fished

Balistidae Canthidermis sufflamen Invertivore 65 Fished

Balistidae Melichthys niger Omnivore 50 Fished

Balistidae Xanthichthys ringens Invertivore 25 Fished

Batrachoidiformes Amphichthys cryptocentrus Piscivore 40 Fished

Belonidae Platybelone argalus Piscivore 50 Fished

Belonidae Tylosurus crocodilus Piscivore 150 Fished

Blenniidae Blenniid sp. Herbivore 12 Not

Blenniidae Ophioblennius macclurei Herbivore 12 Not

Blenniidae Parablennius marmoreus Omnivore 9 Not

Blenniidae Scartella cristata Herbivore 12 Not

Bothidae Bothidae unidentified sp. Carnivore 46 Fished

Bothidae Bothus lunatus Carnivore 46 Fished

Bothidae Bothus sp. Carnivore 46 Fished

Callionymidae Callionymus bairdi Carnivore 11 Not

Carangidae Alectis ciliaris Carnivore 150 Fished

Carangidae Carangoides ruber Carnivore 59 Fished

Carangidae Caranx bartholomaei Piscivore 100 Fished

Carangidae Caranx crysos Piscivore 70 Fished

Carangidae Caranx hippos Carnivore 124 Fished

Carangidae Caranx latus Piscivore 101 Fished

Carangidae Caranx lugubris Piscivore 100 Fished

Supplemental Data

Page 16: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Family SpeciesTrophic group Max. length (cm)

Fishing status

Carangidae Decapterus macarellus Planktivore 25 Fished

Carangidae Decapterus punctatus Planktivore 30 Fished

Carangidae Decapterus sp. Planktivore 30 Fished

Carangidae Elagatis bipinnulata Carnivore 180 Fished

Carangidae Selar crumenophthalmus Carnivore 70 Fished

Carangidae Seriola rivoliana Piscivore 160 Fished

Carangidae Trachinotus falcatus Carnivore 122 Fished

Carcharhinidae Carcharhinus limbatus Carnivore 275 Fished

Carcharhinidae Carcharhinus perezi Piscivore 300 Fished

Carcharhinidae Carcharhinus sp. Carnivore 300 Fished

Centropomidae Centropomus undecimalis Piscivore 140 Fished

Chaenopsidae Acanthemblemaria aspera Invertivore 4 Not

Chaenopsidae Acanthemblemaria chaplini Invertivore 4 Not

Chaenopsidae Acanthemblemaria maria Invertivore 5 Not

Chaenopsidae Acanthemblemaria sp. Invertivore 5 Not

Chaenopsidae Acanthemblemaria spinosa Invertivore 3 Not

Chaenopsidae Emblemaria pandionis Planktivore 5 Not

Chaenopsidae Hemiemblemaria simulus Carnivore 10 Not

Chaenopsidae Lucayablennius zingaro Carnivore 4 Not

Chaetodontidae Chaetodon capistratus Invertivore 8 Not

Chaetodontidae Chaetodon ocellatus Invertivore 20 Not

Chaetodontidae Chaetodon sedentarius Omnivore 15 Not

Chaetodontidae Chaetodon striatus Invertivore 16 Not

Chaetodontidae Chaetodontidae Omnivore 20 Not

Chaetodontidae Prognathodes aculeatus Omnivore 10 Not

Cirrhitidae Amblycirrhitus pinos Invertivore 10 Not

Clupeidae Clupeidae Planktivore 15 Fished

Clupeidae Jenkinsia sp. Planktivore 6 Fished

Clupeidae Opisthonema oglinum Planktivore 38 Fished

Congridae Heteroconger longissimus Planktivore 51 Fished

Dactylopteridae Dactylopterus volitans Carnivore 50 Fished

Dasyatidae Dasyatis americana Carnivore 200 Fished

Diodontidae Chilomycterus antennatus Invertivore 38 Not

Diodontidae Chilomycterus antillarum Invertivore 30 Not

Diodontidae Diodon holocanthus Invertivore 50 Fished

Diodontidae Diodon hystrix Invertivore 91 Fished

Echeneidae Echeneis naucrates Omnivore 110 Fished

Echeneidae Remora remora Carnivore 86 Fished

Elopidae Megalops atlanticus Carnivore 250 Fished

Engraulidae/Clupeidae Engraulid/Clupeid unidentified Planktivore 15 Fished

Ephippidae Chaetodipterus faber Omnivore 91 Fished

Exocoetidae Hyporhamphus unifasciatus Omnivore 30 Fished

Fistulariidae Fistularia tabacaria Piscivore 200 Fished

Gerreidae Eucinostomus jonesi Invertivore 20 Not

Gerreidae Gerres cinereus Invertivore 41 Fished

Ginglymostomatidae Ginglymostoma cirratum Carnivore 430 Fished

Gobiidae Coryphopterus dicrus Omnivore 5 Not

Gobiidae Coryphopterus eidolon Herbivore 6 Not

Page 17: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Family SpeciesTrophic group Max. length (cm)

Fishing status

Gobiidae Coryphopterus glaucofraenum Omnivore 8 Not

Gobiidae Coryphopterus lipernes Omnivore 3 Not

Gobiidae Coryphopterus personatus Planktivore 4 Not

Gobiidae Coryphopterus sp. Omnivore 8 Not

Gobiidae Ctenogobius saepepallens Invertivore 5 Not

Gobiidae Elacatinus evelynae Invertivore 4 Not

Gobiidae Elacatinus genie Invertivore 5 Not

Gobiidae Elacatinus horsti Invertivore 5 Not

Gobiidae Elacatinus illecebrosum Invertivore 4 Not

Gobiidae Elacatinus oceanops Invertivore 5 Not

Gobiidae Elacatinus saucrus Invertivore 2 Not

Gobiidae Elacatinus sp. Invertivore 5 Not

Gobiidae Gnatholepis thompsoni Omnivore 8 Not

Gobiidae Gobiid sp. Omnivore 8 Not

Gobiidae Microgobius carri Carnivore 8 Not

Gobiidae Nes longus Invertivore 10 Not

Gobiidae Priolepis hipoliti Invertivore 4 Not

Grammatidae Gramma loreto Invertivore 8 Not

Grammatidae Gramma sp. Invertivore 10 Not

Haemulidae Anisotremus moricandi Invertivore 15 Fished

Haemulidae Anisotremus surinamensis Invertivore 76 Fished

Haemulidae Anisotremus virginicus Invertivore 41 Fished

Haemulidae Haemulidae Invertivore 79 Fished

Haemulidae Haemulon album Invertivore 79 Fished

Haemulidae Haemulon aurolineatum Invertivore 25 Fished

Haemulidae Haemulon carbonarium Invertivore 36 Fished

Haemulidae Haemulon chrysargyreum Invertivore 23 Fished

Haemulidae Haemulon flavolineatum Invertivore 30 Fished

Haemulidae Haemulon macrostomum Invertivore 43 Fished

Haemulidae Haemulon melanurum Invertivore 33 Fished

Haemulidae Haemulon parra Invertivore 41 Fished

Haemulidae Haemulon plumierii Invertivore 53 Fished

Haemulidae Haemulon sciurus Invertivore 46 Fished

Haemulidae Haemulon sp. Invertivore 79 Fished

Haemulidae Haemulon striatum Planktivore 28 Fished

Haemulidae Orthopristis chrysoptera Invertivore 46 Fished

Holocentridae Holocentridae Invertivore 61 Fished

Holocentridae Holocentrus adscensionis Invertivore 61 Fished

Holocentridae Holocentrus rufus Invertivore 35 Fished

Holocentridae Holocentrus sp. Invertivore 61 Fished

Holocentridae Myripristis jacobus Planktivore 25 Fished

Holocentridae Neoniphon marianus Invertivore 18 Fished

Holocentridae Sargocentron coruscum Invertivore 15 Fished

Holocentridae Sargocentron sp. Invertivore 18 Fished

Holocentridae Sargocentron vexillarium Invertivore 18 Fished

Inermiidae Emmelichthyops atlanticus Planktivore 13 Not

Inermiidae Inermia vittata Planktivore 23 Fished

Kyphosidae Kyphosus sectatrix Herbivore 76 Fished

Page 18: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Family SpeciesTrophic group Max. length (cm)

Fishing status

Kyphosidae Kyphosus sp. Herbivore 76 Fished

Labridae Bodianus rufus Invertivore 40 Fished

Labridae Clepticus parrae Planktivore 30 Fished

Labridae Doratonotus megalepis Invertivore 9 Not

Labridae Halichoeres bivittatus Invertivore 35 Not

Labridae Halichoeres cyanocephalus Carnivore 30 Not

Labridae Halichoeres garnoti Invertivore 19 Not

Labridae Halichoeres maculipinna Invertivore 18 Not

Labridae Halichoeres pictus Invertivore 13 Not

Labridae Halichoeres poeyi Invertivore 20 Not

Labridae Halichoeres radiatus Invertivore 51 Fished

Labridae Halichoeres sp. Invertivore 51 Not

Labridae Labrid sp. (small) Invertivore 30 Not

Labridae Labridae Invertivore 90 Not

Labridae Lachnolaimus maximus Invertivore 91 Fished

Labridae Thalassoma bifasciatum Planktivore 25 Not

Labridae Xyrichtys martinicensis Invertivore 15 Not

Labridae Xyrichtys novacula Invertivore 38 Not

Labridae Xyrichtys sp. Invertivore 38 Not

Labridae Xyrichtys splendens Invertivore 18 Not

Labrisomidae Labrisomus nuchipinnis Carnivore 23 Not

Labrisomidae Malacoctenus boehlkei Invertivore 6 Not

Labrisomidae Malacoctenus gilli Invertivore 8 Not

Labrisomidae Malacoctenus macropus Invertivore 6 Not

Labrisomidae Malacoctenus sp. Invertivore 8 Not

Labrisomidae Malacoctenus triangulatus Invertivore 8 Not

Labrisomidae Starksia lepicoelia Omnivore 3 Not

Lutjanidae Lutjanidae Carnivore Fished

Lutjanidae Lutjanus analis Carnivore 94 Fished

Lutjanidae Lutjanus apodus Carnivore 67 Fished

Lutjanidae Lutjanus buccanella Piscivore 75 Fished

Lutjanidae Lutjanus cyanopterus Carnivore 160 Fished

Lutjanidae Lutjanus griseus Carnivore 89 Fished

Lutjanidae Lutjanus jocu Carnivore 128 Fished

Lutjanidae Lutjanus mahogoni Carnivore 48 Fished

Lutjanidae Lutjanus sp. Carnivore 160 Fished

Lutjanidae Lutjanus synagris Carnivore 60 Fished

Lutjanidae Ocyurus chrysurus Planktivore 86 Fished

Malacanthidae Malacanthus plumieri Carnivore 70 Fished

Monacanthidae Aluterus schoepfii Herbivore 61 Fished

Monacanthidae Aluterus scriptus Omnivore 110 Fished

Monacanthidae Aluterus sp. Omnivore 110 Fished

Monacanthidae Cantherhines macrocerus Omnivore 46 Fished

Monacanthidae Cantherhines pullus Omnivore 20 Fished

Monacanthidae Monacanthus ciliatus Omnivore 20 Fished

Monacanthidae Monacanthus tuckeri Omnivore 10 Not

Monacanthidae Stephanolepis hispidus Invertivore 28 Not

Mullidae Mullidae Invertivore 39 Fished

Page 19: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Family SpeciesTrophic group Max. length (cm)

Fishing status

Mullidae Mulloidichthys martinicus Invertivore 39 Fished

Mullidae Pseudupeneus maculatus Invertivore 30 Fished

Muraenidae Echidna catenata Carnivore 165 Fished

Muraenidae Enchelycore nigricans Carnivore 100 Fished

Muraenidae Gymnothorax funebris Carnivore 250 Fished

Muraenidae Gymnothorax miliaris Carnivore 70 Fished

Muraenidae Gymnothorax moringa Piscivore 200 Fished

Muraenidae Gymnothorax sp. Carnivore 250 Fished

Muraenidae Gymnothorax vicinus Carnivore 122 Fished

Muraenidae Muraenid sp. Carnivore 150 Fished

Myliobatidae Aetobatus narinari Invertivore 300 Fished

Myliobatidae Manta birostris Planktivore 800 Fished

Ophichthidae Myrichthys breviceps Invertivore 102 Not

Ophichthidae Myrichthys ocellatus Carnivore 110 Not

Opistognathidae Opistognathus aurifrons Planktivore 10 Not

Opistognathidae Opistognthus whitehursti Carnivore 14 Not

Ostraciidae Acanthostracion polygonius Invertivore 50 Fished

Ostraciidae Acanthostracion quadricornis Omnivore 55 Fished

Ostraciidae Lactophrys bicaudalis Omnivore 48 Not

Ostraciidae Lactophrys trigonus Omnivore 55 Fished

Ostraciidae Lactophrys triqueter Invertivore 47 Fished

Pempheridae Pempheris schomburgkii Planktivore 15 Not

Pempheridae Pempheris sp. Planktivore 15 Not

Pomacanthidae Centropyge argi Herbivore 8 Not

Pomacanthidae Holacanthus bermudensis Invertivore 45 Fished

Pomacanthidae Holacanthus ciliaris Invertivore 45 Fished

Pomacanthidae Holacanthus tricolor Invertivore 35 Fished

Pomacanthidae Pomacanthidae Omnivore Fished

Pomacanthidae Pomacanthus arcuatus Omnivore 60 Fished

Pomacanthidae Pomacanthus paru Omnivore 41 Fished

Pomacentridae Abudefduf saxatilis Omnivore 23 Fished

Pomacentridae Abudefduf taurus Herbivore 25 Fished

Pomacentridae Chromis cyanea Planktivore 15 Not

Pomacentridae Chromis insolata Planktivore 16 Not

Pomacentridae Chromis multilineata Planktivore 20 Fished

Pomacentridae Chromis scotti Planktivore 10 Not

Pomacentridae Microspathodon chrysurus Herbivore 21 Not

Pomacentridae Pomacentrid sp. Herbivore 25 Not

Pomacentridae Pomacentridae Herbivore 25 Not

Pomacentridae Stegastes diencaeus Herbivore 12 Not

Pomacentridae Stegastes dorsopunicans Herbivore 15 Not

Pomacentridae Stegastes leucostictus Herbivore 10 Not

Pomacentridae Stegastes partitus Herbivore 10 Not

Pomacentridae Stegastes planifrons Herbivore 13 Not

Pomacentridae Stegastes spp. Herbivore 15 Not

Pomacentridae Stegastes variabilis Herbivore 12 Not

Priacanthidae Heteropriacanthus cruentatus Carnivore 50 Fished

Priacanthidae Priacanthus arenatus Carnivore 50 Fished

Page 20: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Family SpeciesTrophic group Max. length (cm)

Fishing status

Priacanthidae Priacanthus sp. Carnivore 50 Fished

Pterelotridae Ptereleotris calliura Planktivore 13 Not

Pterelotridae Pterelotris helenae Planktivore 12 Not

Scaridae Cryptotomus roseus Herbivore 13 Not

Scaridae Scarid sp. Herbivore 120 Fished

Scaridae Scaridae Herbivore 120 Fished

Scaridae Scarus coelestinus Herbivore 77 Fished

Scaridae Scarus coeruleus Herbivore 120 Fished

Scaridae Scarus guacamaia Herbivore 120 Fished

Scaridae Scarus iserti Herbivore 35 Fished

Scaridae Scarus iserti/taeniopterus Herbivore 35 Fished

Scaridae Scarus sp. Herbivore 120 Fished

Scaridae Scarus taeniopterus Herbivore 35 Fished

Scaridae Scarus vetula Herbivore 61 Fished

Scaridae Sparisoma atomarium Herbivore 25 Not

Scaridae Sparisoma aurofrenatum Herbivore 28 Fished

Scaridae Sparisoma chrysopterum Herbivore 46 Fished

Scaridae Sparisoma radians Herbivore 20 Not

Scaridae Sparisoma rubripinne Herbivore 48 Fished

Scaridae Sparisoma sp. Herbivore 64 Fished

Scaridae Sparisoma viride Herbivore 64 Fished

Sciaenidae Equetus lanceolatus Invertivore 25 Fished

Sciaenidae Equetus punctatus Invertivore 27 Fished

Sciaenidae Equetus sp. Invertivore 27 Fished

Sciaenidae Odontoscion dentex Carnivore 30 Fished

Sciaenidae Pareques acuminatus Invertivore 23 Fished

Scombridae Acanthocybium solandri Carnivore 250 Fished

Scombridae Scomberomorus cavalla Piscivore 184 Fished

Scombridae Scomberomorus maculatus Piscivore 91 Fished

Scombridae Scomberomorus regalis Piscivore 183 Fished

Scorpaenidae Pterois volitans Piscivore 38 Not

Scorpaenidae Scorpaena plumieri Carnivore 45 Fished

Scorpaenidae Scorpaenid sp. Carnivore 45 Fished

Serranidae Alphestes afer Carnivore 33 Fished

Serranidae Cephalopholis cruentata Carnivore 43 Fished

Serranidae Cephalopholis fulva Carnivore 41 Fished

Serranidae Diplectrum formosum Piscivore 30 Fished

Serranidae Epinephelus adscensionis Carnivore 61 Fished

Serranidae Epinephelus guttatus Carnivore 76 Fished

Serranidae Epinephelus morio Carnivore 125 Fished

Serranidae Epinephelus sp. Carnivore 250 Fished

Serranidae Epinephelus striatus Carnivore 122 Fished

Serranidae Hypoplectrus aberrans Carnivore 13 Fished

Serranidae Hypoplectrus chlorurus Carnivore 13 Fished

Serranidae Hypoplectrus gemma Carnivore 13 Not

Serranidae Hypoplectrus gummigutta Carnivore 13 Not

Serranidae Hypoplectrus guttavarius Carnivore 13 Not

Serranidae Hypoplectrus indigo Carnivore 14 Not

Page 21: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Family SpeciesTrophic group Max. length (cm)

Fishing status

Serranidae Hypoplectrus nigricans Carnivore 15 Not

Serranidae Hypoplectrus puella Carnivore 15 Not

Serranidae Hypoplectrus sp. Carnivore 15 Not

Serranidae Hypoplectrus unicolor Carnivore 13 Not

Serranidae Liopropoma carmabi Carnivore 6 Fished

Serranidae Liopropoma rubre Carnivore 10 Not

Serranidae Liopropoma sp. Carnivore 13 Not

Serranidae Mycteroperca acutirostris Carnivore 80 Fished

Serranidae Mycteroperca bonaci Piscivore 150 Fished

Serranidae Mycteroperca interstitialis Piscivore 84 Fished

Serranidae Mycteroperca microlepis Carnivore 145 Fished

Serranidae Mycteroperca phenax Piscivore 107 Fished

Serranidae Mycteroperca sp. Piscivore 145 Fished

Serranidae Mycteroperca tigris Piscivore 101 Fished

Serranidae Mycteroperca venenosa Carnivore 100 Fished

Serranidae Paranthias furcifer Planktivore 30 Fished

Serranidae Rypticus saponaceus Carnivore 35 Not

Serranidae Serranus baldwini Carnivore 12 Not

Serranidae Serranus sp. Carnivore 29 Not

Serranidae Serranus tabacarius Piscivore 22 Not

Serranidae Serranus tigrinus Carnivore 29 Not

Serranidae Serranus tortugarum Planktivore 8 Not

Sparidae Archosargus rhomboidalis Omnivore 33 Fished

Sparidae Calamus bajonado Invertivore 76 Fished

Sparidae Calamus calamus Invertivore 56 Fished

Sparidae Calamus penna Invertivore 37 Fished

Sparidae Calamus proridens Invertivore 46 Fished

Sparidae Calamus spp. Invertivore 76 Fished

Sparidae Diplodus argenteus Omnivore 38 Fished

Sparidae Diplodus holbrookii Omnivore 46 Fished

Sparidae Lagodon rhomboides Omnivore 40 Fished

Sparidae Sparid sp. Omnivore 76 Fished

Sphyraenidae Sphyraena barracuda Piscivore 200 Fished

Sphyraenidae Sphyraena picudilla Carnivore 61 Fished

Sphyrnidae Sphyrna mokarran Carnivore 610 Fished

Syngnathidae Cosmocampus elucens Carnivore 15 Not

Synodontidae Synodontidae sp. Piscivore 46 Fished

Synodontidae Synodus intermedius Piscivore 46 Fished

Synodontidae Synodus saurus Piscivore 40 Fished

Synodontidae Synodus sp. Piscivore 46 Fished

Tetraodontidae Canthigaster rostrata Omnivore 12 Not

Tetraodontidae Sphoeroides dorsalis Invertivore 20 Fished

Tetraodontidae Sphoeroides greeleyi Invertivore 18 Fished

Tetraodontidae Sphoeroides sp. Invertivore 39 Fished

Tetraodontidae Sphoeroides spengleri Omnivore 30 Not

Tetraodontidae Sphoeroides testudineus Invertivore 39 Not

Urolophidae Urobatis jamaicensis Carnivore 76 Not

Page 22: Recent Region-wide Declines in Caribbean Reef Fish Abundancestri-sites.si.edu/sites/publications/PDFs/STRI-W_Paddack_etal_2009.pdf · Current Biology 19, 1–6, April 14, 2009 ª2009

Froese R, Pauly D (eds) (2006) FishBase, World Wide Web Electronic Publication www.fishbase.org version 07/2006